Biogeographical Homogeneity in the Eastern Mediterranean Sea. II

Total Page:16

File Type:pdf, Size:1020Kb

Biogeographical Homogeneity in the Eastern Mediterranean Sea. II Vol. 19: 75–84, 2013 AQUATIC BIOLOGY Published online September 4 doi: 10.3354/ab00521 Aquat Biol Biogeographical homogeneity in the eastern Mediterranean Sea. II. Temporal variation in Lebanese bivalve biota Fabio Crocetta1,*, Ghazi Bitar2, Helmut Zibrowius3, Marco Oliverio4 1Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy 2Department of Natural Sciences, Faculty of Sciences, Lebanese University, Hadath, Lebanon 3Le Corbusier 644, 280 Boulevard Michelet, 13008 Marseille, France 4Dipartimento di Biologia e Biotecnologie ‘Charles Darwin’, University of Rome ‘La Sapienza’, Viale dell’Università 32, 00185 Roma, Italy ABSTRACT: Lebanon (eastern Mediterranean Sea) is an area of particular biogeographic signifi- cance for studying the structure of eastern Mediterranean marine biodiversity and its recent changes. Based on literature records and original samples, we review here the knowledge of the Lebanese marine bivalve biota, tracing its changes during the last 170 yr. The updated checklist of bivalves of Lebanon yielded a total of 114 species (96 native and 18 alien taxa), accounting for ca. 26.5% of the known Mediterranean Bivalvia and thus representing a particularly poor fauna. Analysis of the 21 taxa historically described on Lebanese material only yielded 2 available names. Records of 24 species are new for the Lebanese fauna, and Lioberus ligneus is also a new record for the Mediterranean Sea. Comparisons between molluscan records by past (before 1950) and modern (after 1950) authors revealed temporal variations and qualitative modifications of the Lebanese bivalve fauna, mostly affected by the introduction of Erythraean species. The rate of recording of new alien species (evaluated in decades) revealed later first local arrivals (after 1900) than those observed for other eastern Mediterranean shores, while the peak in records in conjunc- tion with our samplings (1991 to 2010) emphasizes the need for increased field work to monitor their arrival and establishment. Finally, the scarce presence (or total absence) in the most recent samples of some once common habitat-forming species, as well as of some other native taxa, con- firmed their recent rarefaction (or local extinction), possibly related to their replacement by the aliens Brachidontes pharaonis, Spondylus spinosus and Chama pacifica. KEY WORDS: Mediterranean Sea · Lebanon · Mollusca · Bivalvia · Alien species · Faunal changes Resale or republication not permitted without written consent of the publisher INTRODUCTION the basin gave rise to the peculiar and variegate Medi - terranean assemblage, with the co-occurrence of tem- The present-day autochthonous Mediterranean perate and subtropical organisms and a main transi- marine fauna is mostly of Atlantic origin, having tional zone between the 2 seas (the Alboran Sea), originated with the re-establishment of the Atlanto- hosting a mix of Mediterranean and Atlantic species Mediterranean connection (5.33 million years ago), (Bianchi & Morri 2000, Oliverio 2003, Coll et al. 2010). after the Messinian Salinity Crisis (from 5.971 to 5.33 The opening of the Suez Canal in the south-eastern million years ago; Manzi et al. 2013) had probably corner of the Mediterranean in 1869 contributed nearly exterminated the stenoecious marine biota (Sa - to changes in the local biodiversity and provided belli & Taviani in press). The subsequent 5 million years an additional human-induced transitional zone. The of evolution within the framework of the complexity of spreading of alien species (used here as defined by *Email: [email protected] © Inter-Research 2013 · www.int-res.com 76 Aquat Biol 19: 75–84, 2013 the International Union for Conservation of Nature, Shiber & Shatila 1978, Shiber 1980, Zibrowius & Bitar see Crocetta 2012) has become one of the main local 1981, 