Purification and Characterization of the Higher Plant Enzyme L-Canaline Reductase (L-Canavanine Catabolism/Plant Nitrogen Metabolism/Leguminosae) GERALD A

Total Page:16

File Type:pdf, Size:1020Kb

Purification and Characterization of the Higher Plant Enzyme L-Canaline Reductase (L-Canavanine Catabolism/Plant Nitrogen Metabolism/Leguminosae) GERALD A Proc. Natd. Acad. Sci. USA Vol. 89, pp. 1780-1784, March 1992 Biochemistry Purification and characterization of the higher plant enzyme L-canaline reductase (L-canavanine catabolism/plant nitrogen metabolism/Leguminosae) GERALD A. ROSENTHAL T. H. Morgan School of Biological Sciences, University of Kentucky, Lexington, KY 40506 Communicated by John S. Boyer, December 3, 1991 (receivedfor review April 20, 1991) ABSTRACT A newly discovered enzyme, L-canaline re- oglutaric acid to generate stoichiometrically a canaline-2- ductase (NADPH:L-canaline oxidoreductase, EC 1.6.6.-), has oxoglutaric acid oxime (5). Canaline also reacts readily with been isolated and purified from 10-day-old leaves of the jack the pyridoxal phosphate moiety of vitamin B6-containing bean Canavalia ensiformis (Leguminosae). This higher plant is enzymes to form a stable, covalently linked complex (6, 7). representative of a large number of legumes that synthesize In vitro analysis of canaline interaction with homogeneous L-canavanine, an important nitrogen-storing nonprotein amino ornithine aminotransferase (ornithine-oxo-acid aminotrans- acid. Canavanine-storing legumes contain arginase, which ferase; L-ornithine:2-oxo-acid aminotransferase, EC hydrolyzes L-canavanine to form the toxic metabolite L-cana- 2.6.1.13) reveals its marked ability to form an oxime complex line. Canaline reductase, having a mass of =167 kDa and with and thereby inhibit this pyridoxal phosphate-dependent composed of 82-kDa dimers, catalyzes a NADPH-dependent enzyme (8). As little as 10 nM canaline causes a significant reductive cleavage of L-canaline to L-homoserine and ammo- reduction in ornithine aminotransferase activity (9). nia. This is the only enzyme known to use reduced NADP to Canavanine-storing legumes can accumulate high levels of cleave an O-N bond. Canaline reductase performs at least this nonprotein amino acid; for example, canavanine can three important functions for canavanine-synthesizing le- account for up to 13% of the total dry matter of the seed of gumes. First, it detoxifies canaline. Second, it increases by certain legumes (9). To support their nitrogen metabolism, one-halfthe overall yield ofammoniacal nitrogen released from these plants use their arginase to release the stored nitrogen canavanine. Third, it permits the carbon skeleton of canava- of canavanine as urea (10); canaline is a toxic by-product of nine, a secondary plant metabolite, to support vital primary this catabolic reaction. Analysis of these canavanine-storing metabolic reactions. legumes discloses the presence of only trace amounts of canaline (5, 11). To avoid the toxic effects of canaline, these plants have evolved a mechanism to efficiently catabolize the L-Canavanine [L-2-amino-4-(guanidinooxy)butyric acid] is an appreciable canaline formed from canavanine. L-arginine analog that occurs in at least 1500 legumes (1). This Investigation of the canavanine-producing jack bean nonprotein amino acid can be the most abundant free amino Canavalia ensiformis (Leguminosae) has resulted in the acid of the plant (2). Arginase (L-arginine amidinohydrolase, isolation of an enzyme that used NADPH to reductively EC 3.5.3.1) appears to be distributed universally in these cleave the oxygen-nitrogen bond of canaline irreversibly to canavanine-storing legumes (2). Since canaline is a product of yield homoserine and ammonia. arginase-mediated hydrolysis of L-canavanine, all of these legumes are a potential source of L-canaline [L-2-amino-4- H2N-0--CH2-CH2--CH(NH2)COOH (aminooxy)butyric acid]. L-canaline H2N-C(NH2)=N--O-CH2-CH2-CH(NH2)COOH HO-CH2-CH2-CH(NH2)COOH + NH3 L-canavanine L-homoserine ammonia H2N-O-CH2--CH2-CH(NH2)COOH This communication describes the purification and charac- L-canaline terization of the enzyme L-canaline reductase (CR; NAD- PH:L-canaline oxidoreductase, EC 1.6.6.