Biosynthesis of Canavanine

Total Page:16

File Type:pdf, Size:1020Kb

Biosynthesis of Canavanine South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 1972 Biosynthesis of Canavanine Shu-Chiung W. Chen Follow this and additional works at: https://openprairie.sdstate.edu/etd Recommended Citation Chen, Shu-Chiung W., "Biosynthesis of Canavanine" (1972). Electronic Theses and Dissertations. 4639. https://openprairie.sdstate.edu/etd/4639 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. BIOSYNTHESIS OF CANAVANINE BY SHU-CHIUNG W • CHEN A thesis submitted in partial fulfillment of the requirements for the degree Moster of Science, Maior in Chemistry, South Dakota · State University 1972 SOUTH DAKOTA STATE UN·IVERSITY l ARY BIOSYNTHESIS OF CANAVANINE This thesis is approved as a creditable and independent investigation · by a candidate for the degree, Master of Science, and is acceptable as · meeting the thesis requirements for this degree. Acceptance of this thesis does not imply that the conclusions reached_ by the candidate are neces­ sarily the conclusions of the maior department.· ryisff'Adviser Date Head, Chemistry Department Date ACKNOWLEDGEMENTS The author wishes to express her sincere appredation to · Dr. Terry J. Gilbertson under whose direction and advice the research was carried out. A word of thanks also goes to the Chemistry Department .and Pharmacy College for supplying the materials and equipment to make thfa work possible. The duthor also wishes to extend her gratitude to Mr. Jeong-Shwu Liu for drawing the figures. TABLE. OF CONTENTS INTRODUCTION Page Discovery of Canavanine . Physical Properties and Structure Proof • • • • • I• • • 1 Methods of Isolation . 5 • • • • . Biosynthe sis . 9 PROPOSAL ON BIOSYNTHESIS OF FOUR CARBON CHA IN OF CANAVANINE Methionine Hypothesis • • • • • • • • • • • 10 Glutamic Acid Hypothesis • 91 • . 12 RESULTS . 16 • . CONCLUSION . 19 EXPERIMENTAL . Description of Instrumentation Used • � • I • • • • • • • • • 21 Description of Pentacyanoammonioferrate and Ni nhydrin Tes ts . • • • • • • . • • • 22 Paper and Thin-layer Chromatography Used • • . • 25 Isolation of Canavanine • • • . 28 Degradation of Canavanine • . • . 32 Method of Feeding Plants and Growth of Plants . 34 • • • • • • • . Literature Cited • • • . • 35 TABLE OF FIGURES Figure Page 1 • Reactions of canal ine . • • • . • • 3 2. Van Slyke's reaction for canavanine and Enyzmati c degradation of canavanine . • . 4 3. Synthesis of Canavanine from canaline- • • • • • • • • • • • • • • 6 4. Reaction of 0-ethers of hydroxylamine with ha lide acid 0 • . • • 7 5. Reaction of canavanine with hydrobromide • • • • . • • 7 6. Synthesis of canavanine from Y-butyrolactone • . 11 7. lntramolecular nucleophilic displacement of . S-adenosyl methionine • • • • • • • • . .. 12 8. Proposed biosynthetic route from methionine • • . 13 9. Proposed biosynthetic route from glutamic acid • • . • • 15 10. Activity of effluent from AG-50W-8X column • . 18 11. A standard curve of PCAF test for canavanine sulfate • . 24 12. A ninhydrin test and a PCAF test for effluent from AG-50W-8X column • • • • • • • • • • • • • • • • • • • · • 30 13 0 A ninhydrin test and a PCAF test for effluent from IR- 4B co I umn • • • • • • • • • • • • • • • . • 31 14. Degradation of canavanine • • • • • • • • • • • • • • • • • • • 33 1 INTRODUCTION DISCOVERY OF CANAVANINE Canavanine, o{ -amino- Y-guanidoxy-butyric acid, was first discovered in Jack bean {Canavalia ensiformis) by Kitagawa and Tomiyama (1-3). The com- pound is basic and is found free in the non-protein fraction of Jack bean. It is soluble in 50% alcohol, is precipitated as a viscous mass in absolute alcohol, and can be hydrolyzed by the enzyme, arginase, to urea and a new diamino acid, canaline, C H o N • Subsequently in 1939 Damodaran and Narayanan 4 10 3 2 found it in the seed of C.Obtusifolia. (4) So far it has been found mainly in the seeds of Leguminosae, subfamily Papilionoideae. The concentration is occasionally as high as _3.5% of the dry weight. (5-8) PHYSICAL PROPERTIES AND STRUCTUR E PROOF Canavanine H2NC(NH)NHOCH 2CH 2CH(N�)C02H (9) _ ° 2 mol.wt. 176.18 mp 184 (o<) g = +7.9 (w •. c.