Hybrid Zone Formed Banksia Robur Cav

Total Page:16

File Type:pdf, Size:1020Kb

Hybrid Zone Formed Banksia Robur Cav University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 1994 Genetic and ecological analysis of the putative natural hybrid zone formed Banksia robur Cav. and Banksia oblongifolia Cav. Suzanne Margaret Schibeci University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Schibeci, Suzanne Margaret, Genetic and ecological analysis of the putative natural hybrid zone formed Banksia robur Cav. and Banksia oblongifolia Cav., Doctor of Philosophy thesis, Department of Biological Sciences, University of Wollongong, 1994. https://ro.uow.edu.au/theses/1047 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Genetic and ecological analysis of the putative natural hybrid zone formed by Banksia robur Cav. and Banksia oblongifolia Cav. UNIVERSITY OF WOLLONGONG LIBRARY____ A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy from The University of Wollongong by Suzanne Margaret Schibeci B.Sc (Hons) UNSW Department of Biological Sciences 1994 11 Declaration This thesis is submitted in accordance with the regulations of the University of Wollongong in fulfilment of the requirements of the degree of Doctor of Philosophy. The work described in this thesis was carried out by me and has not been submitted to any other university or institution. Suzanne Schibeci April 1994 Ill Abstract Natural hybridization provides the opportunity to study the processes involved in speciation, since hybridizing populations are thought to represent some intermediate stage between a common ancestral population and the complete divergence of two species. The presence of hybrids within a population indicates that reproductive isolation has at some stage been incomplete. Therefore, the determination of the current level of gene flow can indicate the degree to which speciation is complete. Further, the fitness of the hybrids in comparison to that of the parent species can indicate the mode of formation and maintenance of the hybrid zone: either (i) a genetic/morphological cline can form in association with an environmental cline if the species are suited to conditions on different extremes of the cline or if the hybrid are as fit as the parents in the ecotone (environmental cline) and (ii) a cline may be formed as a result of an equilibrium formed between the constant gene flow into, and the selection against hybrids within, the hybrid zone (tension zone). Banksia robur Cav. and Banksia oblongifolia Cav. form the most commonly reported hybrid zone within the genus. The two species are morphologically different and are also closely associated with very different soil water regimes. Morphologically intermediate individuals, present in regions where the two species coexist, are thought to be hybrids. This hybrid zone, therefore, provides the opportunity to compare the "environmental cline" versus "tension zone" modes of hybrid zone formation, because while the Banksia hybrid zone seems to be associated with an environmental cline, there is also evidence that hybrids are selectively disadvantaged. In order to make this comparison, there are three general aims of this thesis: 1. To describe the "parental species", hybrids, and the hybrid zones as they are at present; 2. To determine if hybrids are selected against at some stage IV of development; 3. To determine the present potential for hybrid production, through the determination of the extent of reproductive isolation within the populations. A genetic survey within allopatric populations of B. robur and B. oblongifolia showed that there were some useful genetic differences between the two species. Of an electrophoretic survey of 32 enzymes, none was variable in stands of B. robur. Four loci (Adh, NSdh, Sod and Gdh) were variable for B. oblongifolia. Three of these loci (Adh, Sod and Gdh) were useful in differentiating the two species: the alleles for which B. robur were fixed at these loci, were the least common B. oblongifolia alleles. A genetic hybrid index was constructed using the variation in the allopatric populations of the species. Each plant from the pure B. robur had genetic hybrid index scores (GHIS) of 0. "B. robur alleles" were also present in small frequencies even in the allopatric populations of B. oblongifolia, the pure B. oblongifolia plants therefore scored GHISs of either 5 or 6. Nine leaf characters were quantified for each plant in the allopatric population, and an additional five inflorescence characters were added when inflorescences were available. Again a hybrid index was constructed from these morphological characteristics. A comparison of a plant's morphological hybrid index score (MHIS) and its GHIS revealed a good association of GHIS with morphology. The hybrid indices developed using the allopatric populations of the species were then applied to the plants within the two hybrid zones. The plants within the