-), which not only + H2NC(==O)NH2 detoxifies canaline but also supports the nitrogen metabolism urea of the plant. Canaline is a toxic natural product that elicits potent MATERIALS AND METHODS insecticidal properties in canaline-sensitive insects. For ex- ample, consumption of a 2.5 mM canaline-containing artifi- Substrate Preparation. L-Canavanine (free base) was iso- cial diet by larvae of the tobacco hornworm Manduca sexta lated from acetone-defattedjack bean seeds by ion-exchange (Sphingidae) results in massive developmental aberrations in chromatography and purified by repetitive crystallization the pupae and adults that emerge from the larvae. Most ofthe (12). L-Canaline (free base) was prepared from L-canavanine canaline-treated larvae perish attempting larval-pupal meta- by the method of Rosenthal (13). morphosis (3). Canaline also induces neurotoxic effects in the L-[U-14C]Canaline was synthesized from commercially adult moth (4). prepared L-[U-14C]homoserine (Amersham; 1.48 GBq/ The toxic action of canaline results from its reactivity with mmol). The radiochemical synthesis involved the successive the carbonyl group ofaldehydes or certain keto acids to form synthesis of L-2-[(benzyloxycarbonyl)amino]-4-hydroxybu- oximes. For example, canaline reacts chemically with 2-ox- tyric acid, L-2-[(benzyloxycarbonyl)amino]-4-butyrolactone, benzyl L-2-[(carbobenzyloxy)amino]-4-hydroxybutyrate, and benzyl The publication costs of this article were defrayed in part by page charge L-2-[(carbobenzyloxy)amino]-4-[(p-tolylsulfo- payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact. Abbreviation: CR, L-canaline reductase. 1780 Downloaded by guest on September 30, 2021 Biochemistry: Rosenthal Proc. Natl. Acad. Sci. USA 89 (1992) 1781 nyl)oxy]butyrate. The aminooxy function was introduced dissolved in deionized water, and the process was repeated with the addition of benzohydroxamic acid to form benzyl twice. Finally, the '4C-bearing residue was taken up in a L-2-[(carbobenzyloxy)amino]-4-(benzamidooxy)butyrate. minimum amount of deionized water and reacted with suffi- This compound was deprotected by refluxing with l9o cient 2-oxoglutaric acid to convert any unreacted ['4C]cana- (wt/vol) ethanolic HCl followed by refluxing with 3 M HCl to line to its radiolabeled canaline-2-oxoglutarate oxime. Unlike form L-[U-14C]canaline (14). Scintillation medium (Ecolume) canaline, this oxime can be quantitated since it is stable to the was purchased from ICN. Sigma supplied the biochemicals. buffers used in automated amino acid analysis. All other chemicals were obtained from Aldrich. The "'C-bearing effluent was subjected to automated amino Canaline-Linked, Cyanogen Bromide-Activated Sepharose. acid analysis in which the column effluent was collected A suspension ofSepharose (40-190 jm) in deionized water was without reacting with ninhydrin. The column effluent was centrifuged at 600 x g for 10 min to pack the gel. Ten then assayed by liquid scintillation spectroscopy. Radiola- milliliters (settled gel volume) of the gel was suspended in 10 beled homoserine (retention time, 32 min) accounted for 98% ml of deionized water, taken to pH 10.5-11 with 4 M NaOH, ofthe 'IC ofthe column effluent not residing in ["'Cicanaline- and stirred mechanically in a well ventilated hood with 1.0 g 2-oxoglutarate oxime (retention time, 14 min). of cyanogen bromide dissolved in 15 ml of 1-methyl-2- To verify the identity of homoserine, a portion of the pyrrolidinone. The pH was maintained between 10 and 11 for radiolabeled effluent from the Dowex 50 column was refluxed 12 min. The cyanogen bromide-activated gel was transferred with 9%o (wt/vol) ethanolic HCO for 90 min. After removing to a sintered glass funnel and washed with 10 vol of ice-cold the solvent by rotary evaporation in vacuo, the residue was 100 mM sodium