Early Age Thermal Behavior of Bagasse Ash Concrete Under Different Ambient Temperatures

Total Page:16

File Type:pdf, Size:1020Kb

Early Age Thermal Behavior of Bagasse Ash Concrete Under Different Ambient Temperatures ADDIS ABABA UNIVERSITY ADDIS ABABA INSTITUTE OF TECHNOLOGY SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING Early Age Thermal Behavior of Bagasse Ash Concrete Under Different Ambient Temperatures By Amanuel Bersisa July, 2019 Addis Ababa A Thesis in Structural Engineering A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The undersigned have examined the thesis entitled “Early Age Thermal Behavior of Bagasse Ash Concrete Under Different Ambient Temperatures” presented by Amanuel Bersisa, a candidate for the degree of Master of Science and hereby certify that it is worthy of acceptance. Dr. - Ing. Adil Zekeria Advisor Signature Date Dr. Esayas G/Youhannes Internal Examiner Signature Date Dr. - Ing. Girma Zerayouhannes External Examiner Signature Date Dr. - Ing. Henok Fikre Chair Person Signature Date ii UNDERTAKING I confirm that research work titled “Early Age Thermal Behavior of Bagasse Ash Concrete under Different Ambient Temperatures” is my own work. The work has not been presented elsewhere for assessment. Where material has been used from other sources, it has been properly acknowledged / referred. Amanuel Bersisa iii ABSTRACT Bagasse ash can be optimized as a partial cement replacing material in a concrete mixture. Other than guaranteeing mechanical properties, this pozzolana could be used as a thermal retarder for mass concrete placement, despite the fact that its property was not examined under various ambient temperatures. This research aims at studying the early age thermal and mechanical properties of bagasse ash concrete under different ambient temperatures. A semi-adiabatic temperature rise data of four different concrete mixtures (containing pure Portland cement, 6.5%, 13% and 20% dosage of bagasse ash by volume) are determined. Insulated concrete specimens of size 30*30*40cm3 were cast and the internal heat of hydration was measured at three different locations for every 30 minutes of interval. For simulating different ambient temperatures, a chamber has been constructed in the AAiT material laboratory. The temperature chamber is capable of simulating average ambient temperatures of 25.150, 35.540 and 43.770 C. As the experimental outcomes indicate, there is reduction in early age compressive, splitting tensile, and flexural strength of concrete containing different dosages of bagasse ash. On the other hand, enhancement of strength is observed in bagasse ash concrete specimens at late age testing (with exception of 20% replacement level). The laboratory testing program revealed that, the presence of bagasse ash in the concrete mixture shifts temperature rise-time curve, reduces the total heat of hydration and decreases the thermal gradient in the specimens. Moreover, the total heat of hydration of all mixtures was significantly influenced as the ambient temperature increased, but mixtures containing bagasse ash show slower heat liberation rate relative to the control group. Heat of hydration and thermal cracking risk were also simulated using Hacon-3 finite element software. The FES results show a good agreement with the real measurement in temperature gauges. The presence of bagasse ash in concrete up to 13% decreases the cracking risk. However, incorporating bagasse ash at a higher dosage could retard the strength development and consequently escalates the risk of cracking. This investigation proves, the main driving force that controls early age cracking risk depends on both strength development and heat liberation of concrete. Key words: Bagasse ash, Semi-adiabatic temperature rise, Temperature chamber, Heat of hydration, Ambient temperature, Thermal gradient, Thermal cracking risk. iv ACKNOWLEDGMENTS I would first like to take this opportunity to thank God for being my strength and guide in writing this thesis. I express my deepest gratitude to my thesis advisor Dr. - Ing. Adil Zekeria for devoting much time to consult, guide and read my work over and over again. Your assistance on both research as well as on my career have been indispensable. Beside my advisor, the door to Dr. Esayas G.Youhannes office was always open whenever I had a question about my research work; hence, I am very thankful for his unconditional cooperation. I would also like to thank AAiT material laboratory staffs and experts from different field of study for partaking in this research. Ethiopian road authority is playing a vital role in producing educated manpower by sponsoring educational programs. Therefore, I would like to thank ERA for sponsoring my MSc. program collaborating with AAiT. Finally, yet importantly, I would like to thank my mother: Seblewongle Dejenie for supporting me