2003, Bogi & Khairallah 1987, Bitar 1996, 2010, phenomena affecting species distribution and com - 2013, Bitar & Kouli-Bitar 1995a,b, 1998, 2001, Nakhlé position within assemblages (Por 1978, Galil 2009). et al. 2006, Bitar et al. 2007, Bariche 2012, Crocetta Mainly confined for over a century along the Levant & Russo 2013). However, wide-ranging overviews Sea, alien species of thermophilic origin are cur- of the temporal trends and the long-term faunal rently spreading further to the western and northern changes occurring in the area are still lacking. Mediterranean, presumably favoured by the general Using material obtained on field trips within the warming of the area (Occhipinti-Ambrogi 2007, Rait- Programme CEDRE (French-Lebanese cooperation) sos et al. 2010). Present-day local biodiversity, which from 1999 to 2002, enriched by some additions from is currently threatened by habitat loss and degrada- earlier and later years, this study is the most com- tion, fishing impacts, pollution, climate change and plete overview of the marine Bivalvia of Lebanon. It eu trophi cation, is also impacted by alien introduction aims at: (1) providing an updated checklist of marine through human activities (e.g. aquaculture, shipping bivalve species recorded in Lebanon; (2) investigat- and leisure boating). Prevention and/or control of ing historical taxon names based on Lebanese type alien species diffusion have therefore become a major material and checking their availability as a contri- challenge for conservationists (Galil 2009, Zenetos et bution to Mediterranean bivalve taxonomy; (3) focus- al. 2012), and the cumulative impact of these biotic ing on alien bivalves in Lebanon, providing a check- and abiotic changes is resulting in the disruption of list of published and unpublished records, with date the original bio geographic pattern within the basin, of the first record, most plausible vector(s) of intro- with several authors drawing attention to the pro- duction and the establishment status; and (4) tracing gressive homo genization of Mediterranean marine temporal variations and qualitative modifications of biota (Bianchi 2007, Lejeusne et al. 2010, Philippart the bivalve fauna composition in the framework of et al. 2011). current biological pressures. The Mediterranean molluscan fauna is considered as the best known in the world, and numerous de- tailed taxonomic inventories now exist, most of which MATERIALS AND METHODS are specific to sub-regions or countries (Oliverio 2003, Coll et al. 2010). Mollusca, as a ‘popular’ and thus fre- Study area quently investigated group, comprise the highest number of known introduced species in the Mediter- Lebanon is an area of particular significance for the ranean. There are now an estimated ~200 introduced study of marine biodiversity and its recent changes. species, more than half of which are with established Lying at the north-eastern tip of the Mediterranean populations, indicating a high rate of introduction and Sea, ~450 km north of the Suez Canal, it is located accounting for ~10% of the Mediter ran ean Mollusca along the natural pathways of Indo-Pacific taxa spread- (slightly more than 2000 species) (Coll et al. 2010, ing from the Red Sea via the prevailing Mediterranean Zenetos et al. 2012). Despite continuous efforts to pro- currents (Bergamasco & Malanotte-Rizzoli 2010). Al- vide updated data sets for the entire basin, our knowl- though the main coastal features and the respective edge of the Levantine area still remains considerably communities are similar to those observed along all the poor when compared with the central and western Mediterranean shores (Bitar et al. 2007, Bitar 2010), basin. This is probably due to undersampling due to several major engineering species are lacking, such the absence of recent faunal projects. as the seagrass Posidonia oceanica (Linnaeus) Delile, Our knowledge of Lebanese marine fauna has a 1813 and the sea fans Paramuricea clavata (Risso, 1826) similar history