hybrid zones encompassed the range of scores possible on both the genetic and morphological hybrid indices, indicating that not only are parental species present in the hybrid zones, but these are hybridizing and forming plants of intermediate morphology and genotype. Further, plants with genotypes between parental and hybrid genotypes indicated that there is backcrossing and introgression occurring extensively within the hybrid zone. Using multivariate analysis, the morphology could separate plants with the parental scores of 0 from 5 and 6. The plants of hybrid origin were intermediate to the parental plants, but V separation of the hybrid genotypes (i.e. GHISs of 1, 2, 3 and 4) by morphology was not possible, even when multivariate analysis was employed. The spatial arrangement of the individuals within the hybrid zones was genetically complex. In order to simplify this spatial arrangement, the frequency of the B. robur alleles were determined along a transect through each population. This approach provided the opportunity to observe the genetic cline through the hybrid zones. The cline obtained using the mean frequency of the three loci along the transect was used to determine several parameters describing the cline: cline width (w), the rate of decay of the tails (0) and the strength of the barrier to gene flow set up by the cline (B). The dines in both sites were narrow (~25 - 60 metres), and are amongst the narrowest reported. The value of 0 for the B. oblongifolia side of the cline was extremely small (0.01-0.04), indicating that there is substantial introgression of the B. robur alleles into the B. oblongifolia genome, but not vice versa. Similarly, this asymmetrical gene flow was supported by a high value of B0, indicating a relatively weak barrier to B. robur alleles going into the B. oblongifolia genome. There was, however, a strong barrier to B. oblongifolia alleles going into the B. robur genome. The coefficient of linkage disequilibrium, determined within the pure stand populations of B. oblongifolia, and for the plants within the hybrid zones showed that, while there were no significant linkage association between loci within the pure stand B. oblongifolia, significant linkage was detected between loci within the hybrid zone populations. Similar results have been obtained in many other hybrid zones, where significant linkage between loci increases towards the middle of the cline, because of the constant influx of parental genotypes. Cline width, the extent of introgression and the linkage between loci within the hybrid zone were used to determine the dispersal distance of the alleles within the hybrid zone VI and the selection coefficients within and outside the cline. Dispersal distance was fairly long (100 - 450 metres) compared to the cline width, indicating long distance gene flow. Selection against the B. robur alleles within the hybrid zone was extremely strong (-100%), whilst outside the cline, the same alleles were subject to fairly weak selection (-3%). Strong selection against hybrids within the centre of the cline was supported by a significant deficit of heterozygotes within the hybrid zone (while the pure populations of B. oblongifolia were in Hardy-Weinberg equilibrium).
Recommended publications
  • Amyema Quandang (Lindl.) Tiegh
    Australian Tropical Rainforest Plants - Online edition Amyema quandang (Lindl.) Tiegh. Family: Loranthaceae Tieghem, P.E.L. van (1894), Bulletin de la Societe Botanique de France 41: 507. Common name: Grey Mistletoe Stem Mistletoe, pendulous. Attached to branch by haustoria, epicortical runners (runners spreading across host bark) absent. Stems very finely white tomentose or scurfy with indumentum of very small,obscure, more or less stellate scales or hairs. Leaves Flowers. CC-BY: APII, ANBG. Leaves simple, opposite, sub-opposite or occasionally alternate. Stipules absent. Petiole 4-12 mm long. Leaf blade lanceolate to ovate, elliptic, sometimes falcate, 3-13 cm long, 0.8-4.5 cm wide, base ± cuneate or obtuse, margins entire, apex obtuse to acute. Longitudinally veined with 3 or 5 veins, obscure on both surfaces. White tomentose or scurfy on leaf surfaces with an indumentum of very small, obscure, more or less stellate scales/hairs, becoming sparse with age. Flowers Inflorescences axillary, flowers in umbel-like triads (groups of 3). Central flower sessile and lateral flowers stalked; pedicels 1-3 mm long. Flowers bisexual, actinomorphic, 5-merous. Calyx cupular about 1 mm long, entire without any lobing. Petals 5, free or shortly fused at base, becoming recurved at anthesis, 1.5-3 cm long, green, maroon to red tinged, with a short whit tomentum. Flowers in triads. CC-BY: APII, Stamens 5, epipetalous (attached to petals), red, anthers 2-4 mm long. Ovary inferior. ANBG. Fruit Fruit fleshy, a berry, ovoid, pear-shaped to globose, 6-10 mm long, greyish tomentose. Calyx remnants persistent at the apex forming an apical tube.
