Shellfish Farming Semester 1St
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Louisiana Oyster Landings, 2000-2014
Updated November 23, 2016 LouisianaFishery OysterManagement Plan Louisiana Department of Wildlife and Fisheries Office of Fisheries Authors: Patrick Banks, Steve Beck, Katie Chapiesky, and Jack Isaacs Editor/Point of Contact: Katie Chapiesky, kchapiesky@ wlf.la.gov 1 Table of Contents LIST OF TABLES AND FIGURES 5 EXECUTIVE SUMMARY 7 INTRODUCTION 8 Definition of Management Unit 8 Management Authority and Process 8 Management Goals and Objectives 8 DESCRIPTION OF THE STOCK 9 Biological Profile 9 Physical Description 9 Distribution 9 Habitat 10 Reproduction 10 Age and Growth 10 Predator-Prey Relationships 10 Stock Status and Assessment Methods 11 Stock Unit Definition 11 Current Stock Assessment 11 Reference Points 12 Harvest Control Rules 12 Oyster Monitoring and Assessment Methods 13 Stock Resilience 15 DESCRIPTION OF THE FISHERY 17 Data Collection and Analyses 17 Commercial Fishery 18 Volume and Value of Landings 18 Landings by Season 20 Landings by Gear Type 20 Landings by Vessel Length 23 Landings by Area 24 Seed Harvest 25 Commercial Oystermen 27 2 Fishing Effort 27 Seafood Dealers 30 Fresh Products Licenseholders 31 Oyster Processors 31 Oyster Imports 33 Recreational Fishery 36 Economic Conditions 37 Interactions with Other Fisheries or User Groups 37 ECOSYSTEM CONSIDERATIONS AND ENVIRONMENTAL FACTORS 38 Ecosystem Considerations 38 Habitat 38 Bycatch and Discards 40 Lost or Abandoned Fishing Gear 40 Environmental Factors 41 Hydrological Conditions 41 Invasive Species 41 Predation 41 Competition from Other Species 42 Diseases and Parasites -
An Assessment of Potential Heavy Metal Contaminants in Bivalve Shellfish from Aquaculture Zones Along the Coast of New South Wales, Australia
PEER-REVIEWED ARTICLE Hazel Farrell,* Phil Baker, Grant Webster, Food Protection Trends, Vol 38, No. 1, p. 18–26 Copyright© 2018, International Association for Food Protection Edward Jansson, Elizabeth Szabo and 6200 Aurora Ave., Suite 200W, Des Moines, IA 50322-2864 Anthony Zammit NSW Food Authority, 6 Ave. of the Americas, Newington NSW 2127, Australia An Assessment of Potential Heavy Metal Contaminants in Bivalve Shellfish from Aquaculture Zones along the Coast of New South Wales, Australia ABSTRACT INTRODUCTION Evaluation of shellfish aquaculture for potential contam- Certain elements are essential in human physiology; inants is essential for consumer confidence and safety. however, an incorrect balance or excess of certain elements Every three years, between 1999 and 2014, bivalve in the diet can result in negative health effects. Heavy metals shellfish from aquaculture zones in up to 31 estuaries are of particular concern because of their ability to persist across 2,000 km of Australia’s east coast were tested and accumulate in the environment. While heavy metals for cadmium, copper, lead, mercury, selenium and zinc. can occur naturally in the environment, human activities Inorganic arsenic was included in the analyses in 2002, and run-off from urban and agricultural land use may and total arsenic was used as a screen for the inorganic increase their concentrations (6, 29). This is particularly form in subsequent years. Concentrations of inorganic important when considering the growing demands on arsenic, cadmium, lead and mercury were low and did not coastal resources due to increasing populations (3) and the exceed maximum limits mandated in the Australia New ability of filter feeding bivalve shellfish to bio-accumulate Zealand Food Standards Code. -
Shellfish Reefs at Risk
SHELLFISH REEFS AT RISK A Global Analysis of Problems and Solutions Michael W. Beck, Robert D. Brumbaugh, Laura Airoldi, Alvar Carranza, Loren D. Coen, Christine Crawford, Omar Defeo, Graham J. Edgar, Boze Hancock, Matthew Kay, Hunter Lenihan, Mark W. Luckenbach, Caitlyn L. Toropova, Guofan Zhang CONTENTS Acknowledgments ........................................................................................................................ 1 Executive Summary .................................................................................................................... 2 Introduction .................................................................................................................................. 