CHEM&140 Workbook Key F2019

Total Page:16

File Type:pdf, Size:1020Kb

CHEM&140 Workbook Key F2019 A Collection of Worksheets and Laboratory Experiments 2019 Edition | Bellevue College Chemistry Department Faculty CHEM& 140 Workbook CHEM& 140 WORKBOOK A Collection of Worksheets and Laboratory Experiments Bellevue College Chemistry Department Faculty 2019 Edition Copyright © by Jennie Mayer, Gina Fiorini, Perminder Sandhu, and Shraddha Deodhar Copyright © by Van-Griner, LLC Photos and other illustrations are owned by Van-Griner Learning or used under license. All products used herein are for identification purposes only, and may be trademarks or registered trademarks of their respective owners. All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the author and publisher. The information and material contained in this manual are provided “as is,” and without warranty of any kind, expressed or implied, including without limitation any warranty concerning accuracy, adequacy, or completeness of such information. Neither the authors, the publisher nor any copyright holder shall be responsible for any claims, attributable errors, omissions, or other inaccuracies contained in this manual. Nor shall they be liable for damages of any type, including but not limited to, direct, indirect, special, incidental, or consequential damages arising out of or relating to the use of such material or information. These experiments are designed to be used in college or university level laboratory courses, and should not be conducted unless there is an appropriate level of supervision, safety training, personal protective equipment and other safety facilities available for users. The publisher and authors believe that the lab experiments described in this manual, when conducted in conformity with the safety precautions described herein and according to appropriate laboratory safety procedures, are reasonably safe for students for whom this manual is directed. Nonetheless, many of the experiments are accompanied by some degree of risk, including human error, the failure or misuse of laboratory or electrical equipment, mis-measurement, spills of chemicals, and exposure to sharp objects, heat, blood, body fluids or other liquids. The publisher and authors disclaim any liability arising from such risks in connection with any of the experiments in the manual. Any users of this manual assume responsibility and risk associated with conducting any of the experiments set forth herein. If students have questions or problems with materials, procedures, or instructions on any experiment, they should always ask their instructor for immediate help before proceeding. Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 ISBN: 978-1-61740-777-2 Van-Griner Learning Cincinnati, Ohio www.van-griner.com President: Dreis Van Landuyt Project Manager: Janelle Lange Customer Care Lead: Lauren Houseworth Mayer 777-2 Su19 313010 Copyright © 2020 CHEM& 140 WORKBOOK TABLE OF CONTENTS CHEM& 140 Student Learning Objectives ...........................................1 Scientific Method: Observation, Hypothesis, Law, or Theory? .........................6 Element Symbols ................................................................7 Chemistry Matters! ..............................................................8 Molecular Level Diagrams .......................................................15 Elements, Compounds & Mixtures ................................................16 Scientific Notation: Powers of 10 .................................................19 Exponents .....................................................................20 Significant Figures ..............................................................21 Measurements and Significant Figures 1 ..........................................22 Measurements and Significant Figures 2 ..........................................23 Significant Figures and Scientific Notation ........................................24 Significant Figures in Calculations. .25 List of Metric Prefixes ..........................................................27 III TABLE OF CONTENTS Metric System Units & Definitions ................................................28 Two Methods for Metric Conversions ............................................30 Metric Conversions: Dimensional Analysis ........................................31 One-Step Metric Conversions Using Dimensional Analysis ..........................32 Two-Step Metric Conversions Using Dimensional Analysis ..........................33 Metric System: The Ladder Method ..............................................34 Metric Conversions ............................................................35 Multi-Step Conversions .........................................................36 Volume Conversions ............................................................38 Ratios as Conversion Factors ....................................................39 The Jabberwocky and Googs per Mulm ...........................................41 Converting Both Numerator & Denominator .......................................42 Squared or Cubed Unit Conversions ..............................................43 Units Raised to a Power .........................................................45 Density ........................................................................46 Activity: The Nuclear Atom ......................................................48 Periodic Table Search ...........................................................52 Atomic Theory, Periodic Table, and Ions ...........................................53 Atomic Structure: Isotopes and Ions ..............................................56 Isotope Calculations ............................................................57 Atomic Structure Review ........................................................58 Forming Ions ...................................................................60 Bohr Model Diagrams ...........................................................61 IV TABLE OF CONTENTS Charges of Ions ................................................................62 Tutorial: Ionic Nomenclature .....................................................64 Polyatomic Ions to Memorize ....................................................66 Memorizing Polyatomic Ions: The T43 Method .....................................67 Deriving Polyatomic Ions ........................................................68 Combining Ions .................................................................70 Ionic Compound Matrix .........................................................71 Ionic Nomenclature .............................................................72 Nomenclature Practice Test 1 ....................................................74 Covalent Compounds ...........................................................75 Covalent Nomenclature .........................................................76 Ionic or Molecular? .............................................................77 The Mole ......................................................................78 Mass, Moles, Avogadro’s Number, and Moles Within Moles Conversions .............79 Molar Mass ....................................................................80 Types of Substances ............................................................81 Moles, Grams, Number of Particles, and Elements in Compounds ....................82 Moles: Calculate the Missing Quantities ..........................................84 Mole Ratios Using Chemical Formulas ............................................85 Practicing Mole Ratios ..........................................................86 Moles within Moles .............................................................87 Percent Composition by Mass. 89 Empirical and Molecular Formulas ................................................90 V TABLE OF CONTENTS Review: Moles and Chemical Composition ........................................91 Review: Nomenclature and Chemical Composition . 93 Balancing Chemical Equations 1 ..................................................94 Balancing Chemical Equations 2 ..................................................95 Balancing Word Equations .......................................................96 Tutorial: Classifying Types of Reactions ...........................................97 Stoichiometry Practice .........................................................98 Stoichiometry 1 ................................................................99 Stoichiometry Calculations Using Balanced Equations .............................101 Stoichiometry: Iron Ore Smelting. .102 Stoichiometry: Removing CO2 in Space ...........................................103 Limiting Reactant by Moles. 104 Activity: Limiting Reactant ......................................................106 Theoretical Yield and Limiting Reagents ..........................................108 Percent Yield .................................................................109 Review: Stoichiometry .........................................................110 Molarity 1 ....................................................................112 Molarity 2 ....................................................................113 Molarity: Applications .........................................................114 Molarity: Fill-in-the-Blanks Table ................................................115
Recommended publications
  • Gravimetric Analysis of Chloride
    Chemistry 321L Manual Page 16 Gravimetric Analysis of Chloride I. Introduction The amount of chloride ion in a substance can be determined by precipitating the soluble chloride ion present with silver ion. The amount of chloride ion present will be related to the mass of silver chloride formed. + - Ag (aq) + Cl (aq) 6 AgCl (s) II. Procedure A. Preparation of Filter Crucibles (Sintered-Glass) 1. Use four filter crucibles of medium (M) porosity. Do not use crucibles marked C for coarse porosity. 2. Previously, the crucibles have been used to filter silver chloride (purple or gray, ammonia soluble). First, remove any bulk precipitate with a rubber policeman and dispose of it in a "Silver Collection" jar. Follow this with chemical cleaning. To remove silver chloride, invert the crucibles in a large beaker in a fume hood and add one or two mL of concentrated ammonia to each. Allow to soak until clean. Carefully remove the crucibles from the beaker and soak in water before removing from the fume hood. Set up a suction filtration apparatus and wash the crucible several times with water and finally with deionized water. Empty the suction flask before proceeding. Stains that are not removed by this cleaning process should not interfere with your measurements. Number, in pencil, each crucible on the frosted glass area. 3. Dry the crucibles in an oven at 120EC for about 1 hour, using a beaker, glass hooks, and watch glass (see figure). A ribbed watch glass can be used in place of the glass hooks. 4. Remove the dried crucibles from the oven and let them cool for about one minute on the counter top.
