Second Generation Antiarrhythmic Agents: Have We Reached Antiarrhythmic Nirvana?

Total Page:16

File Type:pdf, Size:1020Kb

Second Generation Antiarrhythmic Agents: Have We Reached Antiarrhythmic Nirvana? JACC Vol. 9. NO.2 459 February 1987:459-63 EDITORIAL REVIEWS Second Generation Antiarrhythmic Agents: Have We Reached Antiarrhythmic Nirvana? LEONARD N. HOROWITZ, MD, FACC, JOEL MORGANROTH, MD, FACC Philadelphia, Pennsylvania During the first half of the 20th century, antiarrhythmic some cases novel, but because their preapproval evaluations therapy was principally directed toward supraventricular ar­ followed a more rigorous and circumspect path. More in­ rhythmia; only relatively recently has therapy of ventricular formation is available to us so we can decide when and how arrhythmias been emphasized. In fact, significant pharma­ these agents should be employed. cologic treatment of ventricular arrhythmias was minimal Like all antiarrhythmic drugs of the first generation, the until routine use of quinidine and procainamide began in new agents have the potential to provoke or worsen ven­ the 1950s (1,2). The first generation oral antiarrhythmic tricular arrhythmias. These proarrhythmic effects vary in drugs, quinidine, procainamide and disopyramide, previ­ incidence and may present a major problem in certain patient ously constituted the principal antiarrhythmic agents for long­ groups such as those with sustained ventricular tachyar­ term treatment of ventricular arrhythmias in the United States. rhythrnias, reduced left ventricular function and conduction Compared with modem regulatory standards, the data on disturbances. In common with other antiarrhythmic drugs, which the use of these drugs was based were modest at best the second generation drugs have not been shown to prevent and rudimentary at worst. However, because good clinical sudden death in patients with ventricular ectopic activity. judgment compensates for a multitude of deficiencies, we These factors, along with efficacy and potential toxicity, have been able to provide effective antiarrhythmic therapy must be considered in selecting antiarrhythmic regimens for to many patients with this rather limited pharmacopoeia. an individual patient. Two beta-adrenergic blocking agents, propranolol and acebutolol, have been approved for the treatment of ven­ Tocainide tricular arrhythmias by the Food and Drug Administration. Unlike the first generation of antiarrhythmic drugs and the Efficacy. Tocainide hydrochloride, a class IB agent, has recently released agents which effect their antiarrhythmic electrophysiologic and antiarrhythmic characteristics similar action by direct alteration of electrophysiologic properties, to those of lidocaine, of which it is a congener; however, the beta-blockers presumably act indirectly by blunting sym­ it can be prescribed for oral administration. Tocainide is pathetic tone. Although they are effective, either alone or indicated for the "suppression of symptomatic ventricular as an adjunct to classic antiarrhythmic therapy, they will arrhythmias, including frequent premature ventricular con­ not be considered in this discussion of membrane-active tractions, unifocal or multifocal , couplets and ventricular antiarrhythmic agents. tachycardia" (3). It has been reported to significantly reduce In slightly more than 12 months, four new antiarrhythmic (decrease by at least 70% in frequency) ventricular pre­ drugs, tocainide, mexiletine, ftecainide and amiodarone, mature complexes in 20 to 50% of patients (4). When com­ have been released for the treatment of ventricular arrhyth­ pared with quinidine or procainamide, tocainide has been mias. A fifth drug, encainide, is likely to be released within less effective in suppressing ventricular premature com­ a year. These drugs are "second