6 Methods .................................................................................................................................... 10 Results ........................................................................................................................................ 14 Condition of Oyster Reefs Globally Across Bays and Ecoregions ............ 14 Regional Summaries of the Condition of Shellfish Reefs ............................ 15 Overview of Threats and Causes of Decline ................................................................ 28 Recommendations for Conservation, Restoration and Management ................ 30 Conclusions ............................................................................................................................ 36 References ............................................................................................................................. -
Biogeographical Homogeneity in the Eastern Mediterranean Sea. II
Vol. 19: 75–84, 2013 AQUATIC BIOLOGY Published online September 4 doi: 10.3354/ab00521 Aquat Biol Biogeographical homogeneity in the eastern Mediterranean Sea. II. Temporal variation in Lebanese bivalve biota Fabio Crocetta1,*, Ghazi Bitar2, Helmut Zibrowius3, Marco Oliverio4 1Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy 2Department of Natural Sciences, Faculty of Sciences, Lebanese University, Hadath, Lebanon 3Le Corbusier 644, 280 Boulevard Michelet, 13008 Marseille, France 4Dipartimento di Biologia e Biotecnologie ‘Charles Darwin’, University of Rome ‘La Sapienza’, Viale dell’Università 32, 00185 Roma, Italy ABSTRACT: Lebanon (eastern Mediterranean Sea) is an area of particular biogeographic signifi- cance for studying the structure of eastern Mediterranean marine biodiversity and its recent changes. Based on literature records and original samples, we review here the knowledge of the Lebanese marine bivalve biota, tracing its changes during the last 170 yr. The updated checklist of bivalves of Lebanon yielded a total of 114 species (96 native and 18 alien taxa), accounting for ca. 26.5% of the known Mediterranean Bivalvia and thus representing a particularly poor fauna. Analysis of the 21 taxa historically described on Lebanese material only yielded 2 available names. Records of 24 species are new for the Lebanese fauna, and Lioberus ligneus is also a new record for the Mediterranean Sea. Comparisons between molluscan records by past (before 1950) and modern (after 1950) authors revealed temporal variations and qualitative modifications of the Lebanese bivalve fauna, mostly affected by the introduction of Erythraean species. The rate of recording of new alien species (evaluated in decades) revealed later first local arrivals (after 1900) than those observed for other eastern Mediterranean shores, while the peak in records in conjunc- tion with our samplings (1991 to 2010) emphasizes the need for increased field work to monitor their arrival and establishment. -
Early Ontogeny of Jurassic Bakevelliids and Their Bearing on Bivalve Evolution
Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution NIKOLAUS MALCHUS Malchus, N. 2004. Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution. Acta Palaeontologica Polonica 49 (1): 85–110. Larval and earliest postlarval shells of Jurassic Bakevelliidae are described for the first time and some complementary data are given concerning larval shells of oysters and pinnids. Two new larval shell characters, a posterodorsal outlet and shell septum are described. The outlet is homologous to the posterodorsal notch of oysters and posterodorsal ridge of arcoids. It probably reflects the presence of the soft anatomical character post−anal tuft, which, among Pteriomorphia, was only known from oysters. A shell septum was so far only known from Cassianellidae, Lithiotidae, and the bakevelliid Kobayashites. A review of early ontogenetic shell characters strongly suggests a basal dichotomy within the Pterio− morphia separating taxa with opisthogyrate larval shells, such as most (or all?) Praecardioida, Pinnoida, Pterioida (Bakevelliidae, Cassianellidae, all living Pterioidea), and Ostreoida from all other groups. The Pinnidae appear to be closely related to the Pterioida, and the Bakevelliidae belong to the stem line of the Cassianellidae, Lithiotidae, Pterioidea, and Ostreoidea. The latter two superfamilies comprise a well constrained clade. These interpretations are con− sistent with recent phylogenetic hypotheses based on palaeontological and genetic (18S and 28S mtDNA) data. A more detailed phylogeny is hampered by the fact that many larval shell characters are rather ancient plesiomorphies. Key words: Bivalvia, Pteriomorphia, Bakevelliidae, larval shell, ontogeny, phylogeny. Nikolaus Malchus [[email protected]], Departamento de Geologia/Unitat Paleontologia, Universitat Autòno− ma Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain. -