=2) It crystallizes from alcohol but crystalline form is not reported. It dissolves in water but not in alcohol, ether or benzene. It has some derivatives as listed below: Sulfate: crystallized from alcohol 0 2 mp 17 deco mp. (o< ) I� = + 19. 4 1 0 Copper salt: mp 205-8 decomp. 0 Tribenzoyl: mp 86 decomp. 2 ° 163-4 Picrate: mp ° 212 Flavianate: yellow needles from water mp o The constitution of canavanine C 5H12 3N4 has chiefly been determined H o N , by studying the simpler amino acid, canaline C 4 10 3 2 which is formed together with urea by the degradation of canavanine with the enzyme, arginase. to Kitagawa assigned the structure, H2N-O-C� 2CH 2CH(NH2)C02H, canaline based on the fact that it contains N which is not detected either by Van Slyke's 1). H reaction nor by the formol reaction (Fig. On reduction with 2 and Pt 1 1 black in AcOH or MeOH, it absorbed mole of H2 and set free mole of N H3 • A substance which was regarded as identical with synthetic o( -amino­ 1). Y-hydroxybutyric acid was isolated from the reaction (Fig. No free hy­ droxyl group could be found in canaline. When canaline was warmed with mineral acid, it did not give a lactone. The hydroxyl group appeared in the N Y-position after catalytic reduction. Therefore, this non-amino group on -ON� (10-1.3). canaline was considered to be combined with 0 as 2 Canaline also was synthesized from ethyl o(-benzoylamino-l"-iodobutyrate. (13, 14) The natural and synthetic products were shown to be the same, namely, o<-amino-Y-0-hydroxylaminobutyric acid. 7. 93), From the properties of canavanine, its basic character (pl its fission into urea and an amino compound, and the reaction of only two of its four nitrogen atoms with nitrous acid in the Van Slyke determination of amino .. nitrogen, (Fig .2) Kitagawa et aL suggested that the guanidine group 3 Van Slyke's Reaction Forrnol Reaction HC-HII > 0 HN-CH20H 9. N-(CH2 OH)2 HC-H H2N-0-(CH2kCHtr-OH > H2N -0-(CH2)2-CH�-OH 0 0 Reduction with H2 1. ·Fig. Reactions of canaline. 4 + HONO · O OH 2. Fig. Van Slyke's reaction for canavanine. arginase 2. Fig. Enzymatic degradation of canavanine. 5 H2N·C( :NH}•NH was probably present in canavanirie. They prepared dibenzoyl canaline from canaline with BzCl and NaOH. When it was 10% o( treated with Ac20 first, then H2S041 -benzoyl canaline was ob­ tained. o<-benzoyl canaline reacted with methylisourea and MeOH in the 10% cold. The precipitate was decomposed with HC1 then �lavianic acid 3) was added. Canavanine flavianate was obtaJned. (Fig. This confirmed (15) that canavanine is a guanido derivative of canaline. Then 0-ethers of hydroxylamine reacted with hot halide acids, they yielded the alkyl halide and hydroxylamine. (Fig. 4 ) Gulland and Morris (16) treated canavanine with concentrated hydrobromic acid in a sealed ° 5 160 . tube for hours at Canavanine was converted into ammonia, guanidine, and a substance which must be regarded as o(-amino-¥-butyro­ 5) lactone hydrobromide in view of its properties. (Fig. When this sub­ stance was heated with concentrated hydrobromic acid, it yielded opti• cal ly inactive Y-bromo-o<-amino butyric acid hydrobromide, i den tical · o< with a specimen prepared by the same �ethod from synthetic -amino- Y-butyro-lactone. These results