Rain Shadows

Total Page:16

File Type:pdf, Size:1020Kb

Rain Shadows WEB TUTORIAL 24.2 Rain Shadows Text Sections Section 24.4 Earth's Physical Environment, p. 428 Introduction Atmospheric circulation patterns strongly influence the Earth's climate. Although there are distinct global patterns, local variations can be explained by factors such as the presence of absence of mountain ranges. In this tutorial we will examine the effects on climate of a mountain range like the Andes of South America. Learning Objectives • Understand the effects that topography can have on climate. • Know what a rain shadow is. Narration Rain Shadows Why might the communities at a certain latitude in South America differ from those at a similar latitude in Africa? For example, how does the distribution of deserts on the western side of South America differ from the distribution seen in Africa? What might account for this difference? Unlike the deserts of Africa, the Atacama Desert in Chile is a result of topography. The Andes mountain chain extends the length of South America and has a pro- nounced influence on climate, disrupting the tidy latitudinal patterns that we see in Africa. Let's look at the effects on climate of a mountain range like the Andes. The prevailing winds—which, in the Andes, come from the southeast—reach the foot of the mountains carrying warm, moist air. As the air mass moves up the wind- ward side of the range, it expands because of the reduced pressure of the column of air above it. The rising air mass cools and can no longer hold as much water vapor. The water vapor condenses into clouds and results in precipitation in the form of rain and snow, which fall on the windward slope. As the air mass continues down the other side of the mountains, the pressure rises. The air is compressed and warms. But because this air mass has lost most of its moisture through precipitation on the windward side, it is now warm and dry, cre- ating desert conditions on the leeward side of the range. Dry regions leeward of mountain ranges are called rain shadows. The red circles mark the general locations of deserts caused by rain shadows. The blue arrows indicate the movement of air masses that contribute to this pattern. The deserts east of the Sierra Nevada, the Rockies, and the Cascades are all caused by rain shadows. The Atacama Desert in Chile, as we have just seen, is caused by air masses mov- ing westward across the Andes. The Patagonian Desert in southern Argentina is caused by air moving eastward across the southernmost part of the Andes. The western slopes in this area consti- tute one of only two temperate rain forests in the world. (The other is on the west- ern slopes of the Olympic Mountains in Washington State.) The Gobi Desert is caused by air masses moving across the Himalaya. Moisture is dropped in India, causing monsoons. You should now be able to… • Explain how the movement of winds around mountain ranges can cause rain shadows. • List 4 deserts that are caused by rain shadows..
Recommended publications
  • Amit Wasnik & Shubham Jain
    - Amit Wasnik & Shubham Jain What is a Biome? A biome is a geographic area characterized by specific kinds of plants and animals. Deserts, tropical rainforests, and tundra are all types of biomes. In the desert biome many organisms have learned to adapt to the hot climate and lack of supplements. Deserts are formed by mountains blocking the path of precipitation . Deserts can be hot or cold but they are always dry. They receive less than 25 cm of precipitation annually. They cover 22 million km2 or 1/5 of the earth’s surface. Hot Desert eg. Thar, in Rajasthan, India Rub-ab-khali, Saudi Arab . Cold Desert eg. Gobi desert, Mangolia Ica desert, Peru A Desert’s CharacteristicsCharacteristics Climate Seasons Animals Adaptations Plants Significance to humans ClimateClimate The desert is the hottest biome on Earth. It also has its extremes. It can be over 50 degrees during the day and below 32 degrees at night. Less than 25 cm or rainfall every year. The amount of rainfall varies, but when it rains…it POURS!!!! After a storm, the desert may not see any rain for weeks or months. The animals include snakes, owls, mice, armadillo lizards, fennec foxes, gila monsters, bats, and vultures. EndangeredEndangered AnimalsAnimals Black Rhino The major causes of endangered animals Grevy’s in the desert are Zebra mainly poachers and unexpected drought. King Cheetah PlantPlant LifeLife ofof DesertsDeserts There are several plants that are able to survive in the desert. Most plants survive by their long roots to reach underground water sources. A Variety of cactuses Prickly Pear Dragon Tree Octillo Plant Desert Spoon Boojum i.