generation," not only plexes (5). In patients with malignant ventricular arrhyth­ because their electrophysiologic properties are new and in mias (ventricular tachycardia with hemodynamic compro­ mise or ventricular fibrillation) tocainide has been shown to be effective in 10 to 15% of patients; however, notable * Editorials published in Journal ofthe American College ofCardiology reflect the views of the authors and do not necessarily represent the views exceptions with higher efficacy rates have been reported (6). of JACC or the American College of Cardiology. These and other data provide support for the indications for From the Division of Clinical Cardiac Electrophysiology and Sudden tocainide. Death Prevention Program of the Likoff Cardiovascular Institute, Hah­ nemann University and Hospital, Philadelphia, Pennsylvania. Adverse effects. Tocainide commonly produces minor, Manuscript received March 4, 1986; revised manuscript received July transient, gastrointestinal and neurologic adverse effects. 1,1986, accepted July 21,1986. These side effects have been reported in 30 to 40% of Address for reprints: Leonard N. Horowitz, MD. Philadelphia Heart Institute, Presbyterian-University of Pennsylvania Medical Center, 39th patients. Intolerable adverse reactions may require discon­ and Market Streets, Philadelphia, Pennsylvania 19104. tinuation of tocainide therapy in 10 to 20% of patients. The © 1987 by tbe American College of Cardiology 0735-1097/87/$3.50 460 HOROWITZ AND MORGANROTH lACC Vol. 9. No.2 EDITORIAL REVIEW February 1987:459-63 manufacturer has warned that blood dyscrasias, which are cardia, or both, during flecainide therapy, and the median possibly drug related, have been reported in patients re­ reduction in ventricular premature complexes for all patients ceiving tocainide, and frequent monitoring of hematologic approximates 95% (12). F1ecainide has been shown to be variables is recommended. Pulmonary fibrosis has also been more effective than quinidine in suppressing ventricular pre­ reported. Tocainide has produced minimal negative ino­ mature complexes (12). In patients with refractory life­ tropic effects and most patients, even those with evidence threatening ventricular arrhythmias, it has been effective in of significant left ventricular dysfunction, can tolerate to­ 25% of patients evaluated by noninvasive or invasive tech­ cain ide without worsening of congestive heart failure. More­ niques, or both (13,14). Although flecainide has not been over, tocainide can be administered with other cardioactive directly compared with first generation antiarrhythmic drugs medications without significant interactions. in this latter group of patients, in most of the patients treated with flecainide previous therapy with first generation agents had been unsuccessful. Mexiletine Adverse effects. The most common adverse effects noted Efficacy. Mexiletine hydrochloride, a class IB agent, is with patients treated with flecainide have been central ner­ structurally similar to lidocaine and tocainide and has similar vous system disturbances. These occur in 10 to 20% of antiarrhythmic potency. Mexiletine is indicated for patients. Discontinuation of treatment because of these ef­ "suppression of symptomatic ventricular arrhythmias in­ fects has been reported in 5 to 10% of patients (11,15). cluding premature ventricular contractions, unifocal or mul­ The manufacturer has warned that flecainide can cause tifocal, couplets and ventricular tachycardia" (7). Mexile­ new or worsened arrhythmias. This proarrhythmic effect tine has been effective in reducing the frequency of ventricular has been reported in 7O/c of the patients treated with fle­ premature complexes in 30 to 50% of patients (6-8). Com­ cainide and its frequency appears to be related to the dose, parisons