proved canavanine has the structure, METHODS OF ISOLATION (2) The Jack bean plant is still the main source of canavanine. Kitagawa 50% extracted canavanine from Jack bean with alcohol and treated it with flavianic acid but the %N was lower t�an the ·theoretical value··for this 6 . CsH5COCI Ac20 cool > 3. from Fig. Synthesis of canavanine canaline 7 - R-O NH2 + HCI > RCI + NH20H 4. Fig . Reaction of 0-ethers of hydroxylamine with halide acid . �H2·HBr �H2·HBr CH2CH-C-OH CH2CH2CHC=O + HBr ----.) Br-CH2 I O_J. 0 Fig. 5. Reaction of canavanine with hydrobromide. 8 flavianate. In 1937 Kitagawa and Tsukamoto {17) recommended the destruction of the impurity by digesting the first crude canavanine precipitate with 10% HC1. They reported that this gave a high purity canavanine flavian­ ote1 but they did not give a detailed method nor the yield. In 1935 GuHand and Morris (16), who also had the same difficulty, suggested the purification of the base liberated from the flavianic acid �a lt by conversion into the rufianate. In 1939 Damodaran {18) treated the crude canavanine with a solu- tion of basic lead acetate, and then with flavianic acid. He got a. high purity flavianate successfully, but had trouble removing the excess lead. In 1962 a method was devised using ion-exchange resin to prevent the formation of desaminocanavanine with cold 99% alcohol from the concentrated canavanine extract, then treated it with flavianic acid, and decomposed the flavianate with hot saturated Ba(OH) • The filtrate was passed through IR-48 2 - (OH form) ion-exchange resin to remove the impurity. The effluent was con- centrated under reduced pressure and canavanine crystallized upon the addi- tion of absolute alcohol. The merits of this method are that it gives the free canavanine in high purity, easily and in a good yield, directly from its flavianate. (19) In the experiment of the author, the filtrate from decomposition with Ba(OH) was passed through AG-50W-8X resin and ca navanine•2HC1 was 2 eluted with 4N HCl. The effluent contain_ing canavanfoe.2HC1 was passed through IR-4B (OH-form) resin to get free canavanine.
Recommended publications
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Ron Caspi Peter Midford Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_003855395Cyc: Shewanella livingstonensis LMG 19866 Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Antiviral Compounds Antivirale Verbindungen Composes Antiviraux
    (19) TZZ_Z _T (11) EP 1 778 702 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07F 9/141 (2006.01) C07D 207/08 (2006.01) 13.07.2011 Bulletin 2011/28 A61K 31/662 (2006.01) A61P 31/12 (2006.01) (21) Application number: 05791144.8 (86) International application number: PCT/US2005/025503 (22) Date of filing: 18.07.2005 (87) International publication number: WO 2006/020276 (23.02.2006 Gazette 2006/08) (54) ANTIVIRAL COMPOUNDS ANTIVIRALE VERBINDUNGEN COMPOSES ANTIVIRAUX (84) Designated Contracting States: (74) Representative: Reitstötter - Kinzebach AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Patentanwälte HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI Sternwartstrasse 4 SK TR 81679 München (DE) Designated Extension States: AL BA HR MK YU (56) References cited: EP-A- 1 337 550 WO-A-00/09543 (30) Priority: 16.07.2004 US 588633 P WO-A-00/59929 WO-A-98/17679 27.07.2004 US 591635 P WO-A-99/07733 WO-A-02/060926 WO-A-03/053349 WO-A-03/064416 (43) Date of publication of application: WO-A-03/064455 WO-A-03/064456 02.05.2007 Bulletin 2007/18 WO-A-03/066103 WO-A-03/099274 WO-A-03/099316 US-A1- 2003 186 895 (60) Divisional application: US-A1- 2003 224 977 US-A1- 2004 048 802 10178084.9 / 2 316 839 US-B1- 6 608 027 (73) Proprietor: GILEAD SCIENCES, INC.