    [Show full text]
  • An Integrated Analysis of the March 2015 Atacama Floods
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER An integrated analysis of the March 2015 10.1002/2016GL069751 Atacama floods Key Points: Andrew C. Wilcox1, Cristian Escauriaza2,3, Roberto Agredano2,3,EmmanuelMignot2,4, Vicente Zuazo2,3, • Unique atmospheric, hydrologic, and 2,3,5 2,3,6 2,3,7,8 2,3 9 geomorphic factors generated the Sebastián Otárola ,LinaCastro , Jorge Gironás , Rodrigo Cienfuegos , and Luca Mao fl largest ood ever recorded in the 1 2 Atacama Desert Department of Geosciences, University of Montana, Missoula, Montana, USA, Departamento de Ingeniería Hidráulica y 3 • The sediment-rich nature of the flood Ambiental, Pontificia Universidad Católica de Chile, Santiago, Chile, Centro de Investigación para la Gestión Integrada de resulted from valley-fill erosion rather Desastres Naturales (CIGIDEN), Santiago, Chile, 4University of Lyon, INSA Lyon, CNRS, LMFA UMR5509, Villeurbanne, France, than hillslope unraveling 5Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA, 6Escuela de • Anthropogenic factors increased the fi 7 consequences of the flood and Ingeniería Civil, Ponti cia Universidad Católica de Valparaíso, Valparaíso, Chile, Centro de Desarrollo Urbano Sustentable 8 highlight the need for early-warning (CEDEUS), Santiago, Chile, Centro Interdisciplinario de Cambio Global, Pontificia Universidad Católica de Chile, Santiago, systems Chile, 9Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Santiago, Chile Supporting Information: Abstract In March 2015 unusual ocean and atmospheric conditions produced many years’ worth of • Supporting Information S1 rainfall in a ~48 h period over northern Chile’s Atacama Desert, one of Earth’s driest regions, resulting in Correspondence to: catastrophic flooding.
    [Show full text]
  • Baja California's Sonoran Desert
    Baja California’s Sonoran Desert By Debra Valov What is a Desert? It would be difficult to find any one description that scarce and sporadic, with an would fit all of the twenty or so deserts found on our annual average of 12-30 cm (4.7- planet because each one is a unique landscape. 12 inches). There are two rainy seasons, December- While an expanse of scorching hot sand dunes with March and July-September, with the northern the occasional palm oasis is the image that often peninsula dominated by winter rains and the south comes to mind for the word desert, in fact, only by summer rains. Some areas experience both about 10% of the world’s deserts are covered by seasons, while in other areas, such as parts of the sand dunes. The other 90% comprise a wide variety Gulf coast region, rain may fail for years on end. of landscapes, among these cactus covered plains, Permanent above-ground water reserves are scarce foggy coastal slopes, barren salt flats, and high- throughout most of the peninsula but ephemeral, altitude, snow-covered plateaus. However, one seasonal pools and rivers do appear after winter characteristic that all deserts share is aridity—any storms in the north or summer storms (hurricanes place that receives less than 10 inches (25 and thunderstorms—chubascos) in the south. There centimeters) of rain per year is generally considered are also a number of permanent oases, most often to be a desert and the world’s driest deserts average formed where aquifers (subterranean water) rise to less than 10 mm (3/8 in.) annually.
    [Show full text]
  • Hurricane Paths: Comparing Places with Different Prevailing Winds
    Name ___________________________ Hurricane Paths: Comparing Places with Different Prevailing Winds To understand where hurricanes usually start and what direction they usually move, it helps to have a clear mental image of the pattern of prevailing winds in the world. One way to get this image is to make a careful comparison of wind observations in several places. The diagrams on the right are examples of a special kind of graph called a wind rose. The number in the center indicates the percentage of time the air is calm (no wind). Each of the eight lines radiating away from the center shows the percentage of time the wind blows FROM that direction. Repeat: The lines point to the direction the wind is blowing FROM. Please answer the following questions. 1) According to the map above, Boston has calm air about 12% of the time; the percentage of time San Juan, Puerto Rico, has calm air is _____ . 2) In San Juan, the wind blows the largest percentage of time from the northeast; in Boston, the wind blows from the _________ more often than from any other direction. 3) Use the wind rose graphs on pages 2 and 3. To get an idea about the net zonal flow of air in each location, add up the total percentage of time the wind blows from the southwest, west, and northwest, and subtract the total percentage from the southeast, east, and northeast total percentage. The result is the net westerly component - it is a positive number if the flow is mainly westerly (from the west), and a negative number if the flow is easterly (from the east).