with procainamide, quinidine and disopyramide the method of dose titration and the underlying cardiac dis­ have shown no significant difference in efficacy. In patients ease. The incidence of proarrhythrnic effect is highest among with more serious ventricular arrhythmias evaluated by non­ patients who have sustained ventricular tachycardia or whose invasive methods, the efficacy of mexiletine has been re­ dose is rapidly titrated upward, or both. When high initial ported to be good (8). However, in patients with sustained doses and rapid upward titration were used in early studies ventricular tachycardia evaluated by electrophysiologic test­ of patients with sustained ventricular tachycardia, a proar­ ing, mexiletine when used alone has generally been reported rhythmic event occurred in 26% of patients, and in 10% of to have minimal efficacy (9). In this group of patients, the patients treated, a proarrhythmic event resulted in death. however, the combination of mexiletine with procainamide With the current dosing recommendations, however, the or quinidine has been shown to be very effective (10). incidence of proarrhythmic events resulting in death has Adverse effects. Mexiletine commonly produces gas­ decreased to 0.5%. Thus, it is extremely important to follow trointestinal and neurologic adverse reactions. Upper gas­ the recommended dosing schedule. trointestinal distress has been reported in more than 40% of In addition. flecainide has a negative inotropic effect and patients and light-headedness, tremor and coordination dif­ can cause or worsen congestive heart failure. This effect ficulties have been reported in 10 to 20% of patients (7). is particularly noted in patients with cardiomyopathy or The manufacturer has noted that liver injury and elevation preexisting severe heart failure. Because flecainide has po­ of certain hepatic enzymes have been noted in a small num­ tent depressant effects on cardiac conduction, patients with ber of patients treated with mexiletine and may be related sinoatrial node and atrioventricular (AV) conduction dis­ to it. Appropriate clinical follow-up is
Recommended publications
  • A Proposal for the Clinical Use of Flecainide
    A Proposal for the Clinical Use of Flecainide JEFFREY L. ANDERSON, MD, JAMES R. STEWART, MD, and BARRY J. CREVEY, MD Effective antiarrhythmic therapy requires a carefully sponse rate is observed in preventing induction of considered approach, including an understanding sustained ventricular tachycardia, and these pa- of the arrhythmia, the underlying cardiac disease tients should be carefully selected. Flecainide is and the drug’s pharmacokinetics. Flecainide is a promising in the treatment of supraventricular new antiarrhythmic drug that may soon be released tachycardias using atrioventricular nodal or extra- for general use. Flecainide demonstrates unsur- nodal reentrant pathways, although this use is still passed efficacy in chronic ventricular arrhythmias investigational in the United States. The drug’s use in stable patients and may become a first-choice for arrhythmias during acute myocardial infarction drug because of its ease of administration, efficacy requires further study. Flecainide possesses modest and favorable tolerance. Twice-daily dosing with negative inotropic potential. Proarrhythmic or other 100 to 200 mg usually provides effective therapy. adverse reactions have occurred primarily in set- Clinical experience suggests flecainide to be indi- tings of high drug level, poor ventricular function cated in the treatment of uniform and multiform or refractory, malignant arrhythmias, suggesting ventricular premature complexes, coupled ven- caution in these groups. tricular premature complexes, and episodes of nonsustained
    [Show full text]
  • Ventricular Tachycardia Drugs Versus Devices John Camm St
