United States Patent Office Patented Nov
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Subject Index
Cambridge University Press 0521462924 - Amino Acids and Peptides G. C. Barrett and D. T. Elmore Index More information Subject index acetamidomalonate synthesis 123–4 in fossil dating 15 S-adenosyl--methionine 11, 12, 174, 181 in geological samples 15 alanine, N-acetyl 9 in Nature 1 structure 4 IR spectrometry 36 alkaloids, biosynthesis from amino acids 16–17 isolation from proteins 121 alloisoleucine 6 mass spectra 61 allosteric change 178 metabolism, products of 187 allothreonine 6 metal-binding properties 34 Alzheimer’s disease 14 NMR 41 amidation at peptide C-terminus 57, 94, 181 physicochemical properties 32 amides, cis–trans isomerism 20 protein 3 N-acylation 72 PTC derivatives 87 N-alkylation 72 quaternary ammonium salts 50 hydrolysis 57 reactions of amino group 49, 51 O-trimethylsilylation 72 reactions of carboxy group 49, 53 reduction to -aminoalkanols 72 racemisation 56 amidocarbonylation in amino acid synthesis 125 routine spectrometry 35 amino acids, abbreviated names 7 Schöllkopf synthesis 127–8 acid–base properties 32 Schiff base formation 49 antimetabolites 200 sequence determination 97 et seq. as food additives 14 following selective chemical degradation 107 as neurotransmitters 17 following selective enzymic degradation 109 asymmetric synthesis 127 general strategy for 92 - 17–18 identification of C-terminus 106–7 biosynthesis 121 identification of N-terminus 94, 97 biosynthesis from, of creatinine 183 by solid-phase methodology 100 of nitric oxide 186 by stepwise chemical degradation 97 of porphyrins 185 by use of dipeptidyl -
COMPILATION of AMINO ACIDS, DRUGS, METABOLITES and OTHER COMPOUNDS in MASSTRAK AMINO ACID ANALYSIS SOLUTION Paula Hong, Kendon S
COMPILATION OF AMINO ACIDS, DRUGS, METABOLITES AND OTHER COMPOUNDS IN MASSTRAK AMINO ACID ANALYSIS SOLUTION Paula Hong, Kendon S. Graham, Alexandre Paccou, T homas E. Wheat and Diane M. Diehl INTRODUCTION LC conditions Physiological amino acid analysis is commonly performed to LC System: Waters ACQUITY UPLC® System with TUV monitor and study a wide variety of metabolic processes. A wide Column: MassTrak AAA Column 2.1 x 150 mm, 1.7 µm variety of drugs, foods, and metabolic intermediates that may Column Temp: 43 ˚C be present in biological fluids can appear as peaks in amino Flow Rate: 400 µL/min. acid analysis, therefore, it is important to be able to identify Mobile Phase A: MassTrak AAA Eluent A Concentrate, unknown compounds.1,2,3 The reproducibility and robustness of diluted 1:10 the MassTrak Amino Acid Analysis Solution make this method well Mobile Phase B: MassTrak AAA Eluent B suited to such a study as well.4 Weak Needle Wash: 5/95 Acetonitrile/Water Strong Needle Wash: 95/5 Acetonitrile/Water Gradient: MassTrak AAA Standard Gradient (as provided in kit) Detection: UV @ 260 nm Injection Volume: 1 µL EXPERIMENTAL Injection Mode: Partial Loop with Needle Overfill (PLNO) Compound sample preparation A library of compounds was assembled. Each compound was derivatized individually and spiked into the MassTrak™ AAA Solution Standard prior to chromatographic analysis. The elution RESULTS AND DISCUSSION position of each tested compound could be related to known amino acids. A wide variety of antibiotics, pharmaceutical compounds and metabolite by-products are found in biological fluids. The reten- 1. -
Supplementary File 1 (PDF, 650 Kib)