carbonate/bicarbonate buffer (pH 9.5) (buff- allowed to in vacuo at for an 30 min after er A). dry 550C additional The activated gel in buffer A was treated with 100 mg of solvent removal. Deionized water was added to the residue L-canaline and agitated gently overnight at 230C. After wash- and the drying process was repeated twice. The residue was ing the canaline-linked Sepharose with buffer A, it underwent then dissolved in 3 M HCl and refluxed for 90 min at 115TC. reaction with 3 vol of 1 M 2-aminoethanol (pH 9.5) for 60 min Afterwards, the HCI was removed by exhaustive rotary at 23°C. After transferring the treated gel to a sintered glass evaporation in vacuo and the residue was dissolved in funnel, it was washed thoroughly with buffer A and stored in deionized water, taken to pH 3.5 with 1 M ammonia, and 50 mM sodium acetate (pH 4.0) with a few crystals of sodium placed on a column (20 x 75 mm) of Dowex 50 (NH4+). The azide at 4°C. column was washed with 0.7 liter of deionized water and Enzyme Assay. Crude CR activity was determined by developed with 0.5 liter of 200 mM ammonia. The column measuring the degradation of L-canaline to L-homoserine in effluent was concentrated by rotary evaporation in vacuo. the presence of a reduced NADP-regenerating system. The The above procedures convert homoserine stoichiometri- assay mixture (1.0 ml) consisted of 15 mM L-canaline (pH cally to homoserine lactone; unlike homoserine, the latter 7.3), 100 mM sodium Tricine (pH 7.3), 2.5 mM NADP, 25 mM compound is basic. Free homoserine, unreacted canaline, glucose 6-phosphate, 150 ,ug of glucose-6-phosphate dehy- neutral compounds, and acidic compounds cannot bind to drogenase (300 units per mg of protein), and no more than this resin in the NH4+ form. Homoserine lactone is converted 0.065 unit of CR. All assays were conducted in triplicate at to homoserine in situ when the column is developed with 200 37°C for 60 min. The reaction was terminated by the addition mM ammonia.
Recommended publications
  • Namely, Aspartokinase and Aspartate 3-Semialdehyde Dehydrogenase) Are Not Subject to Feedback Inhibition Control by the End Product Methionine
    REGULATION OF HOMOSERINE BIOSYNTHESIS BY L-CYSTEINE, A TERMINA L METABOLITE OF A LINKED PA THWA Y* By PRASANTA DATTA DEPARTMENT OF BIOLOGICAL CHEMISTRY, UNIVERSITY OF MICHIGAN, ANN ARBOR Communicated by Martin D. Kamen, June 23, 1967 In bacteria, the amino acid homoserine is a key branch-point intermediate in the synthesis of several amino acids of the aspartic pathway.' On the one hand, homoserine is converted to threonine (and thus to isoleucine), and through a separate sequence of reactions is transformed to methionine.1 In the latter se- quence, a succinylated product of homoserine is condensed with cysteine to pro- duce cystathionine,2-5 a precursor of methionine. Recent studies (see refs. 6 and 7 for up-to-date reviews on the subject) with several microorganisms have revealed that the synthesis of homoserine is regulated by various combinations of repression and/or feedback inhibition controls of early biosynthetic enzymes of the aspartic pathway by several end-product metabolites. One of these enzymes, homoserine dehydrogenase, catalyzes the pyridine nucleotide-linked reduction of aspartate j3-semialdehyde to homoserine. In the various bacteria that have been examined, this dehydrogenase as well as the two earlier enzymes of the path- way (namely, aspartokinase and aspartate 3-semialdehyde dehydrogenase) are not subject to feedback inhibition control by the end product methionine. This report describes the results of experiments on the control of activity of several bacterial homoserine dehydrogenases by L-cysteine, a terminal metabolite of a linked or connecting pathway, required for the synthesis of cystathionine.2-5 The findings suggest that the size of the homoserine pool in bacterial cells must depend, at least in part, on complex interdependent regulatory interactions of both cysteine and threonine on homoserine dehydrogenase.