    [Show full text]
  • Thermal Activity of Base Course Material Related to Pavement Cracking
    THERMAL ACTIVITY OF BASE COURSE MATERIAL RELATED TO PAVEMENT CRACKING by Samuel H. Carpenter Robert L. Lytton Research Report Number 18-2 Environmental Deterioration of Pavement Research Project 2-8-73-18 Conducted for the State Department of Highways and Public Transportation in cooperation with the U.S. Department of Transportation Federal Highway Administration by the Texas Transportation Institute Texas A&M Univeristy College station, Texas December, 197 5 TECHNICAL REPORT STANDARD TITLE PACf 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. ~4.-;Ti~tl-e-an~d~Su~b~ti~tle------------~------------------------~S~.~R~e-pa-rt~D~at_e _________________ _ Thermal Activity of Base Course Material Related to December. 1975 Pavement Cracking 6. Performing Organi •ation Code 7. Authorl s) 8. Performing Organi •ation Report No. Samuel H. Carpenter and Robert L. Lytton Research Report No. 18-2 9. Performing Organi !at ion Name and Address 10. Work Unit Na. Texas Transportation Institute Texas A&M University 11. Contract or Grant No. College Station, Texas 77843 Study No. 2-8-73-18 13. Type of Report and Period Covered ~~----------------~--------------------------~12. Sponsoring 'Agency Name and Address Texas State Department of Highways and Public Trans­ Inter'm1 _ September, 1972 portation; Transportation Planning Division December, 1975 P. 0. Box 5051 14. Sponsoring Agency Code Austin, Texas 78763 15. Supplementary Notes Research performed in cooperation with DOT, FHWA. Study Title: 11 Environmental Deterioration of Pavement 11 16. Abstract Preliminary studies into environmental deterioration of pavements indicated that low-temperature cracking of the asphalt concrete surface was not likely for the west Texas area.
    [Show full text]
  • A Revised Calibration of the Clumped Isotope Thermometer ∗ Shikma Zaarur , Hagit P
    Supplementary Materials included at end of pdf. Earth and Planetary Science Letters 382 (2013) 47–57 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl A revised calibration of the clumped isotope thermometer ∗ Shikma Zaarur , Hagit P. Affek, Mark T. Brandon Department of Geology and Geophysics, Yale University, New Haven, CT, United States article info abstract Article history: A growing number of materials and environmental settings are studied using the carbonate clumped Received 5 December 2012 isotope (47) thermometer. The method has been applied in both biogenic and non-biogenic carbonate Received in revised form 3 July 2013 systems, in marine and terrestrial settings, over a wide range of geological timescales. The current Accepted 16 July 2013 temperature calibration gives good temperature estimates for most biogenic materials, however, Available online xxxx 47 systematic biases are commonly observed at low temperatures. Editor: G. Henderson In this study we report additional calibration data, that covers a wider temperature range, at more evenly Keywords: distributed temperatures, and are measured at higher analytical precision than the original calibration. clumped isotopes Combining these data with the original calibration yields a 47–T relationship that is similar to the 6 2 carbonates original calibration, though slightly less steep: 47 = (0.0526 ± 0.0025) × 10 /T + (0.0520 ± 0.0284). thermometer calibration This revised calibration is in better agreement with biogenic carbonates, including those grown at low temperatures. The difference between the original and revised calibrations is significant for carbonates ◦ ◦ forming below 16 C or above 49 C(47 values of 0.68h and 0.56h).
    [Show full text]
  • Zinnwald Lithium Project
    Zinnwald Lithium Project Report on the Mineral Resource Prepared for Deutsche Lithium GmbH Am St. Niclas Schacht 13 09599 Freiberg Germany Effective date: 2018-09-30 Issue date: 2018-09-30 Zinnwald Lithium Project Report on the Mineral Resource Date and signature page According to NI 43-101 requirements the „Qualified Persons“ for this report are EurGeol. Dr. Wolf-Dietrich Bock and EurGeol. Kersten Kühn. The effective date of this report is 30 September 2018. ……………………………….. Signed on 30 September 2018 EurGeol. Dr. Wolf-Dietrich Bock Consulting Geologist ……………………………….. Signed on 30 September 2018 EurGeol. Kersten Kühn Mining Geologist Date: Page: 2018-09-30 2/219 Zinnwald Lithium Project Report on the Mineral Resource TABLE OF CONTENTS Page Date and signature page .............................................................................................................. 2 1 Summary .......................................................................................................................... 14 1.1 Property Description and Ownership ........................................................................ 14 1.2 Geology and mineralization ...................................................................................... 14 1.3 Exploration status .................................................................................................... 15 1.4 Resource estimates ................................................................................................. 16 1.5 Conclusions and Recommendations .......................................................................