spiritually throughout my life. v TABLE OF CONTENTS ABSTRACT.................................................................................................................... IV ACKNOWLEDGMENTS ............................................................................................... V TABLE OF CONTENTS .............................................................................................. VI LIST OF TABLES ......................................................................................................... IX LIST OF FIGURES ......................................................................................................... X CHAPTER 1 INTRODUCTION ............................................................................... 1 1.1 MOTIVATION .................................................................................................... 1 1.2 RESEARCH NEED ............................................................................................. 2 1.3 OBJECTIVES AND SCOPE OF RESEARCH ................................................... 3 1.4 SCIENTIFIC APPROACH .................................................................................. 4 1.5 ORGANIZATION OF THESIS........................................................................... 4 CHAPTER 2 LITERATURE REVIEW ................................................................... 5 2.1 CEMENT HYDRATION AND HEAT EVOLUTION ....................................... 5 2.1.1 Hydration of Ordinary Portland Cement ...................................................... 5 2.1.2 Hydration of Cement with Supplementary Admixtures ............................... 6 2.1.3 Factors That Influence Cement Hydration and Heat Evolution ................... 7 2.2 MASS CONCRETE AND THERMAL CRACKING ......................................... 9 2.2.1 Definition of Mass-Concrete ........................................................................ 9 2.2.2 Thermal Cracking ....................................................................................... 10 2.2.3 Mitigation Strategies of Thermal Cracking ................................................ 10 2.3 BAGASSE ASH AND PERVIOUS STUDY .................................................... 12 2.3.1 Bagasse Ash ................................................................................................ 12 2.3.2 Abundance of Bagasse Ash in Ethiopia...................................................... 12 2.3.3 Previous Works on Bagasse Ash Concrete ................................................. 13 2.3.4 Chemical Composition of Bagasse Ash ..................................................... 14 CHAPTER 3 MATERIAL AND METHODS ........................................................ 15 3.1 MATERIAL ....................................................................................................... 15 3.1.1 Aggregate .................................................................................................... 15 vi 3.1.2 Cement ........................................................................................................ 18 3.1.3 Bagasse Ash ................................................................................................ 18 3.1.4 Water ........................................................................................................... 22 3.2 METHODS ........................................................................................................ 22 3.2.1 Mixture Design ........................................................................................... 22 3.2.2 Mixing, Vibrating, and Curing Condition .................................................. 23 3.2.3 Test Setup and Procedure ........................................................................... 25 CHAPTER 4 RESULT AND DISCUSSION .......................................................... 30 4.1 FRESH CONCRETE PROPERTIES................................................................. 30 4.2 HARDENED CONCRETE PROPERTIES ....................................................... 31 4.2.1 Compressive Strength ................................................................................. 31 4.2.2 Splitting Tensile Strength ........................................................................... 32 4.2.3 Flexural Strength ........................................................................................ 34 4.3 EARLY AGE THERMAL PROPERTIES ........................................................ 36 4.3.1 Effect of Ambient Temperature on Heat Evolution ................................... 38 4.3.2 The Effect of Bagasse Ash on Early Age Heat Evolution .......................... 46 CHAPTER 5 FINITE ELEMENT MODELING ................................................... 53 5.1 MODEL DESCRIPTION .................................................................................