Preliminary Zinc and boscalid sub lethal concentrations Zinc and boscalid sub lethal concentrations were determined by running preliminary 72‐hour LC50 exposures. A range of concentrations, resulting in 100% survival to 100% mortality was run for both chemicals in water only exposures. Filtered seawater was used as a control and to dilute stock concentrations of zinc and boscalid. Six treatments with three replicates were run for both chemicals including a control (seawater only). The zinc chloride (ZnCl2) exposure concentrations were: 62mg/L; 125mg/L; 250mg/L; 500mg/L and 1000mg/L. The commercial fungicide Filan® has 500g/kg active ingredient of boscalid, concentrations of 100mg/L; 250mg/L; 500mg/L; 750mg/L and 1000mg/L. Acid‐ rinsed 600ml glass beakers were randomly placed in a temperature‐controlled incubator at 20oC (+/‐ 1oC) with added aeration and a one ply sheet of ethanol rinsed toilet paper in each beaker as substratum. No food was added; the average pH of the water was 7.5 across treatments. The dissolved oxygen remained between 70‐100%. Zinc chloride LC50 = 125mg/L and boscalid LC50 = 750mg/L. Table S1. –Concentrations of boscalid and zinc at 0 h and one week. Measured concentrations of boscalid and zinc detected in estuaries in Victoria, Australia. Exposure at Control Exposure at 0 hr Environmental dose 1 week Boscalid 0 N/A 75 mg/L 3.3 mg/L (Vu et al. 2016) Zinc 0.026 – 0.034 mg/L 12.5 mg/L 3.4 mg/L (Long et al. 2015) Table S2. Water Quality Parameters. Date Sample Dissolved oxygen (%) pH Conductivity (µS/cm) Ammonia 15/05/17 Control 98.36 8.44 59464.4 0.25 15/05/17 Zinc 99.10 8.31 59379.1 0.25 15/05/17 Boscalid 99.18 8.28 59656.8 0.25 15/05/17 Mixture 94.81 8.25 59386.0 0.25 30/05/17 Control 101.90 8.16 59332.4 0.5 30/05/17 Zinc 102.47 8.11 59536.7 0.5 30/05/17 Boscalid 92.17 8.15 59489.3 0.5 30/05/17 Mixture 101.57 8.14 59593.2 0.5 Supplementary Material . -
Generate Metabolic Map Poster
Authors: Pallavi Subhraveti Ron Caspi Peter Midford Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_003855395Cyc: Shewanella livingstonensis LMG 19866 Cellular Overview Connections between pathways are omitted for legibility. -
Antiviral Compounds Antivirale Verbindungen Composes Antiviraux
(19) TZZ_Z _T (11) EP 1 778 702 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07F 9/141 (2006.01) C07D 207/08 (2006.01) 13.07.2011 Bulletin 2011/28 A61K 31/662 (2006.01) A61P 31/12 (2006.01) (21) Application number: 05791144.8 (86) International application number: PCT/US2005/025503 (22) Date of filing: 18.07.2005 (87) International publication number: WO 2006/020276 (23.02.2006 Gazette 2006/08) (54) ANTIVIRAL COMPOUNDS ANTIVIRALE VERBINDUNGEN COMPOSES ANTIVIRAUX (84) Designated Contracting States: (74) Representative: Reitstötter - Kinzebach AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Patentanwälte HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI Sternwartstrasse 4 SK TR 81679 München (DE) Designated Extension States: AL BA HR MK YU (56) References cited: EP-A- 1 337 550 WO-A-00/09543 (30) Priority: 16.07.2004 US 588633 P WO-A-00/59929 WO-A-98/17679 27.07.2004 US 591635 P WO-A-99/07733 WO-A-02/060926 WO-A-03/053349 WO-A-03/064416 (43) Date of publication of application: WO-A-03/064455 WO-A-03/064456 02.05.2007 Bulletin 2007/18 WO-A-03/066103 WO-A-03/099274 WO-A-03/099316 US-A1- 2003 186 895 (60) Divisional application: US-A1- 2003 224 977 US-A1- 2004 048 802 10178084.9 / 2 316 839 US-B1- 6 608 027 (73) Proprietor: GILEAD SCIENCES, INC. -
N,N-Diprotected Dehydroamino Acid Derivatives: Versatile Substrates for the Synthesis of Novel Amino Acids