    [Show full text]
  • Inquiry Into Ecosystem Decline in Victoria
    LC EPC Inquiry into Ecosystem Decline in Victoria Submission 100 Inquiry into Ecosystem Decline in riverside woodland each spring, to follow up the major project, and that is very impressive. Victoria Pre-Europeans, there was a significant population of The extent of the decline of Victoria’s biodiversity Manna Gum in the area, but the last big old tree died Vegetation: trees and collapsed five years ago, so my group has planted about 10 as the start of an effort to reintroduce this In 1993 Randall Robinson was employed by Heidel- species. berg Council to develop a flora species list for Wilson Reserve, Ivanhoe East. He identified 172 species, of Shrubs which 101 were weeds, some of them very minor but The pre-European landscape in Ivanhoe included many of them very serious threats to the riverside about 10 shrub species (up to 10 m tall), but after habitats. In the 27 years since then, especially since many decades of the Yarra’s north bank being the council amalgamations in 1996, Banyule Council devoted to dairy farming, to the 1930s, only two have has somewhat increased its commitment to habitat survived: Tree Violet and Prickly Currant Bush, both management and restoration. But very large parts of of which are super-abundant, far more than would be the Yarra riverside environment within Banyule are the case in a healthy mixed-species ecosystem. So my not managed at all and Banyule has made it clear it Friends group has, among other things, planted has no intention of managing it. hundreds of shrub seedlings of the species that went The unmanaged sections are as a result overwhelmed missing: Blackwood wattle, Prickly Moses wattle, by a variety of weed species: trees, shrubs, ground- Hazel pomaderris, Victorian Christmas Bush, Hop covers, grasses, climbing creepers.
    [Show full text]
  • Revision of the Australian Bee Genus Trichocolletes Cockerell (Hymenoptera: Colletidae: Paracolletini)
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Batley, Michael, and Terry F. Houston, 2012. Revision of the Australian bee genus Trichocolletes Cockerell (Hymenoptera: Colletidae: Paracolletini). Records of the Australian Museum 64(1): 1–50. [Published 23 May 2012]. http://dx.doi.org/10.3853/j.0067-1975.64.2012.1589 ISSN 0067-1975 Published by the Australian Museum, Sydney nature culture discover Australian Museum science is freely accessible online at http://publications.australianmuseum.net.au 6 College Street, Sydney NSW 2010, Australia © The Authors, 2012. Journal compilation © Australian Museum, Sydney, 2012 Records of the Australian Museum (2012) Vol. 64: 1–50. ISSN 0067-1975 http://dx.doi.org/10.3853/j.0067-1975.64.2012.1589 Revision of the Australian Bee Genus Trichocolletes Cockerell (Hymenoptera: Colletidae: Paracolletini) Michael Batley1* and terry F. houston2 1 Australian Museum, 6 College Street, Sydney NSW 2010, Australia [email protected] 2 Western Australian Museum, Locked Bag 49, Welshpool D.C. WA 6986, Australia [email protected] aBstract. The endemic Australian bee genus Trichocolletes is revised. Forty species are recognised, including twenty-three new species: Trichocolletes aeratus, T. albigenae, T. avialis, T. brachytomus, T. brunilabrum, T. capillosus, T. centralis, T. dundasensis, T. fuscus, T. gelasinus, T. grandis, T. lacaris, T. leucogenys, T. luteorufus, T. macrognathus, T. micans, T. nitens, T. orientalis, T. platyprosopis, T. serotinus, T. simus, T. soror and T. tuberatus. Four new synonymies are proposed: Paracolletes marginatus lucidus Cockerell, 1929 = T. chrysostomus (Cockerell, 1929); T. daviesiae Rayment, 1931 = T. venustus (Smith, 1862); T. marginatulus Michener, 1965 = T. sericeus (Smith, 1862); T. nigroclypeatus Rayment, 1929 = T.