to the rest of the Levant basin. Early pi- and Eunicella spp. (Harmelin et al. 2009). oneering papers provided accurate data on shelled molluscs from 1856 to 1938, while the following decades were rather unfertile until 1971. From then Bibliographic data up until 2013, less than 30 papers, notes, abstracts and non-peer-reviewed articles have provided additional An extensive literature survey was conducted using scattered information on Lebanese marine bivalve the same methods as Crocetta et al. (2013). Indexed molluscs (Puton 1856, Brusina 1879, Pallary 1911, papers were searched, but an attempt to cover the 1912a, 1919, 1933, 1938, Gruvel & Moazzo 1929, Gru- grey literature as much as pos sible (i.e. non-peer- vel 1931, Moazzo 1931, Spada 1971, Fadlallah 1975, reviewed and/or non-indexed papers) was also per- Crocetta et al.: Marine bivalves in Lebanon 77 formed. Most of the historical journals are not in- Table 1. Localities where bivalve species were found, with dexed, and many malacological records are still being co ordinates and depth ranges (see also Fig. 1). Details of bio - topes from which the collections were made are reported in published in non-indexed journals, thus allowing only the Supplement under each species manual searching. In addition, the availa bility of all historical taxon names based on Lebanese type mate- No. Site Latitude Longitude Depth rial was checked. (°N) (°E) (m) 1 Ramkine Island 34° 29’ 47’’ 35° 45’ 38’’ 0−15 Sampling 2 Tripoli 34° 27’ 28’’ 35° 49’ 34’’ 0−5 3 Anfeh 34° 21’ 43’’ 35° 43’ 36’’ 10−24 In order to evaluate the current molluscan fauna, 4 Chekka 34° 19’ 12’’ 35° 43’ 14’’ 3−6 the taxonomic composition was the main target of in- 5 El Heri 34° 18’ 37’’ 35° 41’ 51’’ 1−5 terest. Several sampling localities, covering more or 6 Ras El Chakaa 34° 18’ 47’’ 35° 40’ 59’’ 0−20 less all of the Lebanese shores, were investigated by 2 7 Chak El Hatab 34° 17’ 36’’ 35° 40’ 17’’ 9−14 of the authors (G. Bitar and H. Zibrowius) between 8 Selaata 34° 17’ 03’’ 35° 39’ 31’’ 0−35 1999 and 2002 within the framework of the French- 9 Batrou 34° 15’ 13’’ 35° 39’ 19’’ 2−9 Lebanese Programme CEDRE (see Zibrowius & Bitar 10 Kfar Abida 34° 14’ 02’’ 35° 39’ 15’’ 1−12 11 El Barbara 34° 11’ 32’’ 35° 37’ 19’’ 26−28 2003, Morri et al.
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • Glycymeris Longior (Sowerby, 1832) Clam at the Southern Edge of Its Distribution (Argentine Sea) Lucas H
    Gimenez et al. Helgol Mar Res (2020) 74:2 https://doi.org/10.1186/s10152-020-0534-x Helgoland Marine Research ORIGINAL ARTICLE Open Access Age and growth of Glycymeris longior (Sowerby, 1832) clam at the southern edge of its distribution (Argentine Sea) Lucas H. Gimenez1,2†, María del Socorro Doldan1,3,4*† , Paula C. Zaidman1,3,4 and Enrique M. Morsan1,3 Abstract Even though Glycymeris longior is a clam widely distributed in the SW Atlantic Ocean, little is known about its biology and life history. The present study assessed the periodicity of the internal growth increments of G. longior using thin shell sections. Each internal growth increment was composed of two alternating bands: a translucent band (light- coloured when viewed with transmitted light) and an opaque band (dark-coloured). Annual formation for each pair of bands was demonstrated. The formation of the annual growth increments was synchronous among individuals. Growth was determined from live clams collected at El Sótano, Argentine Sea (age range 29 to 69 years). Accord- ing to the growth model, G. longior grows fast during the frst 5 years of life and then growth= becomes slower in later years; individuals reached 50% and 90% of maximum size at 5 and 13 years of age, respectively. High variability was found in shell height for the frst 10 years: diferences up to 5–7 mm among individuals were registered for the frst 2 years of age, and up to 11 mm between the ages of 3 and 9 years. The growth performance index phi-prime (φ′) and the index of growth performance (P) of G.