Recommended publications
  • Arched Bridges Lily Beyer University of New Hampshire - Main Campus
    University of New Hampshire University of New Hampshire Scholars' Repository Honors Theses and Capstones Student Scholarship Spring 2012 Arched Bridges Lily Beyer University of New Hampshire - Main Campus Follow this and additional works at: https://scholars.unh.edu/honors Part of the Civil and Environmental Engineering Commons Recommended Citation Beyer, Lily, "Arched Bridges" (2012). Honors Theses and Capstones. 33. https://scholars.unh.edu/honors/33 This Senior Honors Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Honors Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. UNIVERSITY OF NEW HAMPSHIRE CIVIL ENGINEERING Arched Bridges History and Analysis Lily Beyer 5/4/2012 An exploration of arched bridges design, construction, and analysis through history; with a case study of the Chesterfield Brattleboro Bridge. UNH Civil Engineering Arched Bridges Lily Beyer Contents Contents ..................................................................................................................................... i List of Figures ........................................................................................................................... ii Introduction ............................................................................................................................... 1 Chapter I: History
    [Show full text]
  • CS 467 Risk Management and Structural Assessment of Concrete Deck Hinge Structures
    Design Manual for Roads and Bridges Highway Structures & Bridges Inspection & Assessment CS 467 Risk management and structural assessment of concrete deck hinge structures (formerly BA 93/09) Revision 1 Summary The use of this document enables the safety and serviceability of concrete hinge deck structures to be assessed and managed, allowing to manage risks and maintain a safe and operational network. Application by Overseeing Organisations Any specific requirements for Overseeing Organisations alternative or supplementary to those given in this document are given in National Application Annexes to this document. Feedback and Enquiries Users of this document are encouraged to raise any enquiries and/or provide feedback on the content and usage of this document to the dedicated Highways England team. The email address for all enquiries and feedback is: [email protected] This is a controlled document. CS 467 Revision 1 Contents Contents Release notes 3 Foreword 4 Publishing information . 4 Contractual and legal considerations . 4 Introduction 5 Background . 5 Assumptions made in the preparation of this document . 5 Abbreviations and symbols 6 Terms and definitions 7 1. Scope 8 Aspects covered . 8 Implementation . 8 Use of GG 101 . 8 2. Risk management process and prioritisation 9 Risk management report . 11 Initial review . 11 Risk assessment for structural assessment . 11 Structural review . 12 Structural assessment . 12 Risk assessment for management . 12 Management plan . 12 Prioritisation of deck hinge structures . 12 3. Initial review 13 4. Risk assessment for structural assessment 14 Risk assessment . 14 Primary risks . 14 Condition risk . 15 Structural risk . 15 Secondary risks . 15 Consequential risk . 16 Vulnerable details risk .
    [Show full text]
  • Northumberland Strait Crossing: Design Development of Precast Prestressed Bridge Structure
    PRECAST CONCRETE SOLVES 100-YEAR-OLD PROBLEM Northumberland Strait Crossing: Design Development of Precast Prestressed Bridge Structure The authors describe the design development process of the $840 million (Canadian dollars) Northumberland Strait Crossing Project from conceptual design in 1987 to the final project design. The 13 km (8 mile) long bridge links Prince Edward Island with New Brunswick and mainland Canada. The current design is based on main bridge spans of 250 m (820 ft) to minimize the number of piers and foundations in the Strait. Each span consists of a continuous precast, prestressed concrete variable depth double cantilever girder Barry Lester, P.Eng. with a length of 190 m (623 ft) and a drop-in segment of 60 m President (197 ft). The design took into consideration unusually heavy SLG Stanley Consultants Inc. vehicle loads, high wind loads, seismic factors, very high Calgary, Alberta icepack forces and possible ship collisions. Precast concrete Canada production began in the summer of 1994 and the main spans will be erected beginning in September 1995. The project is scheduled for completion in the summer of 1997. he Northumberland Strait gotiating the Terms of Confederation, Crossing Project (NSCP) is a the Federal Government of Canada T 13 km (8 mile) long bridge (see promised to promote efficient commu­ Fig. 1), with associated approach nication between the island and the roads and shoreside facilities, joining mainland, a promise that has been ful­ Prince Edward Island to New filled by the payment of annual subsi­ Brunswick and mainland Canada (see dies to support the island ferry service Fig.