    [Show full text]
  • High School Chemistry
    RECOMMENDED MINIMUM CORE INVENTORY TO SUPPORT STANDARDS-BASED INSTRUCTION HIGH SCHOOL GRADES SCIENCES High School Chemistry Quantity per Quantity per lab classroom/ Description group adjacent work area SAFETY EQUIPMENT 2 Acid storage cabinet (one reserved exclusively for nitric acid) 1 Chemical spill kit 1 Chemical storage reference book 5 Chemical waste containers (Categories: corrosives, flammables, oxidizers, air/water reactive, toxic) 1 Emergency shower 1 Eye wash station 1 Fire blanket 1 Fire extinguisher 1 First aid kit 1 Flammables cabinet 1 Fume hood 1/student Goggles 1 Goggles sanitizer (holds 36 pairs of goggles) 1/student Lab aprons COMPUTER ASSISTED LEARNING 1 Television or digital projector 1 VGA Adapters for various digital devices EQUIPMENT/SUPPLIES 1 box Aluminum foil 100 Assorted rubber stoppers 1 Balance, analytical (0.001g precision) 5 Balance, electronic or manual (0.01g precision) 1 pkg of 50 Balloons, latex 4 Beakers, 50 mL 4 Beakers, 100 mL 2 Beakers, 250 mL Developed by California Science Teachers Association to support the implementation of the California Next Generation Science Standards. Approved by the CSTA Board of Directors November 17, 2015. Quantity per Quantity per lab classroom/ Description group adjacent work area 2 Beakers, 400 or 600 mL 1 Beakers, 1000 mL 1 Beaker tongs 1 Bell jar 4 Bottle, carboy round, LDPE 10 L 4 Bottle, carboy round, LDPE 4 L 10 Bottle, narrow mouth, 1000 mL 20 Bottle, narrow mouth, 125 mL 20 Bottle, narrow mouth, 250 mL 20 Bottle, narrow mouth, 500 mL 10 Bottle, wide mouth, 125
    [Show full text]
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]
  • Valorization of 2,5-Furandicarboxylic Acid. Diels-Alder Reactions with Benzyne
    Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2018 Electronic Supporting Information Valorization of 2,5-Furandicarboxylic Acid. Diels-Alder Reactions with Benzyne Eric M. Serum, Sermadurai Selvakumar, Nicholas Zimmermann, and Mukund P. Sibi* Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota, USA, E-mail: [email protected] S 1 Table of Contents Section Heading Page 1 General Methods S 3 2 Equations 1–4 Discussion of Metrics S 3 3 Synthesis of Dimethyl-2,5-furandicarboxylate 5 S 4 4 Synthesis 2,5-Diformylfuran 2A S 5 5 Synthesis (2E,2'E)-3,3'-(furan-2,5-diyl)diacrylic acid 3 S6 6 Synthesis Dimethyl 3,3'-(furan-2,5-diyl)(2E,2'E)-diacrylate 13 S 7 7 Synthesis Dimethyl 3,3'-(furan-2,5-diyl)dipropionate 14 S 8 8 Diene 15 (2,5-dimethylfuran) S 9 9 Diels Alder Reactions Table S 1 Desilylation of 16: Exploring the Relationship Between S 10 Temperature and Benzyne Trapping by Furan Diene Substrates Table S 2 Thermolysis of 19 generated in situ: Trapping in Chloroform S 12 Table S 3 Partially Isolated 19 Thermolysis: Preliminary Trapping and S 13 Substrate Screening Table S 4 Partially Isolated 19 Thermolysis: Substrate Screen Exploring the S 15 Relationship Between Stoichiometry and Reaction Outcome Reaction Diene 13 with Benzyne Generated by Thermolysis Fig. S 1 S 16 Table S 5 Partially Isolated 19 Thermolysis and Trapping Single Shot: S 17 Method and Substrate Screening While Limiting Availability of Nitrite Table S 6 Crude Preparation of 19 Added Directly to Diene Solution S 18 10 Identification Dimethyl 3,4-epoxy-7-oxabenzonorbornadiene-1,4- S 19 dicarboxylate 11 Hydrolysis 7-Oxabenzonorbornadiene-1,4-dicarboxylic acid S 20 12 Deoxyaromatization Table S 7 Naphthalenes from 7-Oxabenzonorbornadienes: Trimethylsilyl S 21 Iodide Mediated Deoxyaromatization 13 Catalytic Hydrogenation S 23 14 Dehydroaromatizations S 25 Table S 9 Naphthalenes by Dehydro-aromatization of 7- S 25 Oxabenzonorbornenes.