    [Show full text]
  • Purification and Characterization of the Higher Plant Enzyme L-Canaline Reductase (L-Canavanine Catabolism/Plant Nitrogen Metabolism/Leguminosae) GERALD A
    Proc. Natd. Acad. Sci. USA Vol. 89, pp. 1780-1784, March 1992 Biochemistry Purification and characterization of the higher plant enzyme L-canaline reductase (L-canavanine catabolism/plant nitrogen metabolism/Leguminosae) GERALD A. ROSENTHAL T. H. Morgan School of Biological Sciences, University of Kentucky, Lexington, KY 40506 Communicated by John S. Boyer, December 3, 1991 (receivedfor review April 20, 1991) ABSTRACT A newly discovered enzyme, L-canaline re- oglutaric acid to generate stoichiometrically a canaline-2- ductase (NADPH:L-canaline oxidoreductase, EC 1.6.6.-), has oxoglutaric acid oxime (5). Canaline also reacts readily with been isolated and purified from 10-day-old leaves of the jack the pyridoxal phosphate moiety of vitamin B6-containing bean Canavalia ensiformis (Leguminosae). This higher plant is enzymes to form a stable, covalently linked complex (6, 7). representative of a large number of legumes that synthesize In vitro analysis of canaline interaction with homogeneous L-canavanine, an important nitrogen-storing nonprotein amino ornithine aminotransferase (ornithine-oxo-acid aminotrans- acid. Canavanine-storing legumes contain arginase, which ferase; L-ornithine:2-oxo-acid aminotransferase, EC hydrolyzes L-canavanine to form the toxic metabolite L-cana- 2.6.1.13) reveals its marked ability to form an oxime complex line. Canaline reductase, having a mass of =167 kDa and with and thereby inhibit this pyridoxal phosphate-dependent composed of 82-kDa dimers, catalyzes a NADPH-dependent enzyme (8). As little as 10 nM canaline causes a significant reductive cleavage of L-canaline to L-homoserine and ammo- reduction in ornithine aminotransferase activity (9). nia. This is the only enzyme known to use reduced NADP to Canavanine-storing legumes can accumulate high levels of cleave an O-N bond.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,776,844 B2 Yu Et Al
    USOO777684.4B2 (12) United States Patent (10) Patent No.: US 7,776,844 B2 Yu et al. (45) Date of Patent: Aug. 17, 2010 (54) N-(PHOSPHONOALKYL)-AMINO ACIDS, 7,429,575 B2 9/2008 Yu et al. DERVATIVES THEREOF AND 2005, 016491.6 A1 7/2005 Leadbetter et al. COMPOSITIONS AND METHODS OF USE OTHER PUBLICATIONS (76) Inventors: Ruey J. Yu, 655 Stump Rd., Chalfont, Struninet al., 1989, CAS. 111:233525.* PA (US)18914; Eugene J. Van Scott, 3 Shi et al., 2004, CAS;142. 231739.* Hidden La., Abington, PA (US) 19001 Li et al., 2005, CAS; 143: 158351.* Sandeman et al., 2002, CAS: 137:274431.* (*) Notice: Subject to any disclaimer, the term of this Single co's i. 164: patent is extended or adjusted under 35 Stahl e et et al., al., 1995, CAS:si. 124:563.10.* U.S.C. 154(b) by 0 days. Jezowska-Bojczuk et al., 1994, CAS: 120:28.1638.* Strumin et al., 1989, CAS: 111:194894.* (21) Appl. No.: 12/428,906 Balthazor et al., 1987, CAS: 106:50457.* The Merck Index. "An Encyclopedia of Chemicals, Drugs, and (22) Filed: Apr. 23, 2009 Biologicals.” (2001) p. 1768, (2 pgs.), 13th Edition, O'Neil et al. (Ed.), Merck & Co., Inc., Whitehouse Station, N.J. (65) Prior Publication Data Wester et al., 1991, CAS: 114:242443. US 2009/0208499 A1 Aug. 20, 2009 * cited by examiner Related U.S. Application Data Primary Examiner Rei-tsang Shiao - - - (74) Attorney, Agent, or Firm Panitch Schwarze Belisario & (62) Division of application No. 12/194203, filed on Aug.