    [Show full text]
  • A Vegetation Map of the Western Gawler Ranges, South Australia 2001 ______
    ____________________________________________________ A VEGETATION MAP OF THE WESTERN GAWLER RANGES, SOUTH AUSTRALIA 2001 ____________________________________________________ by T. J. Hudspith, A. C. Robinson and P.J. Lang Biodiversity Survey and Monitoring National Parks and Wildlife, South Australia Department for Environment and Heritage, South Australia 2001 ____________________________________________________ i Research and the collation of information presented in this report was undertaken by the South Australian Government through its Biological Survey of South Australia Program. The views and opinions expressed in this report are those of the authors and do not reflect those of the South Australian Government or the Minister for Environment and Heritage. The report may be cited as: Hudspith, T. J., Robinson, A. C. and Lang, P. J. (2001) A Vegetation Map of the Western Gawler Ranges, South Australia (National Parks and Wildlife, South Australia, Department for Environment and Heritage, South Australia). ISBN 0 7590 1029 3 Copies may be borrowed from the library: The Housing, Environment and Planning Library located at: Level 1, Roma Mitchell Building, 136 North Terrace (GPO Box 1669) ADELAIDE SA 5001 Cover Photograph: A typical Triodia covered hillslope on Thurlga Station, Gawler Ranges, South Australia. Photo: A. C. Robinson. ii _______________________________________________________________________________________________ A Vegetation Map of the Western Gawler Ranges, South Australia ________________________________________________________________________________ PREFACE ________________________________________________________________________________ A Vegetation Map of the Western Gawler Ranges, South Australia is a further product of the Biological Survey of South Australia The program of systematic biological surveys to cover the whole of South Australia arose out of a realisation that an effort was needed to increase our knowledge of the distribution of the vascular plants and vertebrate fauna of the state and to encourage their conservation.
    [Show full text]
  • Cattle Creek Ecological Assessment Report
    CATTLE CREEK CCCATTLE CCCREEK RRREGIONAL EEECOSYSTEM AND FFFUNCTIONALITY SSSURVEY Report prepared for Santos GLNG Feb 2021 Terrestria Pty Ltd, PO Box 328, Wynnum QLD 4178 Emai : admin"terrestria.com.au This page left blank for double-sided printing purposes. Terrestria Pty Ltd, PO Box 328, Wynnum QLD 4178 Emai : admin"terrestria.com.au Document Control Sheet Project Number: 0213 Project Manager: Andrew Daniel Client: Santos Report Title: Cattle Creek Regional Ecosystem and Functionality Survey Project location: Cattle Creek, Bauhinia, Southern Queensland Project Author/s: Andrew Daniel Project Summary: Assessment of potential ecological constraints to well pad location, access and gathering. Document preparation and distribution history Document version Date Completed Checked By Issued By Date sent to client Draft A 04/09/2020 AD AD 04/09/2020 Draft B Final 02/02/2021 AD AD 02/02/2021 Notice to users of this report CopyrighCopyright: This document is copyright to Terrestria Pty Ltd. The concepts and information contained in this document are the property of Terrestria Pty Ltd. Use or copying of this document in whole or in part without the express permission of Terrestria Pty Ltd constitutes a breach of the Copyright Act 1968. Report LimitationsLimitations: This document has been prepared on behalf of and for the exclusive use of Santos Pty Ltd. Terrestria Pty Ltd accept no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party. Signed on behalf of Terrestria Pty Ltd Dr Andrew Daniel Managing Director Date: 02 February 2021 Terrestria Pty Ltd File No: 0213 CATTLE CREEK REGIONAL ECOSYSTEM AND FUNCTIONALITY SURVEY Table of Contents 1.0 INTRODUCTION ...............................................................................................................