    Cardiology Update 2015 Davos, Switzerland: 8-12th February 2015 Ventricular Arrhythmias Ventricular Tachycardia Drugs versus Devices John Camm St. George’s University of London, UK Imperial College, London, UK Declaration of Interests Chairman: NICE Guidelines on AF, 2006; ESC Guidelines on Atrial Fibrillation, 2010 and Update, 2012; ACC/AHA/ESC Guidelines on VAs and SCD; 2006; NICE Guidelines on ACS and NSTEMI, 2012; NICE Guidelines on heart failure, 2008; NICE Guidelines on Atrial Fibrillation, 2006; ESC VA and SCD Guidelines, 2015 Steering Committees: multiple trials including novel anticoagulants DSMBs: multiple trials including BEAUTIFUL, SHIFT, SIGNIFY, AVERROES, CASTLE- AF, STAR-AF II, INOVATE, and others Events Committees: one trial of novel oral anticoagulants and multiple trials of miscellaneous agents with CV adverse effects Editorial Role: Editor-in-Chief, EP-Europace and Clinical Cardiology; Editor, European Textbook of Cardiology, European Heart Journal, Electrophysiology of the Heart, and Evidence Based Cardiology Consultant/Advisor/Speaker: Astellas, Astra Zeneca, ChanRX, Gilead, Merck, Menarini, Otsuka, Sanofi, Servier, Xention, Bayer, Boehringer Ingelheim, Bristol- Myers Squibb, Daiichi Sankyo, Pfizer, Boston Scientific, Biotronik, Medtronic, St. Jude Medical, Actelion, GlaxoSmithKline, InfoBionic, Incarda, Johnson and Johnson, Mitsubishi, Novartis, Takeda Therapy for Ventricular Tachycardia Medical therapy Antiarrhythmic drugs Autonomic management Ventricular tachycardia Monomorphic Polymorphic Ventricular fibrillation Ventricular storms Ablation therapy Device therapy Surgical Defibrillation Catheter Antitachycardia pacing History of Antiarrhythmic Drugs 1914 - Quinidine 1950 - Lidocaine 1951 - Procainamide 1946 – Digitalis 1956 – Ajmaline 1962 - Verapamil 1962 – Disopyramide 1964 - Propranolol 1967 – Amiodarone 1965 – Bretylium 1972 – Mexiletine 1973 – Aprindine, Tocainide 1969 - Diltiazem 1975- Flecainide 1976 – Propafenone Encainide Ethmozine 2000 - Sotalol D-sotalol 1995 - Ibutilide (US) Recainam 2000 – Dofetilide US) IndecainideX Etc.
    [Show full text]
  • Formulation Development Strategies
    FORMULATION DEVELOPMENT STRATEGIES FOR ORAL EXTENDED RELEASE DOSAGE FORMS Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin vorgelegt von ARAYA RAIWA aus Bangkok, Thailand May, 2011 1. Gutachter: Prof. Dr. Roland Bodmeier 2. Gutachter: Prof. Dr. Jürgen Siepmann Disputation am 9.Juni 2011 TO MY FAMILY ACKNOWLEDGEMENTS First and foremost, I wish to express my deepest gratitude to my supervisor, Prof. Dr. Roland Bodmeier for his professional guidance, helpful advices and encouragement. I am very grateful for his scientific and financial support and for providing me such an interesting topic. Furthermore, I am very thankful to him for the opportunity to support his editorial role in the European Journal of Pharmaceutical Sciences. I would like to thank Prof. Dr. Jürgen Siepmann for co-evaluating this thesis. Thanks are extended to Prof. Dr. Herbert Kolodziej, Prof. Dr. Johannes Peter Surmann and Dr. Martin Körber for serving as members of my thesis advisor committee. I am particular thankful to Dr. Andrei Dashevsky, Dr. Nantharat Pearnchob and Dr. Martin Körber for their very useful discussion; Dr. Burkhard Dickenhorst for evaluating parts of this thesis; Mrs. Angelika Schwarz for her assistance with administrative issues; Mr. Andreas Krause, Mrs. Eva Ewest and Mr. Stefan Walter for the prompt and diligent technical support. Sincere thanks are extended to Dr. Ildiko Terebesi, Dr. Burkhard Dickenhorst, Dr. Soravoot Rujivipat and Dr. Samar El-Samaligy for the friendly atmosphere in the lab My special thanks are owing to all members from the Kelchstrasse for their practical advice, enjoyable discussion and kindness throughout the years.