    [Show full text]
  • | Mo Naman Attituunika Mitatti
    |MO NAMAN ATTITUUNIKAUS009962450B2 MITATTI (12 ) United States Patent (10 ) Patent No. : US 9 , 962 , 450 B2 Kraynov et al. ( 45) Date of Patent : May 8 , 2018 ( 54 ) METHOD OF TREATING HEART FAILURE 4 ,659 ,839 A 4 / 1987 Nicolotti et al . WITH MODIFIED RELAXIN POLYPEPTIDES 4 ,670 ,417 A 6 / 1987 Iwasaki et al. 4 ,671 , 958 A 6 / 1987 Rodwell et al. 4 ,680 , 338 A 7 / 1987 Sundoro ( 71) Applicant : AMBRX , INC . , La Jolla , CA (US ) 4 ,689 ,406 A 8 / 1987 Banks et al . 4 ,699 ,784 A 10 / 1987 Shih et al . ( 72 ) Inventors : Vadim Kraynov , San Diego , CA (US ) ; 4 ,738 , 921 A 4 / 1988 Belagaje et al. Nick Knudsen , San Diego , CA (US ) ; 4 ,755 ,465 A 7 / 1988 Gray et al. 4 ,837 , 148 A 6 / 1989 Cregg Amha Hewet, Chula Vista , CA (US ) ; 4 ,859 ,600 A 8 / 1989 Gray et al . Kristine De Dios, San Diego , CA (US ) ; 4 , 876 , 197 A 10 / 1989 Burke et al. Jason Pinkstaff , Encinitas, CA (US ) ; 4 , 880 ,734 A 11/ 1989 Burke et al . Lorraine Sullivan , San Diego , CA 4 , 902 ,502 A 2 / 1990 Nitecki et al . 4 , 904 , 584 A 2 / 1990 Shaw ( US ) 4 ,929 , 555 A 5 / 1990 Cregg et al. 5 ,021 , 234 A 6 / 1991 Ehrenfeld (73 ) Assignee : AMBRX , INC. , La Jolla , CA (US ) 5 ,089 ,398 A 2 / 1992 Rosenberg et al . 5 , 122 ,614 A 6 / 1992 Zalipsky ( * ) Notice : Subject to any disclaimer , the term of this 5 , 145 , 962 A 9 / 1992 Hudson et al.
    [Show full text]
  • Zone Finhibton Inmillimeters
    US006191168B1 (12) United States Patent (10) Patent N0.: US 6,191,168 B1 Rubenstein (45) Date of Patent: Feb. 20, 2001 (54) METHODS FOR THE USE OF NONPROTEIN CA 126: 268319, Breton et al, 1997.* AMINO ACIDS AS THERAPEUTIC AGENTS Bell. (1958). “Canavanine and Related Compounds in Legu minosae,” Biochem J. 70:617—619. (75) Inventor: Edward Rubenstein, 5 Waverly Pl., Bisby et al. (1994). Phytochemical Dictionary of the Legu Hillsborough, CA (US) 94010 minose, vol. 1—2. (Title page and table of contents only). Butler et al. (1967). “Uptake and Metabolism of Inorganic (73) Assignee: Edward Rubenstein, Hillsborough, CA Forms of Selenium—75 by Spiroa'ela Oligorrhiza, ” Aust. J. (Us) Biol. Sci. 20:77—86. Conn. (1981). “Secondary Plant Products” The Biochemistry (*) Notice: Under 35 U.S.C. 154(b), the term of this of Plants vol. 7(Title page and table of contents only). patent shall be extended for 0 days. CoWie et al. (1957). “Biosynthesis by Escherichia Coli of Active Altered Proteins Containing Selenium Instead of (21) Appl. No.: 09/324,181 Sulfur,” Biochem et Biophysica Acta. 26:252—261. Gennaro ed. (1995). Remington." The Science and Practice Filed: Jun. 1, 1999 (22) The Science and of Pharmacy (Title page and table of Related US. Application Data contents only). (60) Provisional application No. 60/087,746, ?led on Jun. 2, (List continued on neXt page.) 1998. Primary Examiner—Rebecca Cook (51) Int. Cl.7 ................................................. .. A61K 31/195 (74) Attorney, Agent, or Firm—Morrison & Foerster LLP (52) US. Cl. ........................ .. 514/561; 514/210; 514/274; 514/419; 514/423; 514/315; 514/354; 514/538; (57) ABSTRACT 514/562; 514/563; 514/564; 514/565 Provided are compositions comprising nonprotein amino (58) Field of Search ..................................