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Ron Caspi Peter Midford Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_003855395Cyc: Shewanella livingstonensis LMG 19866 Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Antiviral Compounds Antivirale Verbindungen Composes Antiviraux
    (19) TZZ_Z _T (11) EP 1 778 702 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07F 9/141 (2006.01) C07D 207/08 (2006.01) 13.07.2011 Bulletin 2011/28 A61K 31/662 (2006.01) A61P 31/12 (2006.01) (21) Application number: 05791144.8 (86) International application number: PCT/US2005/025503 (22) Date of filing: 18.07.2005 (87) International publication number: WO 2006/020276 (23.02.2006 Gazette 2006/08) (54) ANTIVIRAL COMPOUNDS ANTIVIRALE VERBINDUNGEN COMPOSES ANTIVIRAUX (84) Designated Contracting States: (74) Representative: Reitstötter - Kinzebach AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Patentanwälte HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI Sternwartstrasse 4 SK TR 81679 München (DE) Designated Extension States: AL BA HR MK YU (56) References cited: EP-A- 1 337 550 WO-A-00/09543 (30) Priority: 16.07.2004 US 588633 P WO-A-00/59929 WO-A-98/17679 27.07.2004 US 591635 P WO-A-99/07733 WO-A-02/060926 WO-A-03/053349 WO-A-03/064416 (43) Date of publication of application: WO-A-03/064455 WO-A-03/064456 02.05.2007 Bulletin 2007/18 WO-A-03/066103 WO-A-03/099274 WO-A-03/099316 US-A1- 2003 186 895 (60) Divisional application: US-A1- 2003 224 977 US-A1- 2004 048 802 10178084.9 / 2 316 839 US-B1- 6 608 027 (73) Proprietor: GILEAD SCIENCES, INC.
    [Show full text]
  • Internal Homologies in the Two Aspartokinase-Homoserine
    Proc. Nati. Acad. Sci. USA Vol. 81, pp. 3019-3023, May 1984 Biochemistry Internal homologies in the two aspartokinase-homoserine dehydrogenases of Escherichia coli K-12 (gene duplication/evolution/bifunctional proteins) PASCUAL FERRARA, NATHALIE DUCHANGE, MARIO M. ZAKIN, AND GEORGES N. COHEN The Unite de Biochimie Cellulaire, Ddpartement de Biochimie et Gdndtique Moldculaire, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France Communicated by Norman H. Horowitz, January 27, 1984 ABSTRACT In Escherichia coli, AK I-HDH I and AK II- METHODS HDH II are two bifunctional proteins, derived from a common ancestor, that catalyze the first and third reactions of the com- Protein sequence comparisons were done by computer. mon pathway leading to threonine and methionine. An exten- Each sequence was compared with itself by a simple frame- sive amino acid sequence comparison of both molecules reveals shift method using different segment lengths. After small ho- two main features on each of them: (i) two segments, each of mologous fragments were found, comparison was extended about 130 amino acids, covering the first one-third of the poly- in both directions, allowing gaps to maximize homologies. peptide chain, are similar to each other and (ii) two segments, Finally, the fragments were aligned with a computer pro- each of about 250 amino acids and covering the COOH-termi- gram, provided by T. F. Smith and W. M. Fitch, using the nal 500 amino acids also present a significant homology. These matrix algorithm of Sellers (8), modified by Smith et al. (9). findings suggest that these two regions may have evolved inde- A deletion weight of 0.7 for each gap plus 1.5 times the pendently of each other by a process of gene duplication and number of residues in each gap was initially used.