    [Show full text]
  • NCCARF 2010 - Collaboration Travel Grant
    NCCARF 2010 - Collaboration Travel Grant Kiara O’Gorman, Monash University. Summary report for research undertaken at the “Environmental Analytical Laboratories, Charles Sturt University, Wagga Wagga” This project aims to determine how allelochemicals found in Australian native mistletoe interact with the surrounding flora and fauna and how this may impact mistletoe distribution. Increased CO2 levels have been shown to significantly increase the concentration of allelochemicals such as tannins, phenolics, and cyanogenic glycosides in leaves and a decrease in leaf nitrogen, resulting in reduced nutritional value (e.g. Gleadow et al. 1998 Plant, Cell Environ. 21, 12; 2009 Plant Biol, 11, 76). It is intended that the results from this study will provide a baseline for mistletoe allelochemicals which can be used to quantify the effects of increased CO2 and aridity on mistletoe toxicity and hence distribution. In order to obtain sufficient field replication, this study has focussed on the particular mistletoe/host combination Amyema quandang (grey mistletoe) and Acacia dealbata (silver wattle). Acacia dealbata is found in abundance within several locations in South Eastern Australia including regenerating woodland and urban environments. Whilst it can host several species of mistletoe it has an affinity with Amyema quandang and both species can usually be located at sites which contain sufficient replication. In order to determine the nature of the infection and whether a natural ‘immunity’ to mistletoe infection exists, Acacia dealbata trees which were in the vicinity of infected trees but remained uninfected were also sampled. Watson, (pers. comm.) indicated that trees which remained uninfected in high infection areas were not as a result of lack of seed dispersal but a lack of seedling establishment.
    [Show full text]
  • Global Variation in the Thermal Tolerances of Plants
    Global variation in the thermal tolerances of plants Lesley T. Lancaster1* and Aelys M. Humphreys2,3 Proceedings of the National Academy of Sciences, USA (2020) 1 School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom. ORCID: http://orcid.org/0000-0002-3135-4835 2Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden. 3Bolin Centre for Climate Research, Stockholm University, 10691 Stockholm, Sweden. ORCID: https://orcid.org/0000-0002-2515-6509 * Corresponding author: [email protected] Significance Statement Knowledge of how thermal tolerances are distributed across major clades and biogeographic regions is important for understanding biome formation and climate change responses. However, most research has concentrated on animals, and we lack equivalent knowledge for other organisms. Here we compile global data on heat and cold tolerances of plants, showing that many, but not all, broad-scale patterns known from animals are also true for plants. Importantly, failing to account simultaneously for influences of local environments, and evolutionary and biogeographic histories, can mislead conclusions about underlying drivers. Our study unravels how and why plant cold and heat tolerances vary globally, and highlights that all plants, particularly at mid-to-high latitudes and in their non-hardened state, are vulnerable to ongoing climate change. Abstract Thermal macrophysiology is an established research field that has led to well-described patterns in the global structuring of climate adaptation and risk. However, since it was developed primarily in animals we lack information on how general these patterns are across organisms. This is alarming if we are to understand how thermal tolerances are distributed globally, improve predictions of climate change, and mitigate effects.