    [Show full text]
  • Arched Bridges
    University of New Hampshire University of New Hampshire Scholars' Repository Honors Theses and Capstones Student Scholarship Spring 2012 Arched Bridges Lily Beyer University of New Hampshire - Main Campus Follow this and additional works at: https://scholars.unh.edu/honors Part of the Civil and Environmental Engineering Commons Recommended Citation Beyer, Lily, "Arched Bridges" (2012). Honors Theses and Capstones. 33. https://scholars.unh.edu/honors/33 This Senior Honors Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Honors Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. UNIVERSITY OF NEW HAMPSHIRE CIVIL ENGINEERING Arched Bridges History and Analysis Lily Beyer 5/4/2012 An exploration of arched bridges design, construction, and analysis through history; with a case study of the Chesterfield Brattleboro Bridge. UNH Civil Engineering Arched Bridges Lily Beyer Contents Contents ..................................................................................................................................... i List of Figures ........................................................................................................................... ii Introduction ............................................................................................................................... 1 Chapter
    [Show full text]
  • A Survey on Cyclic Response of Unbonded Posttensioned Precast Pier with Ductile Fiber- Reinforced Concrete
    ISSN (Online): 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (A High Impact Factor, Monthly, Peer Reviewed Journal) Visit: www.ijirset.com Vol. 7, Issue 1, January 2018 A Survey on Cyclic Response of Unbonded Posttensioned Precast Pier with Ductile Fiber- Reinforced Concrete Vaibhav Dadarao Shinde, Prof. V.S. Thorat M.Tech Student. (Civil-Structural), G.H.Raisoni College of Engineering and Management, Pune, Maharashtra, India Assistant Professor, G.H.Raisoni College of Engineering and Management, Pune, Maharashtra, India ABSTRACT: A precast segmental concrete bridge pier system is being investigated for use in seismic regions. The proposed system uses unbonded posttensioning (UBPT) to join the precast segments and has the option of using a ductile fiber-reinforced cement-based composite (DRFCC) in the precast segments at potential plastic hinging regions. The UBPT is expected to cause minimal residual displacements and a low amount of hysteretic energy dissipation. The DFRCC material is expected to add hysteretic energy dissipation and damage tolerance to the system. Small-scale experiments on cantilever columns using the proposed system were conducted. The two main variables were the material used in the plastic hinging region segment and the depth at which that segment was embedded in the column foundation. It was found that using DFRCC allowed the system to dissipate more hysteretic energy than traditional concrete up to drift levels of 3–6%. Furthermore, DFRCC maintained its integrity better than reinforced concrete under high cyclic tensile compressive loads. The embedment depth of the bottom segment affected the extent of microcracking and hysteretic energy dissipation in the DFRCC.
    [Show full text]
  • Concrete Research Council
    AGENDA CONCRETE RESEARCH COUNCIL 2008 Spring Meeting ACI Convention Tuesday, April 1, 2008 Hyatt Regency Century Plaza Hotel Brentwood Room Los Angeles, California 11:30 a.m. to 1:00 p.m. 1.0 APPROVAL OF MINUTES AND AGENDA 1.1 Call to Order 1.2 Approval of Minutes of CRC 2007 Fall Meeting Council is asked to approve the minutes of the meeting held in Puerto Rico on October 16, 2007. 1.3 Approval of Agenda Any items not printed in this agenda will be announced. 1.4 Announcements Chair will make any announcements to the Council. 2.0 MEMBERSHIP - Exhibit A Note that this information is consistent with the ACI Membership Database. Make necessary corrections and forward them to ACI and the CRC Secretary. 3.0 EXECUTIVE COMMITTEE 3.1 ACI Foundation Structure 3.2 Executive Committee Membership 4.0 STATUS OF RESEARCH PROJECTS AND PROPOSALS - Exhibit B Research Coordinator Nanni to make presentation 4.1 CRC Research Projects CRC Project #26 De-Icing Salt Scaling (Jolin, awarded 8/01) CRC Project #37 CFRP Bridge (Grace, awarded 2/05) – Project complete, paper submitted as final report. CRC Project #40 Formwork SCC (Gardner, awarded 4/06) CRC Project #41 Surface Preparations (Bissonnette, awarded 1/07) CRC Project #43 Concrete Modulus (Popovics, awarded 7/06) CRC Project #45 LW Creep/Slip (Hays and Zollo, awarded 7/07) CRC Project #48 Leakage Control (Kianoush, awarded 4/07) 4.2 CRC Research Proposals CRC Proposal #52 by Pantelides (Review Chair – Jirsa) – Chair will update review progress CRC Proposal #50 by Sezen (Review Chair – Murray) – Chair will lead discussion of the review, followed by a ballot to determine funding 4.3 Grant Proposal Guide Proposal Guide updated and posted to ACI website 5.0 CURRENT FINANCIAL STATUS – Exhibit C Secretary will make presentation.