    [Show full text]
  • WO 2013/089962 Al 20 June 2013 (20.06.2013) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/089962 Al 20 June 2013 (20.06.2013) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every B01J 31/04 (2006.01) B01J 31/18 (2006.01) kind of national protection available): AE, AG, AL, AM, B01J 31/14 (2006.01) B01J 31/22 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 12/065285 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 15 November 2012 (15.1 1.2012) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, (25) Filing Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (26) Publication Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 13/323,328 12 December 201 1 (12. 12.201 1) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): CHEV¬ GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, RON PHILLIPS CHEMICAL COMPANY LP UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, [US/US]; 10001 Six Pines Drive, The Woodlands, Texas TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 77380 (US).
    [Show full text]
  • US 2004/0237384 A1 Orr (43) Pub
    US 2004O237384A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0237384 A1 Orr (43) Pub. Date: Dec. 2, 2004 (54) FUEL COMPOSITIONS EXHIBITING (52) U.S. Cl. ................. 44/314; 44/320; 44/358; 44/359; IMPROVED FUEL STABILITY 44/360; 44/444 (76) Inventor: William C. Orr, Denver, CO (US) Correspondence Address: (57)57 ABSTRACT HOGAN & HARTSON LLP ONE TABOR CENTER, SUITE 1500 A fuel composition of the present invention exhibits mini 1200 SEVENTEENTH ST mized hydrolysis and increased fuel Stability, even after DENVER, CO 80202 (US) extended storage at 65 F. for 6–9 months. The composition, which is preferably not strongly alkaline (3.0 to 10.5), is (21) Appl. No.: 10/722,063 more preferably weakly alkaline to mildly acidic (4.5 to 8.5) (22) Filed: Nov. 24, 2003 and most preferably slightly acidic (6.3 to 6.8), includes a e ars lower dialkyl carbonate, a combustion improving amount of Related U.S. Application Data at least one high heating combustible compound containing at least one element Selected from the group consisting of (63) Continuation-in-part of application No. 08/986,891, aluminum, boron, bromine, bismuth, beryllium, calcium, filed on Dec. 8, 1997, now Pat. No. 6,652,608. cesium, chromium, cobalt, copper, francium, gallium, ger manium, iodine, iron, indium, lithium, magnesium, manga Publication Classification nese, molybdenum, nickel, niobium, nitrogen, phosphorus, potassium, palladium, rubidium, Sodium, tin, Zinc, (51) Int. Cl." ........ C10L 1/12; C1OL 1/30; C1OL 1/28; praseodymium, rhenium, Silicon, Vanadium, or mixture, and C1OL 1/18 a hydrocarbon base fuel.