    [Show full text]
  • The Biosynthesis of Cystathionine in Patients with Homocystinuria
    Pediat. Res. 2: 149-160 (1968) Cystathionase homoserine cystathionine pyridoxine cystine serine homocystinuria The Biosynthesis of Cystathionine in Patients with Homocystinuria P.W.K.WONG[30], V.SCHWARZ and G.M.KOMROWER Department of Medical Biochemistry, University of Manchester, and the Mental Retardation Unit, Royal Manchester Children's Hospital, Manchester, England Extract The synthesis in rat and normal human liver homogenates of cystathionine from homoserine +cysteine was studied. When cystathionine was used as substrate, cyst(e)ine was formed and incubation of liver homogenate with homoserine-(-cysteine resulted in the formation of cystathionine. Incubation of homogenate prepared from homocystinuric hVer with L-homoserine+DL-cysteine- 3-14G or DL-cysteine-35S resulted in the formation of labelled cystathionine. The identity of cystathio- nine was established in three chromatographic separations. Oral loading with homoserine and cysteine or cystine in two patients with homocystinuria resulted in urinary excretion of cystathionine in amounts similar to that reported in normal human subjects without amino acid loading. Speculation The observation that human and monkey brains contain much larger quantities of cystathionine than those of other species [26] suggests a special relation of this amino acid to the normal development and function of the primate brain. Cystathionine is either absent from or markedly deficient in the brain of untreated homocystinuric patients [2, 9]. Since we have shown that synthesis of cystathionine from homoserine and cysteine does take place in the patient's liver in vitro, supplementation of the diet with homoserine and cysteine may prove effective in raising intracellular cystathionine concentration to- ward the normal, and may possibly improve the prognosis in this disease.
    [Show full text]
  • Fortifying Horticultural Crops with Essential Amino Acids: a Review
    Review Fortifying Horticultural Crops with Essential Amino Acids: A Review Guoping Wang 1, Mengyun Xu 1, Wenyi Wang 1,2,* and Gad Galili 2,* 1 College of Horticulture, South China Agricultural University, Guangzhou 510642, China; [email protected] (G.W.); [email protected] (M.X.) 2 Department of Plant Science, Weizmann Institute of Science, Rehovot 76100, Israel * Corresponding author: [email protected] (W.W.); [email protected] (G.G.); Tel.: +972-8-934-3511 (G.G.); Fax: +972-8-934-4181 (G.G.) Received: 17 May 2017; Accepted: 14 June 2017; Published: 19 June 2017 Abstract: To feed the world′s growing population, increasing the yield of crops is not the only important factor, improving crop quality is also important, and it presents a significant challenge. Among the important crops, horticultural crops (particularly fruits and vegetables) provide numerous health compounds, such as vitamins, antioxidants, and amino acids. Essential amino acids are those that cannot be produced by the organism and, therefore, must be obtained from diet, particularly from meat, eggs, and milk, as well as a variety of plants. Extensive efforts have been devoted to increasing the levels of essential amino acids in plants. Yet, these efforts have been met with very little success due to the limited genetic resources for plant breeding and because high essential amino acid content is generally accompanied by limited plant growth. With a deep understanding of the biosynthetic pathways of essential amino acids and their interactions with the regulatory networks in plants, it should be possible to use genetic engineering to improve the essential amino acid content of horticultural plants, rendering these plants more nutritionally favorable crops.