N,N-DIPROTECTED DEHYDROAMINO ACID DERIVATIVES: VERSATILE SUBSTRATES FOR THE SYNTHESIS OF NOVEL AMINO ACIDS Paula M. T. Ferreira and Luís S. Monteiro Department of Chemistry, University of Minho, Gualtar, 4710-057 Braga, Portugal (e-mail: [email protected]) Abstract. Non-proteinogenic amino acids are an important class of organic compounds that can have intrinsic biological activity or can be found in peptides with antiviral, antitumor, anti-inflammatory or immunosuppressive activities. This type of compounds is also important in drug development, in the elucidation of biochemical pathways and in conformational studies. Therefore, research towards efficient methods that allow the synthesis of these compounds constitutes an important area of peptide chemistry. In our laboratories we have developed a new and high yielding method for the synthesis of N,N-diprotected dehydroamino acid derivatives using tert-butyl pyrocarbonate and 4-dimethylaminopyridine. These compounds were used as substrates in several types of reactions, allowing the synthesis of a variety of new amino acid derivatives. Some of these new compounds are heterocyclic systems or contain heterocyclic moieties such as pyrazole, indole, or imidazole. Thus, several nitrogen heterocycles were reacted with N,N-diprotected dehydroalanine to give new β-substituted alanines and dehydroalanines. Furanic amino acids were obtained treating the methyl ester of N-(4-toluenesulfonyl), N-(tert-butoxycarbonyl) dehydroalanine with carbon nucleophiles of the β-dicarbonyl type having at least one methyl group attached to one of the carbonyl groups. Treatment of these furanic amino acids with trifluoracetic acid afforded pyrrole derivatives in good to high yields. A N,N-diprotected 1,4-dihydropyrazine was obtained reacting the methyl ester of N-(4-toluenesulfonyl), N-(tert-butoxycarbonyl)dehydroalanine with 4-dimethylaminopyridine and an excess of potassium carbonate. -
Phenotype Microarrays™
Phenotype MicroArrays™ PM1 MicroPlate™ Carbon Sources A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 Negative Control L-Arabinose N-Acetyl -D- D-Saccharic Acid Succinic Acid D-Galactose L-Aspartic Acid L-Proline D-Alanine D-Trehalose D-Mannose Dulcitol Glucosamine B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 D-Serine D-Sorbitol Glycerol L-Fucose D-Glucuronic D-Gluconic Acid D,L -α-Glycerol- D-Xylose L-Lactic Acid Formic Acid D-Mannitol L-Glutamic Acid Acid Phosphate C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 D-Glucose-6- D-Galactonic D,L-Malic Acid D-Ribose Tween 20 L-Rhamnose D-Fructose Acetic Acid -D-Glucose Maltose D-Melibiose Thymidine α Phosphate Acid- -Lactone γ D-1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 L-Asparagine D-Aspartic Acid D-Glucosaminic 1,2-Propanediol Tween 40 -Keto-Glutaric -Keto-Butyric -Methyl-D- -D-Lactose Lactulose Sucrose Uridine α α α α Acid Acid Acid Galactoside E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 L-Glutamine m-Tartaric Acid D-Glucose-1- D-Fructose-6- Tween 80 -Hydroxy -Hydroxy -Methyl-D- Adonitol Maltotriose 2-Deoxy Adenosine α α ß Phosphate Phosphate Glutaric Acid- Butyric Acid Glucoside Adenosine γ- Lactone F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Glycyl -L-Aspartic Citric Acid myo-Inositol D-Threonine Fumaric Acid Bromo Succinic Propionic Acid Mucic Acid Glycolic Acid Glyoxylic Acid D-Cellobiose Inosine Acid Acid G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 Glycyl-L- Tricarballylic L-Serine L-Threonine L-Alanine L-Alanyl-Glycine Acetoacetic Acid N-Acetyl- -D- Mono Methyl Methyl Pyruvate D-Malic Acid L-Malic Acid ß Glutamic Acid Acid -
These Lanthionine FINALE
FACULTÉ DES SCIENCES – DÉPARTEMENT DE CHIMIE CENTRE DE RECHERCHES DU CYCLOTRON SYNTHESIS AND BIOLOGICAL STUDIES OF LANTHIONINE DERIVATIVES Promoteur: Professeur André LUXEN Dissertation présentée par Thibaut DENOËL pour l’obtention du grade de Docteur en Sciences Année académique 2013 - 2014 Membres du Jury : Promoteur : Professeur André Luxen (Université de Liège) Président : Professeur Albert Demonceau (Université de Liège) Autres membres : Docteur Didier Blanot (Université Paris-Sud) Docteur David Thonon (Uteron Pharma) Professeur Bernard Joris (Université de Liège) Docteur Christian Lemaire (Université de Liège) Remerciements Les travaux présentés dans cette thèse ont été réalisés sous la