    [Show full text]
  • ACC/AHA/ESC Practice Guideline
    ACC/AHA/ESC Practice Guideline ACC/AHA/ESC Guidelines for the Management of Patients With Supraventricular Arrhythmias*—Executive Summary A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Supraventricular Arrhythmias) Developed in Collaboration With NASPE-Heart Rhythm Society Committee Members Carina Blomström-Lundqvist, MD, PhD, FACC, FESC, Co-chair; Melvin M. Scheinman, MD, FACC, Co-chair; Etienne M. Aliot, MD, FACC, FESC; Joseph S. Alpert, MD, FACC, FAHA, FESC; Hugh Calkins, MD, FACC, FAHA; A. John Camm, MD, FACC, FAHA, FESC; W. Barton Campbell, MD, FACC, FAHA; David E. Haines, MD, FACC; Karl H. Kuck, MD, FACC, FESC; Bruce B. Lerman, MD, FACC; D. Douglas Miller, MD, CM, FACC; Charlie Willard Shaeffer, Jr, MD, FACC; William G. Stevenson, MD, FACC; Gordon F. Tomaselli, MD, FACC, FAHA Task Force Members Elliott M. Antman, MD, FACC, FAHA, Chair; Sidney C. Smith, Jr, MD, FACC, FAHA, FESC, Vice-Chair; Joseph S. Alpert, MD, FACC, FAHA, FESC; David P. Faxon, MD, FACC, FAHA; Valentin Fuster, MD, PhD, FACC, FAHA, FESC; Raymond J. Gibbons, MD, FACC, FAHA†‡; Gabriel Gregoratos, MD, FACC, FAHA; Loren F. Hiratzka, MD, FACC, FAHA; Sharon Ann Hunt, MD, FACC, FAHA; Alice K. Jacobs, MD, FACC, FAHA; Richard O. Russell, Jr, MD, FACC, FAHA† ESC Committee for Practice Guidelines Members Silvia G. Priori, MD, PhD, FESC, Chair; Jean-Jacques Blanc, MD, PhD, FESC; Andzrej Budaj, MD, FESC; Enrique Fernandez Burgos, MD; Martin Cowie, MD, PhD, FESC; Jaap Willem Deckers, MD, PhD, FESC; Maria Angeles Alonso Garcia, MD, FESC; Werner W.
    [Show full text]
  • Compounds and Bulk Powders
    UnitedHealthcare Pharmacy Clinical Pharmacy Programs Program Number 2021 P 1014-13 Program Prior Authorization/Notification Medication Compounds and Bulk Powders P&T Approval Date 1/2012, 02/2013, 04/2013, 07/2013, 10/2013, 11/2013, 2/2014, 4/2014, 10/2014, 4/2015, 7/2015, 4/2016, 10/2016, 10/2017, 10/2018, 10/2019, 5/2020, 1/2021 Effective Date 4/1/2021; Oxford only: 4/1/2021 1. Background: Compounded medications can provide a unique route of delivery for certain patient- specific conditions and administration requirements. Compounded medications should be produced for a single individual and not produced on a large scale. A dollar threshold may be used to identify compounds which require Notification and must meet the criteria below in order to be covered. Drugs included in the compound must be a covered product. Claims for patients under the age of 6 will process automatically for First-Lansoprazole, First-Omeprazole, and Omeprazole + Syrspend SF compounding kits. 2. Coverage Criteriaa: A. Authorization for compounds and bulk powders will be approved based on all of the following criteria (includes bulk powders requested as a single ingredient such as bulk powder formulations of cholestyramine or nystatin when the powder formulation requested is not the commercially available FDA approved product): 1. The requested drug component is a covered medication -AND- 2. The requested drug component is to be administered for an FDA-approved indication -AND- 3. If a drug included in the compound requires prior authorization and/or step therapy, all drug specific clinical criteria must also be met -AND- 4.