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION L-Canaline Item No. 9002357 CAS Registry No.: 496-93-5 Formal Name: O-amino-L-homoserine O MF: C H N O 4 10 2 3 O FW: 134.1 HO NH2 Purity: ≥95% NH Stability: ≥2 years at -20°C 2 Supplied as: A crystalline solid Laboratory Procedures For long term storage, we suggest that L-canaline be stored as supplied at -20°C. It should be stable for at least two years. L-Canaline is supplied as a crystalline solid. A stock solution may be made by dissolving the L-canaline in the solvent of choice. L-Canaline is soluble in organic solvents such as DMSO which should be purged with an inert gas. The solubility of L-canaline in this solvent is approximately 1 mg/ml. Further dilutions of the stock solution into aqueous buffers or isotonic saline should be made prior to performing biological experiments. Ensure that the residual amount of organic solvent is insignificant, since organic solvents may have physiological effects at low concentrations. Organic solvent-free aqueous solutions of L-canaline can be prepared by directly dissolving the crystalline solid in aqueous buffers. The solubility of L-canaline in PBS, pH 7.2, is approximately 10 mg/ml. We do not recommend storing the aqueous solution for more than one day. Description L-Canaline is an aminooxy analog of ornithine that irreversibly inhibits aminotransferases (transaminases), 1-3 including ornithine aminotransferase (Ki = 2 µM). It forms oximes with α-keto acids and aldehydes, most notably with pyridoxal phosphate, an essential cofactor of aminotransferases.3 L-Canaline is naturally found in plants, including legumes, and is involved in the metabolism of L-canavanine, an aminooxy analog of arginine.4 It is cytotoxic to a range of organisms, including bacteria, insects, and parasites.2,4,5 References 1.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,452.222 B2 Kraynov Et Al
    USOO9452222B2 (12) United States Patent (10) Patent No.: US 9,452.222 B2 Kraynov et al. (45) Date of Patent: Sep. 27, 2016 (54) NUCLEIC ACIDS ENCODING MODIFIED 4,680,338 A 7, 1987 Sundoro RELAXN POLYPEPTIDES 4,689,406 A 8, 1987 Banks et al. 4,699,784. A 10, 1987 Shih et al. 4,738,921 A 4, 1988 Belagaje et al. (71) Applicant: Ambrx, Inc., La Jolla, CA (US) 4,755.465 A 7/1988 Gray et al. 4,837,148 A 6/1989 Cregg (72) Inventors: Vadim Kraynov, San Diego, CA (US); 4,859,600 A 8/1989 Gray et al. Nick Knudsen, San Diego, CA (US); 4,876, 197 A 10, 1989 Burke et al. 4,880,734 A 11/1989 Burke et al. Ahma Hewet, Chula Vista, CA (US); 4.902,502 A 2f1990 Nitecki et al. Kristine De Dios, San Diego, CA (US); 4,904,584 A 2, 1990 Shaw Jason Pinkstaff, Encinitas, CA (US); 4,929,555 A 5/1990 Cregg et al. Lorraine Sullivan, San Diego, CA 5,021,234 A 6, 1991 Ehrenfeld (US) 5,089,398 A 2/1992 Rosenberg et al. 5,122,614 A 6/1992 Zalipsky 5,145,962 A 9, 1992 Hudson et al. (73) Assignee: AMBRX, INC., La Jolla, CA (US) 5,162,601 A 11/1992 Slightom 5,219,564 A 6/1993 Zalipsky et al. (*) Notice: Subject to any disclaimer, the term of this 5,229,490 A 7, 1993 Tam patent is extended or adjusted under 35 5,231,178 A 7, 1993 Holtz et al.