    [Show full text]
  • 2010 51 Pages 8.8 MB
    Illustrations Key: Six of the more interesting articles in this public- cation year (six illustrations at right) were: • Lunar Industrial Seed 3b- • Alternative sites for Analog Research (abandoned dry mine galleries, quarries, hangars • Eartly road network on Mars • Apollo 13 Essays: “Human Exploration is worth the risk” • The importance of hallways on outposts and settlements • Getting past the Macims of Peenemunde Other Articles of note include: • A Page from the Luna City Yellow Pages • Basalt Fibers industry • Lunar Base Preconstruction • L1 Gateway to the Moon • Platinum MOON (Book Review) • Peter’s Shielding Blog • Pendeulum of views on ancient Mars • Mars Analog Stations • “Thermal Wadis” on the Moon • Expanding on the Google Lunar X-prize technology opportunities • Basalt as the linchpin of lunar industry • More than one settlement - role of trade • Research and Development for the International Lunar Research Park • Is Bigelow tackling only half the challenge of TransHab? • Kalam , NSS, and Space Solar Power challenge • “in this Decade” win the race, lose the war • Fresh look at the Spacesuit Concept • Lunar Cold Traps key to outer solar system • L1 Gateway, 2 • Calcium Reduction for processing moonduat • Mining Asteroids on the Moon • An Asteroid Mission that makes sense • An Avatar Moonbase? • Lavatubes: from skylights to Settlements • Sweet Spot in farside’s Mare Ingenii • Lunarcrete: a concept from two decades ago Read and enjoy! 1 Zubrin: “Earth is to Moon and Mars as Europe is to Greenland and North America” So says Mars Society founder Robert Zubrin in Defining the Lunar Industrial Seed: a recent release. Let’s get real! Earth is to Moon and By Dave Dietzler [email protected] Mars as Europe is to Iceland and Antarctica.
    [Show full text]
  • Western Bridge Engineers' Seminar
    Western Bridge INNOVATIVE SOLUTIONS Engineers’ THAT STAND THE TEST OF TIME Seminar Portland Marriott Downtown Waterfront Portland, Oregon Seminar managed by: Photo courtesy of TriMet K1 KEYNOTE SESSION Overview of the OR-18 Newberg – Dundee Bypass Project landslides along the alignment and the Willamette River and Matthew Stucker • Oregon Department of Transportation additional historic landslides on both sides of the Chehalem Robert Goodrich • OBEC Consulting Engineering Creek. These landslides necessitated construction of two large Tony Snyder • Oregon Department of Transportation tieback and secant pile retaining walls beneath the bypass bridge Scott Schlechter • GRI that crosses the creek. Highway structures include ten bridges, two retaining walls The purpose of the OR18: Newberg-Dundee Bypass Project and various sign structures. Three bridges originally planned (NDBP) is to improve mobility and safety for highway traffi c through south Newberg were combined into a single half mile through Newberg and Dundee and to relieve congestion by long, 16-span structure to eliminate settlement concerns from reducing truck and passenger vehicle traffi c on OR99W. ODOT large embankments. A 3500-foot long noise wall along the east Region 2 led a multi-disciplined team of professionals from ODOT embankment and extending almost 2000 feet onto the east end and area engineering fi rms, working together to complete the of the bridge, incorporated 28 unique architectural formliner planning, permitting, design and construction of this major project. patterns depicting hills and trees. The bridge design team was The overall NDBP is being developed through multiple projects challenged to repurpose surplus PCPS Bulb-T girders that the that accommodate schedule, funding and construction bonding Agency had available from another project that was halted.