    [Show full text]
  • World Heritage Nomination - Iucn Technical Evaluation
    WORLD HERITAGE NOMINATION - IUCN TECHNICAL EVALUATION PENINSULA VALDES (ARGENTINA) 1. DOCUMENTATION i) IUCN/WCMC Data Sheet (11 references). ii) Additional Literature Consulted: Davis, S. ed. 1997. Centres of Plant Diversity. Vol. 3. IUCN/WWF, pp 549-542; Kelleher, Bleakley & Wells. ed. 1995. A Global Representative System of Marine Protected Areas. Vol. 2. IUCN/ WB/GBRMPA, pp 76-83; Stattersfield, Crosby, et al. 1998. Endemic Bird Areas of the World: Priorities for Biodiversity Conservation. Birdlife Conservation Series No. 7, pp 256-258; Reeves & Leatherwood. 1994. Dolphins, Porpoises and Whales – Action Plan for the Conservation of Cetaceans. IUCN/SSC Cetacean Specialist Group, pp 26-30; Bubas. 1996. Orcas de la Península Valdés. 13 p; Conway, R. & K. Payne. 1976. Patagonia: A wild shore where two worlds meet. National Geographic. 3/1976, pp 290-322; Erize. 1966. Sea Mammals of Patagonia. Animals. Vol. 8. No. 18, 4/1966, pp 479-481; CPPS/PNUMA. 1992. Plan de Acción para la Conservación de los Mamíferos Marinos en el Pacífico Sudeste. Informes y Estudios del Programa de Mares Regionales del PNUMA (UNEP), pp 110-155; Administración de Parques Nacionales de la Argentina. 1998. Las Areas Naturales Protegidas de la Argentina. APN/IUCN/FAO, 65 p; Leitch. 1990. South America's National Parks: A Visitor's Guide. The Mountaineers, pp 73-89. iii) Consultations: 5 external reviewers, National Parks Administration of Argentina, National Secretary for Tourism, National Commission of Co-operation with UNESCO, Patagonia Natural Foundation, Direction of Conservation and Tourism of the Chubut Province, EcoValdés Foundation, Superintendent of Península Valdés, National Centre for Patagonia, Association of Landowners of Península Valdés, Association of Artisan Fishermen, University of Patagonia, representative of Puerto Pirámides community, Whale watching tour operators, landowners iv) Field Visit: January 1999.
    [Show full text]
  • CCN Characteristics During the Indian Summer Monsoon Over a Rain- Shadow Region Venugopalan Nair Jayachandran1, Mercy Varghese1, Palani Murugavel1, Kiran S
    https://doi.org/10.5194/acp-2020-45 Preprint. Discussion started: 3 February 2020 c Author(s) 2020. CC BY 4.0 License. CCN characteristics during the Indian Summer Monsoon over a rain- shadow region Venugopalan Nair Jayachandran1, Mercy Varghese1, Palani Murugavel1, Kiran S. Todekar1, Shivdas P. Bankar1, Neelam Malap1, Gurunule Dinesh1, Pramod D. Safai1, Jaya Rao1, Mahen Konwar1, Shivsai 5 Dixit1, Thara V. Prabha1, 1Indian Institute of Tropical Meteorology, Pune, India. Correspondence to: V. Jayachandran ([email protected]) Abstract. Continuous aerosol and Cloud Condensation Nuclei (CCN) measurements carried out at the ground observational facility situated in the rain-shadow region of the Indian sub-continent are illustrated. These observations were part of the 10 Cloud-Aerosol Interaction Precipitation Enhancement EXperiment (CAIPEEX) during the Indian Summer Monsoon season (June to September) of 2018. Observations are classified as dry-continental (monsoon break) and wet-marine (monsoon active) according to air mass history. CCN concentrations measured for a range of supersaturations (0.2-1.2 %) are parameterized using Twomey’s empirical relationship. CCN concentrations even at low (0.2 %) supersaturation (SS) were high (>1,000 cm- 3) during continental conditions associated with high black carbon (BC~2,000 ng m-3) and columnar aerosol loading. During 15 the marine air mass conditions, CCN concentrations diminished to ~350 cm-3 at 0.3 % SS and low aerosol loading persisted (BC~900 ng m-3). High CCN activation fraction (AF) of ~0.55 (at 0.3 % SS) were observed before the monsoon rainfall, which reduced to ~0.15 during the monsoon and enhanced to ~0.32 after that.