Ecological Consequences of Pre-Contact Harvesting of Bay of Islands Fish and Shellfish, and Other Marine Taxa, Based on Midden Evidence
Journal of Pacific Archaeology – Vol. 7 · No. 2 · 2016 – article – Ecological Consequences of Pre-Contact Harvesting of Bay of Islands Fish and Shellfish, and other Marine Taxa, based on Midden Evidence John D. Booth1 ABSTRACT Midden contents – especially those that have associated dates – can provide compelling evidence concerning the effects of human harvesting on the diversity, distribution, abundance, and mean individual-size of shallow-water marine stocks. Archaeological Site Recording Scheme Site Record Forms for the 767 Bay of Islands middens as of August 2014 were summarised according to contents; these included 28 calibrated dates associated with 16 individual sites. The oldest site was first settled possibly as early as the 13th Century. By the time of European contact, the population of the Bay of Islands was possibly as great as 10,000 (over half the resident population today), yet it seems that the 500 years of harvesting pressure left no lasting legacy on Bay of Islands’ fish and shellfish resources – with the probable exception of the fishing-out of local populations of the Cook Strait limpet, and possibly the overfishing of hapuku in shallow waters. Marine mammal and seabird bones were only reported from Early and Early/Middle Period middens, consistent with the rapid extirpation and extinction of taxa after human arrival in the northeast of the North Island. Keywords: Bay of Islands, middens, fish, shellfish, seabird, marine mammal, ecological impact INTRODUCTION eri and Waikino inlets (Figure 1) – later mined and kiln- burnt to sweeten local soils (Nevin 1984; NAR 2004) – were Māori were prodigious consumers of fish and shellfish, so so prominent as to be singled out in the 1922 geological much so that missionary William Colenso was moved to chart (Ferrar & Cropp 1922). -
Aquatic Toxicology Ects of 4-Nonylphenol and 17
Aquatic Toxicology 88 (2008) 39–47 Contents lists available at ScienceDirect Aquatic Toxicology journal homepage: www.elsevier.com/locate/aquatox Effects of 4-nonylphenol and 17␣-ethynylestradiol exposure in the Sydney rock oyster, Saccostrea glomerata: Vitellogenin induction and gonadal development a, a b c a a M.N. Andrew ∗, R.H. Dunstan , W.A. O’Connor , L. Van Zwieten , B. Nixon , G.R. MacFarlane a School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia b New South Wales Department of Primary Industries, Port Stephens Research Centre, Taylors Beach, NSW 2316, Australia c New South Wales Department of Primary Industries, Environmental Centre of Excellence, Wollongbar, NSW 2477, Australia a r t i c l e i n f o a b s t r a c t Article history: Adult Saccostrea glomerata were exposed to environmentally relevant concentrations of 4-nonylphenol Received 10 October 2007 (1 g/L and 100 g/L) and 17␣-ethynylestradiol (5 ng/L and 50 ng/L) in seawater over 8 weeks. Exposures Received in revised form 4 March 2008 were performed to assess effects on vitellogenin induction and gonadal development during repro- Accepted 4 March 2008 ductive conditioning. Chronic direct estrogenicity within gonadal tissue was assessed via an estrogen receptor-mediated, chemical-activated luciferase reporter gene-expression assay (ER-CALUX®). Estradiol Keywords: equivalents (EEQ) were greatest in the 100 g/L 4-nonylphenol exposure (28.7 2.3 ng/g tissue EEQ) 4-Nonylphenol ± while 17␣-ethynylestradiol at concentrations of 50 ng/L were 2.2 1.5 ng/g tissue EEQ. -
New Distributional Records of Placuna Ephippium (Reizius 1788) Family: Placunidae from Mandapam Area -South East Coast of India