    [Show full text]
  • Draft for Public Comment
    Draft for Public Comment Practice guideline update: Treatment of painful diabetic polyneuropathy Report of the Guideline Subcommittee of the American Academy of Neurology Authors (Alphabetical order—final order to be determined later in the guideline development process) Carmel Armon, MD, MSc, MHS1,Vera Bril, MD2, Brian C. Callaghan, MD, MS3, Lindsay Colbert, MA4, William S. David, MD, PhD5, Mary Dolan O’Brien, MLIS6, Kenneth Fink, MD, MPH7, Gary Franklin, MD, MPH8, Gary Gronseth, MD9, John Halperin, MD10, Lawrence B. Harkless, DPM11, Leslie Levine, PhD, VMD, JD12, Nicole Licking, DO13, Bruce A. Perkins, MD, MPH14, Michael Pignone, MD15, Raymond Price, MD16, Alexander Rae-Grant, MD17, Don Smith, MD18, Scott R. Wessels, MPS, ELS6 1. Department of Neurology, Tel Aviv University Sackler School of Medicine, Israel 2. Division of Neurology, Department of Medicine, Toronto General Hospital, ON, Canada 3. Department of Neurology, University of Michigan, Ann Arbor 4. The Foundation for Peripheral Neuropathy, Buffalo Grove, IL 5. Department of Neurology, Massachusetts General Hospital, Boston 6. American Academy of Neurology, Minneapolis, MN 7. Kamehameha Schools, Honolulu, HI 8. Department of Neurology, University of Washington, Seattle, WA 9. Department of Neurology, University of Kansas Medical Center, Kansas City 10. Department of Neurosciences, Overlook Medical Center, Summit, NJ 11. Western University Health Sciences College of Podiatric Medicine, Pomona, CA 1 Draft for Public Comment 12. Neuropathy Action Foundation, Santa Ana, CA 13. New West Physicians, Golden, CO 14. Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, ON 15. Department of Medicine, The University of Texas at Austin 16. Department of Neurology, University of Pennsylvania, Philadelphia 17.
    [Show full text]
  • Voltage-Gated Sodium Channels and Blockers: an Overview and Where Will They Go?*
    Current Medical Science 39(6):863-873,2019 DOICurrent https://doi.org/10.1007/s11596-019-2117-0 Medical Science 39(6):2019 863 Voltage-gated Sodium Channels and Blockers: An Overview and Where Will They Go?* Zhi-mei LI1, Li-xia CHEN2#, Hua LI1# 1Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China 2Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China Huazhong University of Science and Technology 2019 Summary: Voltage-gated sodium (Nav) channels are critical players in the generation and propagation of action potentials by triggering membrane depolarization. Mutations in Nav channels are associated with a variety of channelopathies, which makes them relevant targets for pharmaceutical intervention. So far, the cryoelectron microscopic structure of the human Nav1.2, Nav1.4, and Nav1.7 has been reported, which sheds light on the molecular basis of functional mechanism of Nav channels and provides a path toward structure-based drug discovery. In this review, we focus on the recent advances in the structure, molecular mechanism and modulation of Nav channels, and state updated sodium channel blockers for the treatment of pathophysiology disorders and briefly discuss where the blockers may be developed in the future. Key words: voltage-gated sodium channels; blockers; Nav channel structures; channelopathies Life did not come into existence until living In this review, we focus on voltage-gated organisms were enclosed by one or more membranes sodium (Nav) channels, which selectively conduct which cut them off from the chaotic world at a sodium ions movement in response to variations of molecular level.
    [Show full text]
  • Cordarone (Amiodarone Hydrochloride)
    Cordarone® (amiodarone HCl) TABLETS Rx only DESCRIPTION Cordarone (amiodarone HCl) is a member of a class of antiarrhythmic drugs with predominantly Class III (Vaughan Williams’ classification) effects, available for oral administration as pink, scored tablets containing 200 mg of amiodarone hydrochloride. The inactive ingredients present are colloidal silicon dioxide, lactose, magnesium stearate, povidone, starch, and FD&C Red 40. Cordarone is a benzofuran derivative: 2-butyl-3­ benzofuranyl 4-[2-(diethylamino)-ethoxy]-3,5-diiodophenyl ketone hydrochloride. The structural formula is as follows: Amiodarone HCl is a white to cream-colored crystalline powder. It is slightly soluble in water, soluble in alcohol, and freely soluble in chloroform. It contains 37.3% iodine by weight. CLINICAL PHARMACOLOGY Electrophysiology/Mechanisms of Action In animals, Cordarone is effective in the prevention or suppression of experimentally induced arrhythmias. The antiarrhythmic effect of Cordarone may be due to at least two major properties: 1. a prolongation of the myocardial cell-action potential duration and refractory period and 2. noncompetitive α- and β-adrenergic inhibition. Cordarone prolongs the duration of the action potential of all cardiac fibers while causing minimal reduction of dV/dt (maximal upstroke velocity of the action potential). The refractory period is prolonged in all cardiac tissues. Cordarone increases the cardiac refractory period without influencing resting membrane potential, except in automatic cells where the slope of the prepotential is reduced, generally reducing automaticity. These electrophysiologic effects are reflected in a decreased sinus rate of 15 to 20%, increased PR and QT intervals of about 10%, the development of U-waves, and changes in T-wave contour.