    [Show full text]
  • Semiarid Ethnoagroforestry Management: Tajos in the Sierra Gorda, Guanajuato, Mexico Vincent M
    Hoogesteger van Dijk et al. Journal of Ethnobiology and Ethnomedicine (2017) 13:34 DOI 10.1186/s13002-017-0162-y RESEARCH Open Access Semiarid ethnoagroforestry management: Tajos in the Sierra Gorda, Guanajuato, Mexico Vincent M. Hoogesteger van Dijk1, Alejandro Casas1 and Ana Isabel Moreno-Calles2* Abstract Background: The semi-arid environments harbor nearly 40% of biodiversity, and half of indigenous cultures of Mexico. Thousands of communities settled in these areas depend on agriculture and using wild biodiversity for their subsistence. Water, soil, and biodiversity management strategies are therefore crucial for people’s life. The tajos, from Sierra Gorda, are important, poorly studied, biocultural systems established in narrow, arid alluvial valleys. The systems are constructed with stone-walls for capturing sediments, gradually creating fertile soils in terraces suitable for agriculture in places where it would not be possible. We analyzed biocultural, ecological, economic and technological relevance of the artificial oasis-like tajos, hypothesizing their high capacity for maintaining agricultural and wild biodiversity while providing resources to people. Methods: We conducted our research in three sections of the Mezquital-Xichú River, in three communities of Guanajuato, Mexico. Agroforestry management practices were documented through semi-structured and in-depth qualitative interviews. Vegetation composition of local forests and that maintained in tajos was sampled and compared. Results: Tajos harbor high agrobiodiversity, including native varieties of maize and beans, seven secondary crops, 47 native and 25 introduced perennial plant species. Perennial plants cover on average 26.8% of the total surface of plots. Tajos provide nearly 70% of the products required by households’ subsistence and are part of their cultural identity.
    [Show full text]
  • Environments
    EXTREME Environments Deborah Underwood EXTREME Environments Deborah Underwood Contents A World of Extremes 2 Chapter 1: The Coolest Places on Earth 4 Chapter 2: The Driest Desert 16 Chapter 3: Hot Spots 20 Chapter 4: Water, Water Everywhere 28 Chapter 5: The World’s Worst Climate? 36 Chapter 6: Under the Sea 42 Index 48 A World of Extremes Imagine a mountaintop where plumes of ice grow at the rate of one foot every hour, where you can watch a beautiful ice sculpture form over the course of one day. What about a desert where decades pass without rain, and the ground is dry and cracked in a thousand different places. How could anything possibly live there? Imagine winds that gust at speeds of 200 miles per hour. Could you survive out in the open with such winds blasting against you? How about temperatures of more than 130° Fahrenheit? What’s it like trying to survive in such harsh environments? 2 Now try to imagine a place that has never seen the sun’s rays. This is a place where there is nothing but darkness all day, all year round. What sort of creature could live there? Would it look like anything you’ve ever seen before? In this book we’ll visit some of Earth’s most extreme climates. We’ll see why these climates are so difficult to live in, and we’ll also check out some of the amazing creatures that call these places their homes. So grab a heavy coat, some sunscreen, an umbrella, and a big water bottle—we need to be ready for anything! 3 Chapter 1 The Coolest Places on Earth Got your parka zipped up and your gloves on? Good, because the first stop on our extreme climate tour will be one of the coldest places in the world.
    [Show full text]
  • Living in the Desert Desert World Activity
    desert World Activity Living in the desert desert World Activity Living in the desert In this activity your students will be looking at what makes a desert a desert. They will look at hot deserts (like the Arabian Desert) and cold deserts (like the Patagonian desert) and compare and contrast some of the animals that live there. Based on what they have learned they can then design their own fantasy desert animal! In this activity you and your students will: ▶ Learn about the definition of a desert. ▶ Learn about the evolutionary adaptations that ▶ Learn about hot and cold deserts. the animals have made to live in these different desert environments. ▶ Design their own fantasy desert animal. Objectives Carrying out this activity will help students learn about deserts and some of the animals that call them home. They will also learn about how animals cope with the heat and the cold and how this affects the way they look and behave. You can also ask your class to design their own fantasy desert animal showcasing the special adaptations that they have learned about. These can be displayed in the classroom and uploaded to the Roots & Shoots UAE website to share with the world. What do I need to make it work? You do not need anything special for the first part of this activity (which can be done in the classroom), just an internet connection to carry out some background reading, view pictures and watch some video segments. To design their own fantasy desert animal your students can use paper and coloured pens/pencils, or why not incorporate craft materials to make the designs more exciting, or even make a 3-dimensional creature! What things will my students create? ▶ Drawings and/or models of a fantasy desert animal.