World Journal of Fish and Marine Sciences 2 (1): 40-41, 2010 ISSN 2078-4589 © IDOSI Publications, 2010 New Distributional Records of Placuna ephippium (Reizius 1788) Family: Placunidae from Mandapam Area -South East Coast of India 1C. Stella, 2J. Sesh Serebiah and 1J. Siva 1Department of Oceanography and Coastal Area Studies, Alagappa University, Thondi Campus - 623409, India 2Madras Christian College -Chennai, India Abstract: The new occurrence of bivalve species of Placuna ephippium is recorded for the first time from Mandapam area, based on a few shells collected from the fish landing centers. The common name of the species is Saddle Oysters. In Anomiidae family, the only one species of Placuna placenta was recorded so far. The present paper described the taxonomic status and the description of the new record of Placuna ephippium under the family of Placunidae. Key words: Placuna ephippium % Placunidae % Mandapam area % India INTRODUCTION Systematic Position: In Gulf of Mannar and Lakshadweep area, 428 and Phylum : Mollusca 424 species of mollusks have been recorded, respectively. Class : Bivalvia Eight species of Oysters, 2 species of Mussels, 17 species Order : Ostreoida of Clams, 6 species of Pearl Oysters, 4 species of Giant Family : Placunidae Gray 1842 Clams and One species of Window pane Oysters of Genus : Placuna Placuna placenta was recorded [1]. During a regular survey at Mandapam fish landing centers Lat 8° 47' - 9° Species: 15'N and Long 78° 12' - 79° 14'E (Map. 1), the shells of Placuna ephippium (Reizius 1788) were collected, 2 right Placuna Lightfoot, 1786 valves and 3 left valves of different individuals for Placuna ephippium identification, which have not been recorded by earlier Placuna lobata workers from this area. -
And Transfers
MOLLUSCAN INTRODUCTIONS AND TRANSFERS A Maryland Sea Grant Publication College Park Maryland MOLLUSCAN INTRODUCTIONS AND TRANSFERS MOLLUSCAN INTRODUCTIONS AND TRANSFERS Rrsx CoNSIDERATIONs AND IMPLICATIONS A Symposium Proceedings Edited by ] ames T. Carlton and Aaron Rosenfield ...,.~ . (.......-~j/4!1!!f~~ A Maryland Sea Grant Publication ·~ .. College Park, Maryland Published by the Maryland Sea Grant College, University of Maryland, College Park. Publication of this book is supported by grant #NA46RG009l from the National Oceanic and Atmospheric Administra tion to the Maryland Sea Grant College and by Grant #NA90AA-D-SG 184. The papers in this book were presented at a special symposium, Molluscan Introductions and Transfers: Risk Consider ations and Implications, presented at the 82nd Annual Meeting of the National Shellfisheries Association and the Shellfish Institute of North America, held April 4-5, 1990 in Williamsburg, Virginia. All the papers are reprinted with the permission of the Journal of Shellfish Research. Copyright © 1994 Maryland Sea Grant College. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, elec tronic or mechanical, including photocopying, recording, or any information storage or retrival system, without permis sion in writing from Maryland Sea Grant. Sea Grant is a federal-state-university partnership encouraging the wise stewardship of our marine resources through research, education and technology transfer. University of Maryland Publication UM-SG-TS-94-02 ISBN: 0-943676-58-4 For information on Maryland Sea Grant publications, contact: Maryland Sea Grant College 0112 Skinner Hall University of Maryland System College Park, Maryland 20742 Printed on recycled paper. -
Chapter I Taxonomy
THE AMERICAN OYSTER CRASSOSTREA VIRGINICA GMELIN By PAUL S. GALTSOFF, Fishery Biologist BUREAU OF COMMERCIAL FISHERIES CHAPTER I TAXONOMY Page This broad characterization included a number Taxonomic characters _ 4 SheIL _ 4 of genera such as scallops, pen shells (Pinnidae), Anatomy _ 4 Sex and spawnlng _ limas (Limidae) and other mollusks which ob 4 Habitat _ 5 viously are not oysters. In the 10th edition of Larvll! shell (Prodlssoconch) _ 6 "Systema Naturae," Linnaeus (1758) wrote: The genera of living oysters _ 6 Genus 08trea _ 6 "Ostreae non orones, imprimis Pectines, ad Genus Cra8808trea _ 7 Genus Pycnodonte _ cardinem interne fulcis transversis numerosis 7 Bibliography _ 14 parallelis in utraque testa oppositis gaudentiquae probe distinguendae ab Areis polypleptoginglymis, The family Ostreidae consists of a large number cujus dentes numerosi alternatim intrant alterius of edibleand nonedible oysters. Their distribution sinus." Le., not all are oysters, in particular the is confined to a broad belt of coastal waters within scallops, which have many parallel ribs running the latitudes 64° N. and 44° S. With few excep crosswise inward toward the hinge on each shell tions oysters thrive in shallow water, their vertical on opposite sides; these should properly be dis distribution extending from a level approximately tinguished from Area polyleptoginglymis whose halfway between high and low tide levels to a many teeth alternately enter between the teeth depth of about 100 feet. Commercially exploited of the other side. oyster beds are rarely found below a depth of 40 In the same publication the European flat feet. oyster, Ostrea edulis, is described as follows: The· name "Ostrea" was given by Linnaeus "Vulgo Ostrea dictae edulis. -