    [Show full text]
  • Treatment of Atrioventricular Node Reentrant Tachycardia with Encainide: Reversal of Drug Effect with Isoproterenol
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector 904 JACC Vol. 13, No. 4 March 15, 1989:904-10 Treatment of Atrioventricular Node Reentrant Tachycardia With Encainide: Reversal of Drug Effect With Isoproterenol IMRAN NIAZI, MD, GERALD NACCARELLI, MD* ANN DOUGHERTY, MD,* ROBERT RINKENBERGER, MD,* PATRICK TCHOU, MD, MASOOD AKHTAR, MD, FACC Milwaukee, Wisconsin and Houston, Texas To determine the efficacy of encainide in the treatment of paced cycle length with 1:l ventriculoatrial conduction was atrioventricular (AV) node reentrant tachycardia, Holter 337 f 56 ms in the control study, 551 t 124 ms with electrocardiographic (ECG) monitoring, exercise treadmill encainide infusion (p < 0.01 versus control) and 354 f 72 testing and programmed electrical stimulation were per- ms during isoproterenol infusion in the encainide-loaded formed in 16 patients while they were taking no medication state (p < 0.01 versus both control and encainide). and after steady state levels were reached during treatment During a mean follow-up period of 19 + 10 months, with encainide (75 to 200 mg/day; mean 117 + 47). In significant clinical recurrences occurred in 4 of the 10 addition, to study the possible reversal of drug effects by patients in whom tachycardia could still be initiated with sympathetic stimulation, AV node conduction and tachy- encainide (with or without isoproterenol). In contrast, no cardia induction were reassessed during isoproterenol infu- significant episodes occurred in the six patients in whom sion (1 to 3 pg/min), a dose calculated to increase the rest tachycardia could not be induced with encainide despite heart rate by 25 + 10%.
    [Show full text]
  • Prescription Medications, Drugs, Herbs & Chemicals Associated With
    Prescription Medications, Drugs, Herbs & Chemicals Associated with Tinnitus American Tinnitus Association Prescription Medications, Drugs, Herbs & Chemicals Associated with Tinnitus All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form, or by any means, without the prior written permission of the American Tinnitus Association. ©2013 American Tinnitus Association Prescription Medications, Drugs, Herbs & Chemicals Associated with Tinnitus American Tinnitus Association This document is to be utilized as a conversation tool with your health care provider and is by no means a “complete” listing. Anyone reading this list of ototoxic drugs is strongly advised NOT to discontinue taking any prescribed medication without first contacting the prescribing physician. Just because a drug is listed does not mean that you will automatically get tinnitus, or exacerbate exisiting tinnitus, if you take it. A few will, but many will not. Whether or not you eperience tinnitus after taking one of the listed drugs or herbals, or after being exposed to one of the listed chemicals, depends on many factors ‐ such as your own body chemistry, your sensitivity to drugs, the dose you take, or the length of time you take the drug. It is important to note that there may be drugs NOT listed here that could still cause tinnitus. Although this list is one of the most complete listings of drugs associated with tinnitus, no list of this kind can ever be totally complete – therefore use it as a guide and resource, but do not take it as the final word. The drug brand name is italicized and is followed by the generic drug name in bold.