    [Show full text]
  • Faunistic Assemblages of a Sublittoral Coarse Sand Habitat of the Northwestern Mediterranean
    Scientia Marina 75(1) March 2011, 189-196, Barcelona (Spain) ISSN: 0214-8358 doi: 10.3989/scimar.2011.75n1189 Faunistic assemblages of a sublittoral coarse sand habitat of the northwestern Mediterranean EVA PUBILL 1, PERE ABELLÓ 1, MONTSERRAT RAMÓN 2,1 and MARC BAETA 3 1 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain. E-mail: [email protected] 2 Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Moll de Ponent s/n, 07015 Palma de Mallorca, Spain. 3 Tecnoambiente S.L., carrer Indústria, 550-552, 08918 Badalona, Spain. SUMMARY: The sublittoral megabenthic assemblages of a northwestern Mediterranean coarse sandy beach exploited for the bivalve Callista chione were studied. The spatial and bathymetric variability of its distinctive faunal assemblages was characterised by quantitative sampling performed with a clam dredge. The taxa studied were Mollusca Bivalvia and Gastropoda, Crustacea Decapoda, Echinodermata and Pisces, which accounted for over 99% of the total biomass. Three well- differentiated species assemblages were identified: (1) assemblage MSS (Medium Sand Shallow) in medium sand (D50=0.37 mm) and shallow waters (mean depth =6.5 m), (2) assemblage CSS (Coarse Sand Shallow) in coarse sand (D50=0.62 mm) in shallow waters (mean depth =6.7 m), and (3) assemblage CSD (Coarse Sand Deep) in coarse sand (D50=0.64 mm) in deeper waters (mean depth =16.2 m). Assemblage MSS was characterised by the codominance of the bivalves Mactra stultorum and Acanthocardia tuberculata. C. chione was dominant in both density and biomass in assemblages CSS and CSD.
    [Show full text]
  • REVISED Marine Molluscs in Nearshore Habitats of the United
    1 REVISED 2 3 Marine Molluscs in Nearshore Habitats of the United Arab Emirates: 4 Decadal Changes and Species of Public Health Significance 5 6 Raymond E. Grizzle1*, V. Monica Bricelj2, Rashid M. AlShihi3, Krystin M. Ward1, and 7 Donald M. Anderson4 8 9 1Jackson Estuarine Laboratory 10 University of New Hampshire 11 Durham, NH 03824, U.S.A. 12 [email protected] 13 14 2Department of Marine and Coastal Sciences 15 Haskin Shellfish Laboratory, Rutgers University, NJ 08349, U.S.A. 16 17 3Ministry of Climate Change and Environment 18 Marine Environment Research Centre, Umm Al Quwain, U.A.E. 19 20 4Biology Department, Woods Hole Oceanographic Institution 21 Woods Hole, MA 02543, U.S.A. 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 LRH: Grizzle, Bricelj, AlShihi, Ward, Anderson 41 42 RRH: Marine Molluscs in the United Arab Emirates 43 44 45 46 1 47 ABSTRACT 48 49 This paper describes the results of three qualitative surveys of marine molluscs conducted in 50 December 2010 and May 2011 and 2012 in nearshore benthic habitats along the Arabian Gulf and 51 Gulf of Oman coasts of the United Arab Emirates. Findings are compared to historical studies, 52 focusing on extensive surveys from the 1960s and 1970s. Molluscan species of public health 53 significance are identified based on their potential as vectors of algal toxins in light of the recent 54 occurrence of harmful algal blooms (HABs) in the region. Habitats sampled included intertidal 55 sand or gravel beaches, rocks and jetties, sheltered soft-sediment flats and mangroves, and shallow 56 subtidal coral reefs.