    [Show full text]
  • Lower Fitzroy River Infrastructure Project Draft Environmental Impact Statement
    Not government policy Commercial in confidence Appendix 1. Vascular plant species recorded from the Lower Dawson River study area. Nomenclature according to Henderson (2002). ACANTHACEAE ARECACEAE Brunoniella australis Livistona decipiens Cabbage palm Dipteracanthus australasicus subsp. australasicus Pseuderanthemum variabile Love Flower ASCLEPIADACEAE *Asclepias curassavica Redhead cottonbush ADIANTACEAE *Cryptostegia grandiflora Rubbervine Cheilanthes sieberi Rock Fern *Gomphocarpus physocarpus Balloonbush Marsdenia viridiflora AIZOACEAE Sarcostemma viminale subsp brunonianum Caustic vine Tetragonia tetragonioides box burr Zaleya galericulata subsp. galericulata ASTERACEAE *Ageratum houstonianum Blue billygoat weed AMARANTHACEAE Bracteantha bracteata Achyranthes aspera Chaff flower *Bidens pilosa Coblers peg Alternanthera denticulata Lesser joyweed Calotis cuneata Blue burr daisy Alternanthera nana Hairy joyweed Cassinia laevis Coughbush Alternanthera nodiflora Centipeda minima var. minima Amaranthus interruptus Chrysocephalum apiculatum Yellow buttons Amaranthus viridus Green amaranth *Cirsium vulgare Spear thistle *Gomphrena celosioides Gomphrena *Conyza canadiensis Fleabane Nyssanthes diffusa Barb wire weed Cyanthillium cinereum Veronia *Emilia sonchifolia Emilia AMARYLLIDACEAE *Lactuca serriola Prickly lettuce Crinum flaccidum Murray lily Olearia sp *Parthenium hysterophorus Parthenium ANACARDIACEAE Pluchea dioscoridis Pleiogynium timorense Burdekin plum Pterocaulon redolens Toothed ragwort Pterocaulon serrulatum *Senecio lautus
    [Show full text]
  • Rangelands, Western Australia
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Evolutionary Consequences of Shifts to Bird-Pollination In
    Toon et al. BMC Evolutionary Biology 2014, 14:43 http://www.biomedcentral.com/1471-2148/14/43 RESEARCH ARTICLE Open Access Evolutionary consequences of shifts to bird-pollination in the Australian pea-flowered legumes (Mirbelieae and Bossiaeeae) Alicia Toon1,2*, Lyn G Cook1 and Michael D Crisp2 Abstract Background: Interactions with pollinators are proposed to be one of the major drivers of diversity in angiosperms. Specialised interactions with pollinators can lead to specialised floral traits, which collectively are known as a pollination syndrome. While it is thought that specialisation to a pollinator can lead to either an increase in diversity or in some cases a dead end, it is not well understood how transitions among specialised pollinators contribute to changes in diversity. Here, we use evolutionary trait reconstruction of bee-pollination and bird-pollination syndromes in Australian egg-and-bacon peas (Mirbelieae and Bossiaeeae) to test whether transitions between pollination syndromes is correlated with changes in species diversity. We also test for directionality in transitions that might be caused by selection by pollinators or by an evolutionary ratchet in which reversals to the original pollination syndrome are not possible. Results: Trait reconstructions of Australian egg-and-bacon peas suggest that bee-pollination syndrome is the ancestral form and that there has been replicated evolution of bird-pollination syndromes. Reconstructions indicate potential reversals from bird- to bee-pollination syndromes but this is not consistent with morphology. Species diversity of bird-pollination syndrome clades is lower than that of their bee-pollination syndrome sisters. We estimated the earliest transitions from bee- to bird-pollination syndrome occurred between 30.8 Ma and 10.4 Ma.
    [Show full text]
  • Biodiversity Summary: Wimmera, Victoria
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Novel Application of Species Richness Estimators to Predict the Host Range of Parasites
    International Journal for Parasitology xxx (2016) xxx–xxx Contents lists available at ScienceDirect International Journal for Parasitology journal homepage: www.elsevier.com/locate/ijpara Novel application of species richness estimators to predict the host range of parasites David M. Watson a,, Kirsty V. Milner b, Andrea Leigh b a School of Environmental Science, Charles Sturt University, Albury 2640, Australia b School of Life Science, University of Technology Sydney, 15 Broadway, Ultimo 2007, Australia article info abstract Article history: Host range is a critical life history trait of parasites, influencing prevalence, virulence and ultimately Received 16 June 2016 determining their distributional extent. Current approaches to measure host range are sensitive to sam- Received in revised form 30 September pling effort, the number of known hosts increasing with more records. Here, we develop a novel applica- 2016 tion of results-based stopping rules to determine how many hosts should be sampled to yield stable Accepted 5 October 2016 estimates of the number of primary hosts within regions, then use species richness estimation to predict Available online xxxx host ranges of parasites across their distributional ranges. We selected three mistletoe species (hemipar- asitic plants in the Loranthaceae) to evaluate our approach: a strict host specialist (Amyema lucasii, Keywords: dependent on a single host species), an intermediate species (Amyema quandang, dependent on hosts Host range Host specificity in one genus) and a generalist (Lysiana
    [Show full text]