    [Show full text]
  • Prevailing Wind Park Energy Facility Draft Environmental Assessment
    Prevailing Wind Park Energy Facility Draft Environmental Assessment DOE/EA-2061 January 2019 Prevailing Wind Park Energy Facility Draft Environmental Assessment Bon Homme, Charles Mix, Hutchinson, and Yankton Counties, South Dakota U.S. Department of Energy Western Area Power Administration DOE/EA-2061 January 2019 Prevailing Wind Park Draft EA Table of Contents TABLE OF CONTENTS Page No. 1.0 INTRODUCTION ............................................................................................... 1-1 1.1 WAPA’s Purpose and Need ................................................................................. 1-3 1.2 Prevailing Wind Park’s Goals and Objectives ..................................................... 1-3 2.0 DESCRIPTION OF PROPOSED ACTION AND NO ACTION ALTERNATIVES ............................................................................................... 2-1 2.1 Proposed Action ................................................................................................... 2-1 2.1.1 Prevailing Wind Park Project ................................................................ 2-1 2.1.2 Project Life Cycle ................................................................................. 2-5 2.2 No Action Alternative .......................................................................................... 2-5 3.0 AFFECTED ENVIRONMENT ............................................................................ 3-1 3.1 Land Cover and Land Use ..................................................................................
    [Show full text]
  • FINAL REPORT Wind Assessment For: BANKSTOWN
    FINAL REPORT Wind Assessment for: BANKSTOWN COMPASS CENTRE 83-99 North Terrace & 62 The Mall, Bankstown Sydney, NSW 2200, Australia Prepared for: Fioson Pty Ltd L34, 225 George St Sydney NSW 2000 CPP Project: 8759 October 2016 Prepared by: Thomas Evans, Engineer Graeme Wood, Ph.D., Director CPP Project 8759 Executive Summary This report provides an opinion based qualitative assessment of the impact of the proposed Bankstown Compass Centre development on the local pedestrian-level wind environment. This assessment is based on knowledge of the local Bankstown wind climate and previous wind- tunnel test on similar buildings in the Bankstown area. The proposed development is taller than surrounding buildings. Wind speeds are expected to be higher around the outer corners of the development, though the podium roof will prevent significant wind effects occurring at street level. The environmental wind conditions at ground level around the proposed development are expected to be suitable for pedestrian standing from a comfort perspective and pass the distress criterion. Within the development, wind conditions are expected to be suitable for pedestrian standing or walking activities and pass the distress criterion under Lawson. For such a large development with several similar sized towers designed in such a complex manner, it would be recommended to quantify the wind conditions and confirm the qualitative findings using wind-tunnel testing. ii CPP Project 8759 DOCUMENT VERIFICATION Prepared Checked Approved Date Revision by by by 04/02/16 Final Report KF GSW GSW 10/02/16 Revision 1 KF GSW GSW 04/10/16 Amended design drawings TE GSW GSW 05/10/16 Amended Figure TE GSW GSW TABLE OF CONTENTS Executive Summary ...............................................................................................................................
    [Show full text]
  • The Impact of ENSO in the Atacama Desert and Australian Arid Zone: Exploratory Time-Series Analysis of Archaeological Records
    Chungara, Revista de Antropología Chilena ISSN: 0716-1182 [email protected] Universidad de Tarapacá Chile Williams, Alan; Santoro, Calogero M.; Smith, Michael A.; Latorre, Claudio The impact of ENSO in the Atacama desert and Australian arid zone: exploratory time-series analysis of archaeological records Chungara, Revista de Antropología Chilena, vol. 40, 2008, pp. 245-259 Universidad de Tarapacá Arica, Chile Available in: http://www.redalyc.org/articulo.oa?id=32609903 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative The impact of ENSO in the Atacama Desert and Australian arid zone:Volumen Exploratory 40 Número time-series Especial, analysis… 2008. Páginas 245-259245 Chungara, Revista de Antropología Chilena THE IMPACT OF ENSO IN THE ATACAMA DESERT AND AUSTRALIAN ARID ZONE: EXPLORATORY TIME-SERIES ANALYSIS OF ARCHAEOLOGICAL RECORDS1 EL IMPACTO DE ENSO EN EL DESIERTO DE ATACAMA Y LA ZONA ÁRIDA DE AUSTRALIA: ANÁLISIS EXPLORATORIOS DE SERIES TEMPORALES ARQUEOLÓGICAS Alan Williams2, Calogero M. Santoro3, Michael A. Smith4, and Claudio Latorre5 A comparison of archaeological data in the Atacama Desert and Australian arid zone shows the impact of the El Niño-Southern Oscillation (ENSO) over the last 5,000 years. Using a dataset of > 1400 radiocarbon dates from archaeological sites across the two regions as a proxy for population change, we develop radiocarbon density plots, which are then used to explore the responses of these prehistoric populations to ENSO climatic variability.
    [Show full text]