    [Show full text]
  • Taxonomy of Tropical West African Bivalves V. Noetiidae
    Bull. Mus. nati. Hist, nat., Paris, 4' sér., 14, 1992, section A, nos 3-4 : 655-691. Taxonomy of Tropical West African Bivalves V. Noetiidae by P. Graham OLIVER and Rudo VON COSEL Abstract. — Five species of Noetiidae are described from tropical West Africa, defined here as between 23° N and 17°S. The Noetiidae are represented by five genera, and four new taxa are introduced : Stenocista n. gen., erected for Area gambiensis Reeve; Sheldonella minutalis n. sp., Striarca lactea scoliosa n. subsp. and Striarca lactea epetrima n. subsp. Striarca lactea shows considerable variation within species. Ecological factors and geographical clines are invoked to explain some of this variation but local genetic isolation could not be excluded. The relationships of the shallow water West African noetiid species are analysed and compared to the faunas of the Mediterranean, Caribbean, Panamic and Indo- Pacific regions. Stenocista is the only genus endemic to West Africa. A general discussion on the relationships of all the shallow water West African Arcoidea is presented. The level of generic endemism is low and there is clear evidence of circumtropical patterns of similarity between species. The greatest affinity is with the Indo-Pacific but this pattern is not consistent between subfamilies. Notably the Anadarinae have greatest similarity to the Panamic faunal province. Résumé. — Description de cinq espèces de Noetiidae d'Afrique occidentale tropicale, ici définie entre 23° N et 17° S. Les Noetiidae sont représentés par cinq genres. Quatre taxa nouveaux sont décrits : Stenocista n. gen. (espèce-type Area gambiensis Reeve) ; Sheldonella minutalis n. sp., Striarca lactea scoliosa n.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Reef Building Mediterranean Vermetid Gastropods: Disentangling the Dendropoma Petraeum Species Complex J
    Research Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net DOI: http://dx.doi.org/10.12681/mms.1333 Zoobank: http://zoobank.org/25FF6F44-EC43-4386-A149-621BA494DBB2 Reef building Mediterranean vermetid gastropods: disentangling the Dendropoma petraeum species complex J. TEMPLADO1, A. RICHTER2 and M. CALVO1 1 Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain 2 Oviedo University, Faculty of Biology, Dep. Biology of Organisms and Systems (Zoology), Catedrático Rodrigo Uría s/n, 33071 Oviedo, Spain Corresponding author: [email protected] Handling Editor: Marco Oliverio Received: 21 April 2014; Accepted: 3 July 2015; Published on line: 20 January 2016 Abstract A previous molecular study has revealed that the Mediterranean reef-building vermetid gastropod Dendropoma petraeum comprises a complex of at least four cryptic species with non-overlapping ranges. Once specific genetic differences were de- tected, ‘a posteriori’ searching for phenotypic characters has been undertaken to differentiate cryptic species and to formally describe and name them. The name D. petraeum (Monterosato, 1884) should be restricted to the species of this complex dis- tributed around the central Mediterranean (type locality in Sicily). In the present work this taxon is redescribed under the oldest valid name D. cristatum (Biondi, 1857), and a new species belonging to this complex is described, distributed in the western Mediterranean. These descriptions are based on a comparative study focusing on the protoconch, teleoconch, and external and internal anatomy. Morphologically, the two species can be only distinguished on the basis of non-easily visible anatomical features, and by differences in protoconch size and sculpture.
    [Show full text]
  • Assessment of Stress Biomarkers Responses in Mantle and Adductor
    Highlights in BioScience ISSN:2682-4043 DOI:10.36462/H.BioSci.202101 Research Article Assessment of stress biomarkers responses in mantle and adductor Open Access muscles of Mactra stultorum following lead exposure Imene Chetoui*1, Feriel Ghribi1, Safa Bejaoui1, Mohamed Ghalghaa2, M'hamed El Cafsi 1, Nejla Soudani1 Abstract The objective of the present work is to evaluate the possible toxic effect engendered 1 Faculty of Sciences of Tunis, Biology Depart- ment, Research Unit of Physiology and Aquatic by graded doses of lead chloride (PbCl2) on Mactra stultorum mantle and adductor mus- Environment, University of Tunis El Manar, cles through a battery of biomarkers responses. M. stultorum were divided into 4 groups 2092 Tunis, Tunisia. and exposed to three concentrations of PbCl2 (D1:1mg/L, D2: 2.5 mg/L and D3: 5 mg/L) 2 Aquatic Environment Exploitation Resources with control during five days. Our findings showed decreases of lipid contents in both Unit, Higher institute fishing and fish farming organs following PbCl2 exposure, while, proteins declined only in the adductor muscles of Bizerte, Tunisia. of the treated M. stultorum. During our experiment, the PbCl2 exposure induced the levels of metallothionein (MTs), malondialdehyde (MDA) and advanced oxidation protein prod- Contacts of authors ucts (AOPP) in both organs as compared to the control. These biomarkers responses are distinctly different between mantle and adductor muscles. Keywords: Lead chloride, Mactra stultorum, Mantle, Adductor muscles, Biomarkers responses. Introduction The contamination of aquatic ecosystems by several environmental pollutants has become a * To whom correspondence should be worldwide problem in the last years [1]. The presence of heavy metals in those environments and addressed: Imene Chetoui their accumulation in marine organisms has been largely investigated during the last decades because Received: September 24, 2020 of their harmful effects and persistence [2].