Spread of the Slipper Limpet Crepidula Fornicata (L. 1758) in Europe
SCI. MAR., 61 (Sup 2): 109-118 SCIENTIA MARINA 1997 ECOLOGY OF MARINE MOLLUSCS. J.D. ROS and A. GUERRA (eds.) Spread of the slipper limpet Crepidula fornicata (L. 1758) in Europe. Current state and consequences* MICHEL BLANCHARD Laboratoire d'Écologie. Institut Français de Recherche et d'Exploitation de la Mer. BP 70-Plouzané-29280. France. SUMMARY: The present distribution of the slipper limpet Crepidula fornicata in Europe is described in detail for each country, and an overview provided thanks to new information. Main observations of introduction and spread, obtained from the literature, are discussed. For most of them, we observe that both aspects are due to oyster harvesting and farming. In the most heavily infested areas (France, England, the Netherlands), activities of dredging, harvesting and oyster farming have been disrupted. In France, these activities are so much hampered that treatment methods are now developed. Key words: Slipper limpet, Crepidula fornicata, invasions, Europe. RESUMEN: EXPANSIÓN DE LA SEBA CREPIDULA FORNICATA (L., 1758) EN EUROPA. SITUACIÓN ACTUAL Y CONSECUENCIAS. – Se presenta la distribución actual de la seba (Crepidula fornicata) en Europa, para cada país, a través de las informaciones más recientes. Se discuten las principales observaciones sobre la introducción y proliferación de esta especie, obtenidas de la bibliografía. En la mayoría, la ostreicultura es responsable de ambas fases. En las áreas más afectadas (Francia, Inglaterra, Holanda), el dragado y la ostreicultura se han visto perturbadas. El impacto de esta especie introducida sobre las activida- des marisqueras es muy importante, por lo que se deberían desarollar medios de erradicación. Palabras clave: Seba, Crepidula fornicata, invasiones, Europa. -
Quality Evaluation of Live Eastern Oyster (Crassostrea Virginica) Based on Textural Profiling Analysis, Free Amino Acids Analysis, and Consumer Sensory Evaluation
Quality Evaluation of Live Eastern Oyster (Crassostrea virginica) based on Textural Profiling Analysis, Free Amino Acids Analysis, and Consumer Sensory Evaluation by Jue Wang A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama August 1, 2015 Keywords: live eastern oyster, texture, free amino acids, consumer preference, linear regression Copyright 2015 by Jue Wang Approved by Yifen Wang, Chair, Professor of Biosystems Engineering and Affiliate Professor of Fisheries, Aquaculture and Aquatic Sciences William Walton, Associate Professor of Fisheries, Aquaculture and Aquatic Sciences Douglas White, Associate Professor of Nutrition, Dietetics, and Hospitality Management Peng Zeng, Associate Professor of Statistics, Mathematics and Statistics Abstract The consumption of live eastern oyster (Crassostrea virginica) has become an important part of the diet for consumers in the United States. Because large amounts of oysters are grown every year, it is necessary for oyster farmers to understand quality differences caused by different aquaculture methods, as well as quality changes over the time of cold storage. The objective of this study is to develop a set of systematic methods for quality evaluation of live eastern oysters. Qualities evaluation of three aquaculture-treated oysters (daily, weekly, and never) were by means of: 1) textural analysis, 2) free amino acids (FAAs) analysis and 3) consumer preferences by means of 1) textural analyzer, 2) high-performance liquid chromatography (HPLC), and 3) consumer sensory evaluation. Besides, linear regression analysis with stepwise selection method was conducted to establish relationship between instrumental parameters (textural parameters and FAAs concentrations) and consumer preferences (texture likeability, flavor likeability and overall likeability) obtained from sensory evaluation.