    [Show full text]
  • A Non-Derivatized Method for Simultaneous Quantitation of Proteinogenic, Urea-Cycle, and Acetylated Amino Acids by Liquid Chroma
    Environmental Chemistry Letters (2020) 18:229–235 https://doi.org/10.1007/s10311-019-00927-4 ORIGINAL PAPER A non‑derivatized method for simultaneous quantitation of proteinogenic, urea‑cycle, and acetylated amino acids by liquid chromatography–high‑resolution mass spectrometry Annaleise R. Klein1,2 · Krista A. Barzen‑Hanson1,3 · Ludmilla Aristilde1,2 Received: 27 July 2019 / Accepted: 8 August 2019 / Published online: 24 August 2019 © Springer Nature Switzerland AG 2019 Abstract The quantifcation of amino acids as freely dissolved compounds or from hydrolyzed peptides and proteins is a common endeavor in biomedical and environmental sciences. In order to avoid the drawbacks of derivatization and application chal- lenges of tandem mass spectrometry, we present here a robust 13-min liquid chromatography coupled with a full-scan mass spectrometry method to achieve rapid detection and quantifcation of 30 amino acids without derivatization. We combined hydrophilic interaction liquid chromatography with heated electrospray ionization and high-resolution mass spectrometry operated with polarity switching to analyze the 20 proteinogenic amino acids, ornithine, citrulline, homoserine, cystine, and six acetylated amino acids. We obtained high mass accuracy and good precision of the targeted amino acids. Limits of detection ranged from 0.017 to 1.3 µM. Noteworthy for environmental samples, we found comparable ionization efciency and quantitative detection for the majority of the analytes prepared with pure water versus a high-salt solution. We applied the method to profle carbon source-dependent secretions of amino acids by Pseudomonas protegens Pf-5, a well-known plant-benefcial bacterium. Keywords Polarity switching · Non-targeted analysis · Acetylated amino acids · Urea-cycle amino acids · High-resolution mass spectrometry Introduction 2012), physiological responses to toxicity (Dubey et al.
    [Show full text]
  • Amino Acids: 1
    Czech J. Food Sci. Vol. 24, No. 1: 1–10 Biosynthesis of Food Constituents: Amino Acids: 1. The Glutamic Acid and Aspartic Acid Groups – a Review JAN VELÍŠEK and KAREL CEJPEK Department of Food Chemistry and Analysis, Faculty of Food and Biochemical Technology, Institute of Chemical Technology Prague, Prague, Czech Republic Abstract VELÍŠEK J., CEJPEK K. (2006): Biosynthesis of food constituents: Amino acids: 1. The glutamic acid and aspartic acid groups – a review. Czech J. Food Sci., 24: 1–10. This review article gives a survey of principal pathways that lead to the biosynthesis of the proteinogenic amino acids of the glutamic acid group (glutamic acid, glutamine, proline, arginine) and aspartic acid group (aspartic acid, aspar- agine, threonine, methionine, lysine, isoleucine) starting with oxaloacetic acid from the citric acid cycle. There is an extensive use of reaction schemes, sequences, and mechanisms with the enzymes involved and detailed explanations using sound chemical principles and mechanisms. Keywords: biosynthesis; amino acids; glutamic acid; glutamine; proline; arginine; aspartic acid; asparagine; threonine; methionine; lysine; isoleucine Commonly, 20 L-amino acids encoded by DNA aspartic acid, cysteine, glutamic acid, glutamine, represent the building blocks of animal, plant, glycine, proline, serine, tyrosine). Arginine and and microbial proteins, and a limited number histidine are classified as essential, sometimes of amino acids participate in the biosynthesis of as semi-essential amino acids, as their amounts certain shikimate metabolites and particularly in synthesised in the body is not sufficient for normal the formation of alkaloids. The basic amino acids growth of children. Although it is itself non-essen- encountered in proteins are called proteinogenic tial, cysteine (sometimes classified as conditionally amino acids.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,776,844 B2 Yu Et Al