    [Show full text]
  • United States Patent Office Patented Nov
    3,704,246 United States Patent Office Patented Nov. 28, 1972 2 (I) R 3,704,246 AMNO ACD DERVATIVES ( CH).--N Miklos Bodanszky, Shaker Heights, Ohio, assignor to R2-C YoH-R E. R. Squibb & Sons, Inc., New York, N.Y. No Drawing. Continuation-in-part of application Ser. No. R-i-o-c6 798,790, Feb. 12, 1969, which is a continuation-in-part wherein R is the residue of an a-amino acid, R1 is hydro of abandoned application Ser. No. 451,609, Apr. 28, gen, lower alkyl, hydroxy-substituted lower alkyl, or 1965. This application Dec. 16, 1970, Ser. No. 98,924 lower alkyl lower alkoxy; R and R3 each is hydrogen, int. C. C07d 87/54 lower alkyl, hydroxy-substituted lower alkyl, lower alkyl U.S. C. 260-333 9 Claims 10 lower alkoxy, or R and R3 together with the carbons to which they are joined form a phenyl ring which may be unsubstituted or substituted by halogen or nitro, and m ABSTRACT OF THE DESCLOSURE is an integer from 0 to 3. New lactone intermediates useful in the synthesis of 5 DETAILED DESCRIPTION OF THE INVENTION peptides are prepared by reacting an a-amino acid with Any a-amino acid may be treated according to this an active carbonyl compound which forms a Schiff's base. invention. This includes the naturally occurring ox-amino The latter is treated with a condensing agent so that acids see for example, Hackh's Chemical Dictionary, cyclization occurs and a lactone is formed from which a 3rd ed.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2007/0161543 A1 Yu Et Al
    US 2007 O161543A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0161543 A1 Yu et al. (43) Pub. Date: Jul. 12, 2007 (54) N-(PHOSPHONOALKYL)-AMINO ACIDS, (52) U.S. Cl. .............................. 514/7: 514/114: 530/331; DERVATIVES THEREOF AND 558/170 COMPOSITIONS AND METHODS OF USE (76) Inventors: Ruey J. Yu, Chalfont, PA (US); Eugene J. Van Scott, Abington, PA (US) (57) ABSTRACT Correspondence Address: AKN GUMPSTRAUSS HAUER & FELD The present invention relates to an N-(phosphonoalkyl)- 6. COMMERCE SQUARE amino acid, a related compound or a derivative thereof, the 2005 MARKET STREET, SUITE 2200 N-(phosphonoalkyl)-amino acid, related compound or PHILADELPHIA, PA 19103 (US) derivative thereof being in a form as a free acid, salt, partial salt, lactone, amide or ester, or in Stereoisomeric or non (21) Appl. No.: 11/621,287 Stereoisomeric form, other than N-(phosphonomethyl)-gly (22) Filed: Jan. 9, 2007 cine or N.N-bis(phosphonomethyl)-glycine. Also included is a composition including an N-(phosphonoalkyl)-amino acid, Related U.S. Application Data a related compound or a derivative thereof in a form as a free (60) Provisional application No. 60/757,614, filed on Jan. acid, salt, partial salt, lactone, amide or ester, or in Stereoi 10, 2006. sy u. Is Someric or non-stereoisomeric form, and a cosmetically or pharmaceutically acceptable vehicle for topical or systemic Publication Classification administration to a mammalian Subject, as well as a method of administering an effective amount of Such a composition (51) Int. Cl. A6 IK 38/05 (2006.01) for alleviating or improving a condition, disorder, symptom A6 IK 3/66 (2006.01) or syndrome associated with at least one of a nervous, C07K 5/10 (2006.01) vascular, musculoskeletal or cutaneous system.