    [Show full text]
  • Drugs That Affect the Cardiovascular System
    PharmacologyPharmacologyPharmacology DrugsDrugs thatthat AffectAffect thethe CardiovascularCardiovascular SystemSystem TopicsTopicsTopics •• Electrophysiology Electrophysiology •• Vaughn-Williams Vaughn-Williams classificationclassification •• Antihypertensives Antihypertensives •• Hemostatic Hemostatic agentsagents CardiacCardiacCardiac FunctionFunctionFunction •• Dependent Dependent uponupon –– Adequate Adequate amountsamounts ofof ATPATP –– Adequate Adequate amountsamounts ofof CaCa++++ –– Coordinated Coordinated electricalelectrical stimulusstimulus AdequateAdequateAdequate AmountsAmountsAmounts ofofof ATPATPATP •• Needed Needed to:to: –– Maintain Maintain electrochemicalelectrochemical gradientsgradients –– Propagate Propagate actionaction potentialspotentials –– Power Power musclemuscle contractioncontraction AdequateAdequateAdequate AmountsAmountsAmounts ofofof CalciumCalciumCalcium •• Calcium Calcium isis ‘glue’‘glue’ that that linkslinks electricalelectrical andand mechanicalmechanical events.events. CoordinatedCoordinatedCoordinated ElectricalElectricalElectrical StimulationStimulationStimulation •• Heart Heart capablecapable ofof automaticityautomaticity •• Two Two typestypes ofof myocardialmyocardial tissuetissue –– Contractile Contractile –– Conductive Conductive •• Impulses Impulses traveltravel throughthrough ‘action‘action potentialpotential superhighway’.superhighway’. A.P.A.P.A.P. SuperHighwaySuperHighwaySuperHighway •• Sinoatrial Sinoatrial node node •• Atrioventricular Atrioventricular nodenode •• Bundle Bundle ofof
    [Show full text]
  • MEXITIL® (Mexiletine Hydrochloride, USP) Is an Orally Active Antiarrhythmic Agent Available As 150 Mg, 200 Mg and 250 Mg Capsules
    ® Mexitil (mexiletine hydrochloride, USP) Capsules of 150 mg, 200 mg and 250 mg Oral Antiarrhythmic Prescribing Information DESCRIPTION MEXITIL® (mexiletine hydrochloride, USP) is an orally active antiarrhythmic agent available as 150 mg, 200 mg and 250 mg capsules. 100 mg of mexiletine hydrochloride is equivalent to 83.31 mg of mexiletine base. It is a white to off-white crystalline powder with slightly bitter taste, freely soluble in water and in alcohol. MEXITIL has a pKa of 9.2. Chemically, MEXITIL is 1-methyl-2-(2, 6-xylyloxy) ethylamine hydrochloride and has the following structural formula: C11 H17 NO•HCl mexiletine hydrochloride, USP Mol. Wt. 215.73 (MEXITIL) MEXITIL capsules contain the following excipients: colloidal silicon dioxide, corn starch, magnesium stearate, titanium dioxide, gelatin, pharmaceutical glaze, simethicone, FD&C Red No. 40, and FD&C Blue No. 1; the MEXITIL 150 mg and 250 mg capsules also contain FD&C Yellow No. 10 and D&C Red No. 28. MEXITIL capsules may contain one or more of the following components: sodium lauryl sulfate, lecithin, shellac, and FD&C Blue No. 1 Aluminum Lake. CLINICAL PHARMACOLOGY Mechanism of Action MEXITIL (mexiletine hydrochloride, USP) is a local anesthetic, antiarrhythmic agent, structurally similar to lidocaine, but orally active. In animal studies, MEXITIL has been shown to be effective in the suppression of induced ventricular arrhythmias, including those induced by glycoside toxicity and coronary artery ligation. MEXITIL, like lidocaine, inhibits the inward sodium current, thus reducing the rate of rise of the action potential, Phase 0. MEXITIL decreased the effective refractory period (ERP) in Purkinje fibers.
    [Show full text]