    [Show full text]
  • Establishment of a Taxonomic and Molecular Reference Collection to Support the Identification of Species Regulated by the Wester
    Management of Biological Invasions (2017) Volume 8, Issue 2: 215–225 DOI: https://doi.org/10.3391/mbi.2017.8.2.09 Open Access © 2017 The Author(s). Journal compilation © 2017 REABIC Proceedings of the 9th International Conference on Marine Bioinvasions (19–21 January 2016, Sydney, Australia) Research Article Establishment of a taxonomic and molecular reference collection to support the identification of species regulated by the Western Australian Prevention List for Introduced Marine Pests P. Joana Dias1,2,*, Seema Fotedar1, Julieta Munoz1, Matthew J. Hewitt1, Sherralee Lukehurst2, Mathew Hourston1, Claire Wellington1, Roger Duggan1, Samantha Bridgwood1, Marion Massam1, Victoria Aitken1, Paul de Lestang3, Simon McKirdy3,4, Richard Willan5, Lisa Kirkendale6, Jennifer Giannetta7, Maria Corsini-Foka8, Steve Pothoven9, Fiona Gower10, Frédérique Viard11, Christian Buschbaum12, Giuseppe Scarcella13, Pierluigi Strafella13, Melanie J. Bishop14, Timothy Sullivan15, Isabella Buttino16, Hawis Madduppa17, Mareike Huhn17, Chela J. Zabin18, Karolina Bacela-Spychalska19, Dagmara Wójcik-Fudalewska20, Alexandra Markert21,22, Alexey Maximov23, Lena Kautsky24, Cornelia Jaspers25, Jonne Kotta26, Merli Pärnoja26, Daniel Robledo27, Konstantinos Tsiamis28,29, Frithjof C. Küpper30, Ante Žuljević31, Justin I. McDonald1 and Michael Snow1 1Department of Fisheries, Government of Western Australia, PO Box 20 North Beach 6920, Western Australia; 2School of Animal Biology, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia; 3Chevron
    [Show full text]
  • Early Ontogeny of Jurassic Bakevelliids and Their Bearing on Bivalve Evolution
    Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution NIKOLAUS MALCHUS Malchus, N. 2004. Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution. Acta Palaeontologica Polonica 49 (1): 85–110. Larval and earliest postlarval shells of Jurassic Bakevelliidae are described for the first time and some complementary data are given concerning larval shells of oysters and pinnids. Two new larval shell characters, a posterodorsal outlet and shell septum are described. The outlet is homologous to the posterodorsal notch of oysters and posterodorsal ridge of arcoids. It probably reflects the presence of the soft anatomical character post−anal tuft, which, among Pteriomorphia, was only known from oysters. A shell septum was so far only known from Cassianellidae, Lithiotidae, and the bakevelliid Kobayashites. A review of early ontogenetic shell characters strongly suggests a basal dichotomy within the Pterio− morphia separating taxa with opisthogyrate larval shells, such as most (or all?) Praecardioida, Pinnoida, Pterioida (Bakevelliidae, Cassianellidae, all living Pterioidea), and Ostreoida from all other groups. The Pinnidae appear to be closely related to the Pterioida, and the Bakevelliidae belong to the stem line of the Cassianellidae, Lithiotidae, Pterioidea, and Ostreoidea. The latter two superfamilies comprise a well constrained clade. These interpretations are con− sistent with recent phylogenetic hypotheses based on palaeontological and genetic (18S and 28S mtDNA) data. A more detailed phylogeny is hampered by the fact that many larval shell characters are rather ancient plesiomorphies. Key words: Bivalvia, Pteriomorphia, Bakevelliidae, larval shell, ontogeny, phylogeny. Nikolaus Malchus [[email protected]], Departamento de Geologia/Unitat Paleontologia, Universitat Autòno− ma Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain.