    [Show full text]
  • Table of Contents
    EXPERIMENT 18 Gravimetric Determination of the Iodide Ion Content in a Mixture INTRODUCTION The branch of analytical chemistry known as quantitative analysis concerns itself with the amounts of the various components within a sample, and it is often separated into three categories: gravimetric, volumetric, and instrumental. Earlier in the semester instrumental analyses were performed utilitzing the sophisticated device called a spectrometer. In this experiment a gravimetric analysis will be performed, and it will rely on traditional laboratory equipment: balances, beakers, Büchner funnels, and filter flasks. In gravimetric analysis, a substance is treated so that the component of interest is separated either in its pure form or as a constituent in a compound of known composition, which can be weighed. The separation is often accomplished by first dissolving a sample of the substance in a suitable solvent and then adding a reagent that reacts with the desired component to form an insoluble solid. A gravimetric precipitation method must fulfill certain basic requirements in order to provide an accurate analysis. 1. The precipitation reaction should be quantitative so that only a negligible fraction on the component of interest remains in solution after the precipitate is isolated. A moderate excess of the precipitating agent is commonly employed to help achieve this condition. 2. Other constituents in the sample solution should not interfere with the precipitation of the component of interest. 3. The precipitation should be as free of contaminants as possible. 4. The particles of precipitate should be large enough to filter easily and to facilitate the removal of soluble impurities during washing operations.
    [Show full text]
  • AP Chemistry Summer Assignment 2021-22 School Year
    AP Chemistry AP Chemistry Summer Assignment 2021-22 School Year Chemical Foundations Chapter 1 1. How many significant figures are in the following numbers? a. 0.00150 b. 0.1205 c. 200 d. 2.00 X 10 3 2. Complete the operation and report using the correct number of significant figures a. 26.20 - 0.5= b. 2.5 + 3.25 = c. .040 X 2.0 = d. 3.25 / 4 = e. 3.0 X 10 -3 X 6 = Atomic , Molecules Ions CH 2 and Stoichiometry CH 3 with Periodicity CH 7 3. What is an isotope? Refer to the isotope of Uranium 92U 4. How many protons and neutrons are in the nucleus of this isotope. 5. How many electrons are in a single atom of Uranium 6. What is the mass of this isotope of Uranium. 7. Assume silicon has three major isotopes in nature. The average atomic mass of silicon is 28.09 amu. Fill in the missing information in the table. Isotope Mass (amu) Abundance 28Si 27.89 29Si 4.70% 30Si 29.97 3.09% 8. Which color of light has the highest frequency, red or green ? 9. Which color of light has the longest wavelength, green or violet? 10. Hydrogen emits light with a wavelength of 410 nm, what is the frequency of this light? 11. What is the electron configuration, orbital notation and noble gas notation for phosphorus? For bromine? How many unpaired electrons does phosphorus have? How many unpaired electrons does bromine have? 12. What is the charge for a phosphorus ion? Why does it make this charge? 13.
    [Show full text]
  • Local Peralkalinity in Peraluminous Granitic Pegmatites. I. Evidence
    This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2021-7790. http://www.minsocam.org/ Revision 1 1 Local peralkalinity in peraluminous granitic pegmatites. I. Evidence 2 from whewellite and hydrogen carbonate in fluid inclusions 3 YONGCHAO LIU1,2, CHRISTIAN SCHMIDT2,*, AND JIANKANG LI1 4 1MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, 5 Chinese Academy of Geological Sciences, Beijing 100037, China 6 2GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany 7 *Corresponding author: [email protected] 8 9 ABSTRACT 10 Fluid inclusions in pegmatite minerals were studied using Raman spectroscopy to 11 determine the carbon species. Carbon dioxide is very abundant in the aqueous liquid and vapor − 12 phases. Occasionally, CH4 was found in the vapor. In the aqueous liquid, HCO3 was detected in 13 fluid inclusions in tantalite-(Mn) from the Morrua Mine and in late-stage quartz from the Muiâne 14 pegmatite and the Naipa Mine, all in the Alto Ligonha District, Mozambique. Moreover, we 15 observed a carbonate (calcite group) in fluid inclusions in garnet from the Naipa Mine and in 16 beryl from the Morrua Mine, both in the Alto Ligonha District, Mozambique, and a calcite-group 17 carbonate and whewellite [CaC2O4∙H2O] in fluid inclusions in topaz from Khoroshiv, Ukraine. 18 The occurrence of oxalate is interpreted to be due to a reaction of some form of carbon (possibly 19 CO or bitumen) with a peralkaline fluid.
    [Show full text]