    USOO777684.4B2 (12) United States Patent (10) Patent No.: US 7,776,844 B2 Yu et al. (45) Date of Patent: Aug. 17, 2010 (54) N-(PHOSPHONOALKYL)-AMINO ACIDS, 7,429,575 B2 9/2008 Yu et al. DERVATIVES THEREOF AND 2005, 016491.6 A1 7/2005 Leadbetter et al. COMPOSITIONS AND METHODS OF USE OTHER PUBLICATIONS (76) Inventors: Ruey J. Yu, 655 Stump Rd., Chalfont, Struninet al., 1989, CAS. 111:233525.* PA (US)18914; Eugene J. Van Scott, 3 Shi et al., 2004, CAS;142. 231739.* Hidden La., Abington, PA (US) 19001 Li et al., 2005, CAS; 143: 158351.* Sandeman et al., 2002, CAS: 137:274431.* (*) Notice: Subject to any disclaimer, the term of this Single co's i. 164: patent is extended or adjusted under 35 Stahl e et et al., al., 1995, CAS:si. 124:563.10.* U.S.C. 154(b) by 0 days. Jezowska-Bojczuk et al., 1994, CAS: 120:28.1638.* Strumin et al., 1989, CAS: 111:194894.* (21) Appl. No.: 12/428,906 Balthazor et al., 1987, CAS: 106:50457.* The Merck Index. "An Encyclopedia of Chemicals, Drugs, and (22) Filed: Apr. 23, 2009 Biologicals.” (2001) p. 1768, (2 pgs.), 13th Edition, O'Neil et al. (Ed.), Merck & Co., Inc., Whitehouse Station, N.J. (65) Prior Publication Data Wester et al., 1991, CAS: 114:242443. US 2009/0208499 A1 Aug. 20, 2009 * cited by examiner Related U.S. Application Data Primary Examiner Rei-tsang Shiao - - - (74) Attorney, Agent, or Firm Panitch Schwarze Belisario & (62) Division of application No. 12/194203, filed on Aug.
    [Show full text]
  • Method for the Affinity Purification of Covalently Linked Peptides
    Anal. Chem. 2009, 81, 9885–9895 Method for the Affinity Purification of Covalently Linked Peptides Following Cyanogen Bromide Cleavage of Proteins Tujin Shi,† Rasanjala Weerasekera,†,‡ Chen Yan,‡ William Reginold,‡ Haydn Ball,§ Thomas Kislinger,| and Gerold Schmitt-Ulms*,†,‡ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada, Department of Biochemistry, University of Texas Southwestern Medical School, Dallas, Texas, and Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, Toronto, Ontario, Canada The low resolution structure of a protein can sometimes posttranslational modifications,6 and the mapping of protein-nucleic be inferred from information about existing disulfide acid interactions are increasingly well-developed,7-13 gaining bridges or experimentally introduced chemical crosslinks. insights into the folds of proteins and contact sites between Frequently, this task involves enzymatic digestion of a proteins remains a challenging undertaking. Despite major protein followed by mass spectrometry-based identifica- advances in speed and application range, high-resolution structure tion of covalently linked peptides. To facilitate this task, methods based on X-ray crystallography or nuclear magnetic we developed a method for the enrichment of covalently resonance (NMR) analyses continue to be time-consuming and linked peptides following the chemical cleavage of a are limited by the need to obtain analytes at high levels of purity protein. The method capitalizes on the availability of and quantity. The quest for a robust methodology that fills this homoserine lactone moieties at the C-termini of cyanogen need has arguably become one of the most pressing problems in bromide cleavage products which support selective con- protein science.