direction du Professeur André Luxen dans les laboratoires du Centre de Recherches du Cyclotron de l’Université de Liège. Je voudrais tout d’abord remercier le Professeur André Luxen pour son accueil au sein du Cyclotron, sa grande patience et son exigence. Il a aussi inspiré nombre de manipulations et m’a guidé dans mes recherches. En outre, il a mis à ma disposition tout le matériel et la quantité de produits chimiques nécessaires à la réalisation de ce travail. Je tiens également à remercier Messieurs les membres du Jury pour m’avoir fait l’honneur d’accepter d’examiner ce travail, en l’occurrence le Docteur Didier Blanot (Université Paris-Sud), le Docteur David Thonon (Uteron Pharma), le Professeur Bernard Joris, le Docteur Christian Lemaire et le Professeur Albert Demonceau dans le rôle de Président. Je remercie aussi les Docteurs Didier Blanot et Mireille Hervé pour la réalisation des essais in vitro avec l’enzyme Mpl et l’aide dans les publications. Je remercie grandement le Docteur Astrid Zervosen pour la réalisation des manipulations biochimiques, ses conseils, sa disponibilité et la correction lors de la rédaction. -
Purification and Characterization of the Higher Plant Enzyme L-Canaline Reductase (L-Canavanine Catabolism/Plant Nitrogen Metabolism/Leguminosae) GERALD A
Proc. Natd. Acad. Sci. USA Vol. 89, pp. 1780-1784, March 1992 Biochemistry Purification and characterization of the higher plant enzyme L-canaline reductase (L-canavanine catabolism/plant nitrogen metabolism/Leguminosae) GERALD A. ROSENTHAL T. H. Morgan School of Biological Sciences, University of Kentucky, Lexington, KY 40506 Communicated by John S. Boyer, December 3, 1991 (receivedfor review April 20, 1991) ABSTRACT A newly discovered enzyme, L-canaline re- oglutaric acid to generate stoichiometrically a canaline-2- ductase (NADPH:L-canaline oxidoreductase, EC 1.6.6.-), has oxoglutaric acid oxime (5). Canaline also reacts readily with been isolated and purified from 10-day-old leaves of the jack the pyridoxal phosphate moiety of vitamin B6-containing bean Canavalia ensiformis (Leguminosae). This higher plant is enzymes to form a stable, covalently linked complex (6, 7). representative of a large number of legumes that synthesize In vitro analysis of canaline interaction with homogeneous L-canavanine, an important nitrogen-storing nonprotein amino ornithine aminotransferase (ornithine-oxo-acid aminotrans- acid. Canavanine-storing legumes contain arginase, which ferase; L-ornithine:2-oxo-acid aminotransferase, EC hydrolyzes L-canavanine to form the toxic metabolite L-cana- 2.6.1.13) reveals its marked ability to form an oxime complex line. Canaline reductase, having a mass of =167 kDa and with and thereby inhibit this pyridoxal phosphate-dependent composed of 82-kDa dimers, catalyzes a NADPH-dependent enzyme (8). As little as 10 nM canaline causes a significant reductive cleavage of L-canaline to L-homoserine and ammo- reduction in ornithine aminotransferase activity (9). nia. This is the only enzyme known to use reduced NADP to Canavanine-storing legumes can accumulate high levels of cleave an O-N bond. -
Amino Acid - Wikipedia, the Free Encyclopedia
1/29/2016 Amino acid - Wikipedia, the free encyclopedia Amino acid From Wikipedia, the free encyclopedia This article is about the class of chemicals. For the structures and properties of the standard proteinogenic amino acids, see Proteinogenic amino acid. Amino acidsarebiologically important organic compoundscontaining amine (-NH2) and carboxylic acid(- COOH) functional groups, usually along with a side-chain specific to each aminoacid.[1][2][3] The key elements of an amino acid are carbon, hydrogen, oxygen, andnitrogen, though other elements are found in the side-chains of certain amino acids. About 500 amino acids are known and can be classified in many ways.