    [Show full text]
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    National monitoring program for biodiversity and non-indigenous species in Egypt January 2016 1 TABLE OF CONTENTS page Acknowledgements 3 Preamble 4 Chapter 1: Introduction 8 Overview of Egypt Biodiversity 37 Chapter 2: Institutional and regulatory aspects 39 National Legislations 39 Regional and International conventions and agreements 46 Chapter 3: Scientific Aspects 48 Summary of Egyptian Marine Biodiversity Knowledge 48 The Current Situation in Egypt 56 Present state of Biodiversity knowledge 57 Chapter 4: Development of monitoring program 58 Introduction 58 Conclusions 103 Suggested Monitoring Program Suggested monitoring program for habitat mapping 104 Suggested marine MAMMALS monitoring program 109 Suggested Marine Turtles Monitoring Program 115 Suggested Monitoring Program for Seabirds 117 Suggested Non-Indigenous Species Monitoring Program 121 Chapter 5: Implementation / Operational Plan 128 Selected References 130 Annexes 141 2 AKNOWLEGEMENTS 3 Preamble The Ecosystem Approach (EcAp) is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way, as stated by the Convention of Biological Diversity. This process aims to achieve the Good Environmental Status (GES) through the elaborated 11 Ecological Objectives and their respective common indicators. Since 2008, Contracting Parties to the Barcelona Convention have adopted the EcAp and agreed on a roadmap for its implementation. First phases of the EcAp process led to the accomplishment of 5 steps of the scheduled 7-steps process such as: 1) Definition of an Ecological Vision for the Mediterranean; 2) Setting common Mediterranean strategic goals; 3) Identification of an important ecosystem properties and assessment of ecological status and pressures; 4) Development of a set of ecological objectives corresponding to the Vision and strategic goals; and 5) Derivation of operational objectives with indicators and target levels.
    [Show full text]
  • Estudios Comparativos De La Caleta Mediante Espacies Intermareales Protegidas
    Biología Aljaranda 84 (2012) 22-27 Figura 1. Patella ferruginea. Foto autor. Estudios comparativos de la Caleta mediante espacies intermareales protegidas Luz María Manso Camacho ara caracterizar La Caleta mediante Introducción las especies Patella ferruginea, As- La Caleta, se trata de un lugar muy antropiza- troides calycularis, Dendropoma pe- P do, situada en medio del Parque Natural del traeum, Cymbula nigra y Charonia Estrecho, bajo la titularidad de la Autoridad lampas, se marcaron tres transectos. El de la 1 Portuaria Bahía de Algeciras (APBA) y per- zona de estudio, dividido en dos. Y, dos para teneciente a la provincia marítima de Algeciras. comparar, que coinciden con una Batería A pesar de esto, se puede hacer uso público de militar, y la isla de las Palomas. toda la zona para baños, pesca deportiva y ma- Se registraron un total de 3 indivi- risqueo, principalmente. Además, al ser limí- duos de P. ferruginea, 1 de C. nigra, colonias trofe con el puerto de Tarifa, es una zona con de D. petraeum, de A. calycularis y ninguno un intenso tráfico marítimo tanto de materiales de C. lampas. como de pasajeros, siendo considerado el tercer Al valorar semicuantitativamente, se puerto en tráfico de pasajeros después del Puer- obtiene que en la zona de estudio se encuen- 2 to de Algeciras y el de Barcelona . tran dos especies, no siendo, por lo tanto, la Toda esta actividad genera una serie de zona que presente mayor biodiversidad. impactos ambientales debido sobre todo a los vertidos derivados de las embarcaciones y a Palabras clave: Patella ferruginea, Cymbula las amenazas del uso público, cuyos efectos se nigra, Dendropoma petraeum, La Caleta, se- puede ver sobre la fauna estudiada.
    [Show full text]