    [Show full text]
  • | Mo Naman Attituunika Mitatti
    |MO NAMAN ATTITUUNIKAUS009962450B2 MITATTI (12 ) United States Patent (10 ) Patent No. : US 9 , 962 , 450 B2 Kraynov et al. ( 45) Date of Patent : May 8 , 2018 ( 54 ) METHOD OF TREATING HEART FAILURE 4 ,659 ,839 A 4 / 1987 Nicolotti et al . WITH MODIFIED RELAXIN POLYPEPTIDES 4 ,670 ,417 A 6 / 1987 Iwasaki et al. 4 ,671 , 958 A 6 / 1987 Rodwell et al. 4 ,680 , 338 A 7 / 1987 Sundoro ( 71) Applicant : AMBRX , INC . , La Jolla , CA (US ) 4 ,689 ,406 A 8 / 1987 Banks et al . 4 ,699 ,784 A 10 / 1987 Shih et al . ( 72 ) Inventors : Vadim Kraynov , San Diego , CA (US ) ; 4 ,738 , 921 A 4 / 1988 Belagaje et al. Nick Knudsen , San Diego , CA (US ) ; 4 ,755 ,465 A 7 / 1988 Gray et al. 4 ,837 , 148 A 6 / 1989 Cregg Amha Hewet, Chula Vista , CA (US ) ; 4 ,859 ,600 A 8 / 1989 Gray et al . Kristine De Dios, San Diego , CA (US ) ; 4 , 876 , 197 A 10 / 1989 Burke et al. Jason Pinkstaff , Encinitas, CA (US ) ; 4 , 880 ,734 A 11/ 1989 Burke et al . Lorraine Sullivan , San Diego , CA 4 , 902 ,502 A 2 / 1990 Nitecki et al . 4 , 904 , 584 A 2 / 1990 Shaw ( US ) 4 ,929 , 555 A 5 / 1990 Cregg et al. 5 ,021 , 234 A 6 / 1991 Ehrenfeld (73 ) Assignee : AMBRX , INC. , La Jolla , CA (US ) 5 ,089 ,398 A 2 / 1992 Rosenberg et al . 5 , 122 ,614 A 6 / 1992 Zalipsky ( * ) Notice : Subject to any disclaimer , the term of this 5 , 145 , 962 A 9 / 1992 Hudson et al.
    [Show full text]
  • Zone Finhibton Inmillimeters
    US006191168B1 (12) United States Patent (10) Patent N0.: US 6,191,168 B1 Rubenstein (45) Date of Patent: Feb. 20, 2001 (54) METHODS FOR THE USE OF NONPROTEIN CA 126: 268319, Breton et al, 1997.* AMINO ACIDS AS THERAPEUTIC AGENTS Bell. (1958). “Canavanine and Related Compounds in Legu minosae,” Biochem J. 70:617—619. (75) Inventor: Edward Rubenstein, 5 Waverly Pl., Bisby et al. (1994). Phytochemical Dictionary of the Legu Hillsborough, CA (US) 94010 minose, vol. 1—2. (Title page and table of contents only). Butler et al. (1967). “Uptake and Metabolism of Inorganic (73) Assignee: Edward Rubenstein, Hillsborough, CA Forms of Selenium—75 by Spiroa'ela Oligorrhiza, ” Aust. J. (Us) Biol. Sci. 20:77—86. Conn. (1981). “Secondary Plant Products” The Biochemistry (*) Notice: Under 35 U.S.C. 154(b), the term of this of Plants vol. 7(Title page and table of contents only). patent shall be extended for 0 days. CoWie et al. (1957). “Biosynthesis by Escherichia Coli of Active Altered Proteins Containing Selenium Instead of (21) Appl. No.: 09/324,181 Sulfur,” Biochem et Biophysica Acta. 26:252—261. Gennaro ed. (1995). Remington." The Science and Practice Filed: Jun. 1, 1999 (22) The Science and of Pharmacy (Title page and table of Related US. Application Data contents only). (60) Provisional application No. 60/087,746, ?led on Jun. 2, (List continued on neXt page.) 1998. Primary Examiner—Rebecca Cook (51) Int. Cl.7 ................................................. .. A61K 31/195 (74) Attorney, Agent, or Firm—Morrison & Foerster LLP (52) US. Cl. ........................ .. 514/561; 514/210; 514/274; 514/419; 514/423; 514/315; 514/354; 514/538; (57) ABSTRACT 514/562; 514/563; 514/564; 514/565 Provided are compositions comprising nonprotein amino (58) Field of Search ..................................
    [Show full text]