[4] They can be classified according to the core structural functional groups' locations as alpha- (α-), beta- (β-), gamma- (γ-) or delta- (δ-) amino acids; other categories relate to polarity, pHlevel, and side-chain group type (aliphatic,acyclic, aromatic, containing hydroxyl orsulfur, etc.). In the form of proteins, amino acids comprise the second-largest component (water is the largest) of humanmuscles, cells and other tissues.[5] Outside proteins, The structure of an alpha amino amino acids perform critical roles in processes such as neurotransmittertransport and biosynthesis. acid in its un-ionized form In biochemistry, amino acids having both the amine and the carboxylic acid groups attached to the first (alpha-) carbon atom have particular importance. They are known as 2-, alpha-, or α-amino [6] acids (genericformula H2NCHRCOOH in most cases, where R is an organic substituent -
(12) United States Patent (10) Patent No.: US 7,776,844 B2 Yu Et Al
USOO777684.4B2 (12) United States Patent (10) Patent No.: US 7,776,844 B2 Yu et al. (45) Date of Patent: Aug. 17, 2010 (54) N-(PHOSPHONOALKYL)-AMINO ACIDS, 7,429,575 B2 9/2008 Yu et al. DERVATIVES THEREOF AND 2005, 016491.6 A1 7/2005 Leadbetter et al. COMPOSITIONS AND METHODS OF USE OTHER PUBLICATIONS (76) Inventors: Ruey J. Yu, 655 Stump Rd., Chalfont, Struninet al., 1989, CAS. 111:233525.* PA (US)18914; Eugene J. Van Scott, 3 Shi et al., 2004, CAS;142. 231739.* Hidden La., Abington, PA (US) 19001 Li et al., 2005, CAS; 143: 158351.* Sandeman et al., 2002, CAS: 137:274431.* (*) Notice: Subject to any disclaimer, the term of this Single co's i. 164: patent is extended or adjusted under 35 Stahl e et et al., al., 1995, CAS:si. 124:563.10.* U.S.C. 154(b) by 0 days. Jezowska-Bojczuk et al., 1994, CAS: 120:28.1638.* Strumin et al., 1989, CAS: 111:194894.* (21) Appl. No.: 12/428,906 Balthazor et al., 1987, CAS: 106:50457.* The Merck Index. "An Encyclopedia of Chemicals, Drugs, and (22) Filed: Apr. 23, 2009 Biologicals.” (2001) p. 1768, (2 pgs.), 13th Edition, O'Neil et al. (Ed.), Merck & Co., Inc., Whitehouse Station, N.J. (65) Prior Publication Data Wester et al., 1991, CAS: 114:242443. US 2009/0208499 A1 Aug. 20, 2009 * cited by examiner Related U.S. Application Data Primary Examiner Rei-tsang Shiao - - - (74) Attorney, Agent, or Firm Panitch Schwarze Belisario & (62) Division of application No. 12/194203, filed on Aug. -
| Mo Naman Attituunika Mitatti
|MO NAMAN ATTITUUNIKAUS009962450B2 MITATTI (12 ) United States Patent (10 ) Patent No. : US 9 , 962 , 450 B2 Kraynov et al. ( 45) Date of Patent : May 8 , 2018 ( 54 ) METHOD OF TREATING HEART FAILURE 4 ,659 ,839 A 4 / 1987 Nicolotti et al . WITH MODIFIED RELAXIN POLYPEPTIDES 4 ,670 ,417 A 6 / 1987 Iwasaki et al. 4 ,671 , 958 A 6 / 1987 Rodwell et al. 4 ,680 , 338 A 7 / 1987 Sundoro ( 71) Applicant : AMBRX , INC . , La Jolla , CA (US ) 4 ,689 ,406 A 8 / 1987 Banks et al . 4 ,699 ,784 A 10 / 1987 Shih et al . ( 72 ) Inventors : Vadim Kraynov , San Diego , CA (US ) ; 4 ,738 , 921 A 4 / 1988 Belagaje et al. Nick Knudsen , San Diego , CA (US ) ; 4 ,755 ,465 A 7 / 1988 Gray et al. 4 ,837 , 148 A 6 / 1989 Cregg Amha Hewet, Chula Vista , CA (US ) ; 4 ,859 ,600 A 8 / 1989 Gray et al . Kristine De Dios, San Diego , CA (US ) ; 4 , 876 , 197 A 10 / 1989 Burke et al. Jason Pinkstaff , Encinitas, CA (US ) ; 4 , 880 ,734 A 11/ 1989 Burke et al . Lorraine Sullivan , San Diego , CA 4 , 902 ,502 A 2 / 1990 Nitecki et al . 4 , 904 , 584 A 2 / 1990 Shaw ( US ) 4 ,929 , 555 A 5 / 1990 Cregg et al. 5 ,021 , 234 A 6 / 1991 Ehrenfeld (73 ) Assignee : AMBRX , INC. , La Jolla , CA (US ) 5 ,089 ,398 A 2 / 1992 Rosenberg et al . 5 , 122 ,614 A 6 / 1992 Zalipsky ( * ) Notice : Subject to any disclaimer , the term of this 5 , 145 , 962 A 9 / 1992 Hudson et al.