    [Show full text]
  • Generated by SRI International Pathway Tools Version 25.0, Authors S
    Authors: Pallavi Subhraveti Ingrid Keseler Quang Ong Ron Caspi An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Tim Holland Peter D Karp Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Saur904776Cyc: Staphylococcus aureus aureus IS-24 Cellular Overview Connections between pathways are omitted for legibility. Anamika Kothari guaninehypoxanthine indole- pro 3-acetate (S)-lactate (S)-lactate uracil H + H + H + H + H + H + H + H + H + ammonium IS24_0964 IS24_2784 AtpC AtpF AtpI AtpA AtpD AtpE AtpB AtpH AtpG Amt PbuG PutP PyrP IS24_1600 + + + + + + + + + indole- H H H H H H H H H uracil (S)-lactate (S)-lactate ammonium 3-acetate guanine pro hypoxanthine Cofactor, Prosthetic Group, Electron Carrier, and Vitamin Biosynthesis Chemoautotrophic Amino Acid Degradation Energy Metabolism Detoxification UDP-N-acetyl- an [apo BCAA an apo-[methylmalonyl- campest- a (3R)-3- 3-(4- valine degradation I a [formate C testosterone a phosphate cob(II)yrinate a,c- glutamine SAM a reduced flavodoxin α-D-muramoyl- di-trans,octa-cis 4-methyl-2- dehydrogenase CoA:pyruvate biotin 5-hydroxytryptophol β hydroxyhexanoyl- hydroxyphenyl) flavin biosynthesis I (bacteria and plants) L-ascorbate biosynthesis V L-ascorbate
    [Show full text]
  • Pka Data Compiled by R
    pKa Data Compiled by R. Williams page-1 pKa Values INDEX Inorganic 2 Phenazine 24 Phosphates 3 Pyridine 25 Carboxylic acids 4, 8 Pyrazine 26 Aliphatic 4, 8 Aromatic 7, 8 Quinoline 27 Phenols 9 Quinazoline 27 Alcohols and oxygen acids 10, 11 Quinoxaline 27 Amino Acids 12 Special Nitrogen Compounds 28 Peptides 13 Hydroxylamines 28 Nitrogen Compounds 14 Hydrazines 28 Aliphatic amines 15, 17, 19 Semicarbazones 28 Cyanoamines 16 Amidoximes 28 Anilines 17, 18, 20 Thiols 29 Nucleosides 21 Carbon Acids 30,31 Special Table Heterocycles 22 Indicators 31 Acridine 23 References 32-34 Benzoquinoline 24 Cinnoline 23 Hydantoin 24 Imidazole 24 For complex chelating agents, see also reference 77. Note. This document was compiled by W.P. Jencks and has been added to by F.H. Westheimer pKa Data Compiled by R. Williams page-2 ACIDS Compound pK Ref. H3PO2 2.0, 2.23* 28 H2PO4– 7.21* 77 AgOH 3.96 4 HPO4_ 12.32* 77 Al(OH)3 11.2 28 H3PO3 2.0 28 As(OH)3 9.22 28 H PO – 6.58* 77 H3AsO4 2.22, 7.0, 13.0 28 2 3 H4P2O7 1.52* 77 H2AsO4– 6.98* 77 H P O – 2.36* 77 HAsO4* 11.53* 77 3 2 7 = As2O3 0 4 H2P2O7 6.60* 77 H3AsO3 9.22* HP2O7= 9.25* 77 H3BO3 9.23* 28 HReO4 -1.25 30 H2B4O7 4.00 34 HSCN 4.00 34 HB4O7 9.00 34 H2SeO3 2.6, 8.3, 2.62* 28 Be(OH)2 3.7 4 HSeO3 8.32 77 HBr -9.00 31 H2SeO4 Strong, 2.0 28 HOBr 8.7 28 HSeO4 2.00 34 HOCl 7.53, 7.46 28, 33 H3SiO3 10.0 34 HClO2 2.0 28 H2SO3 1.9, 7.0, 1.76* 28, 77 HClO3 -1.00 28 H2SO4 -3.0, 1.9 28 HClO4 (70%) -10.00 31 HSO3 7.21* 77 CH SO H -0.6 31 3 3 HSO4– 1.99* 77 HCN 9.40 34 H2S2O4 1.9 29 H CO 6.37, 6.35*, 3.58 34, 32 2 3 H2Se
    [Show full text]