    [Show full text]
  • Report 2009/109 Pacific Earthquake Engineering Research Center College of Engineering University of California, Berkeley December 2009
    PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER PACIFIC EARTHQUAKE ENGINEERING Simulation and Performance-Based Earthquake Engineering Assessment of Self-Centering Post-Tensioned Concrete Bridge Systems Won K. Lee and Sarah L. Billington Stanford University PEER 2009/109 DECEMBER 2009 Simulation and Performance-Based Earthquake Engineering Assessment of Self-Centering Post-Tensioned Concrete Bridge Systems Won K. Lee Department of Civil and Environmental Engineering Stanford University Sarah L. Billington Department of Civil and Environmental Engineering Stanford University PEER Report 2009/109 Pacific Earthquake Engineering Research Center College of Engineering University of California, Berkeley December 2009 ABSTRACT The focus of this research is on conducting a performance-based earthquake engineering assessment of self-centering bridge columns for structural concrete bridges. Standard highway bridges in highly seismic regions are typically designed for columns to undergo large inelastic deformations during severe earthquakes, which can result in residual displacements. These residual displacements are a measure of post-earthquake functionality in bridges, and can determine whether a bridge remains usable following an earthquake. To mitigate the effects of residual displacements, a number of self-centering systems for bridge columns using unbonded post-tensioned (UBPT) reinforcing steel are proposed and investigated. The research reported herein had three objectives: (1) to assess and develop simulation methods and models that can
    [Show full text]
  • Creep and Cracking of Concrete Hinges: Insight from Centric and Eccentric Compression Experiments
    Materials and Structures (2017) 50:244 https://doi.org/10.1617/s11527-017-1112-9 ORIGINAL ARTICLE Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments Thomas Schlappal . Michael Schweigler . Susanne Gmainer . Martin Peyerl . Bernhard Pichler Received: 9 March 2017 / Accepted: 4 November 2017 / Published online: 22 November 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Existing design guidelines for concrete construction, it is concluded (i) that realistic simula- hinges consider bending-induced tensile cracking, but tion of variable loads requires consideration of the the structural behavior is oversimplified to be time- here-studied time-dependent behavior and (ii) that independent. This is the motivation to study creep and permanent compressive normal forces shall be limited bending-induced tensile cracking of initially mono- by 45% of the ultimate load carrying capacity, in order lithic concrete hinges systematically. Material tests on to avoid damage of concrete hinges under sustained plain concrete specimens and structural tests on loading. marginally reinforced concrete hinges are performed. The experiments characterize material and structural Keywords Integral bridge construction Á creep under centric compression as well as bending- Mechanized tunneling Á Segmented tunnel lining Á induced tensile cracking and the interaction between Tensile cracking of concrete Á Digital image creep and cracking of concrete hinges. As for the latter correlation two aims, three nominally identical concrete hinges are subjected to short-term and to longer-term eccen- tric compression tests. Obtained material and struc- tural creep functions referring to centric compression 1 Introduction are found to be very similar.
    [Show full text]
  • NCHRP014 Final Report.Pdf
    IDEA PROJECT FINAL REPORT Contract NCHRP-94-IDO 1 4 IDEA Program Transportation Research Board National Research Council March 1997 UNRETNFORCED, CENTRALLY PRESTRESSED COLI]MNS AI\D PILES Prepared by: D.V. Reddy, Florida Atlantic University Boca Raton, Florida Paul Csagoly Consultant Clearwater, Florida INNOVATIONS DESERVING EXPLORATORY ANALYSIS (IDEA) PROGRAMS MANAGED BY THE TRANSPORTATION RESEARCH BOARD (TRB) This NCHRP-IDEA investigation was completed as part of the National Cooperative Highway Research Program (NCHRP). The NCHRP-IDEA program is one of the four IDEA programs managed by the Transportation Research Board (TRB) to foster innovations in highway and intermodal surface transportation systems. The other three IDEA program areas are Transit-IDEA, which focuses on products and results for transit practice, in support of the Transit Cooperative Research Program (TCRP), Safety-IDEA, which focuses on motor carrier safety practice, in support of the Federal Motor Carrier Safety Administration and Federal Railroad Administration, and High Speed Rail-IDEA (HSR), which focuses on products and results for high speed rail practice, in support of the Federal Railroad Administration. The four IDEA program areas are integrated to promote the development and testing of nontraditional and innovative concepts, methods, and technologies for surface transportation systems. For information on the IDEA Program contact IDEA Program, Transportation Research Board, 500 5th Street, N.W., Washington, D.C. 20001 (phone: 202/334-1461, fax: 202/334-3471, http://www.nationalacademies.org/trb/idea) The project that is the subject of this contractor-authored report was a part of the Innovations Deserving Exploratory Analysis (IDEA) Programs, which are managed by the Transportation Research Board (TRB) with the approval of the Governing Board of the National Research Council.
    [Show full text]
  • Life Cycle Assessment of Maillart's Bridges
    Politecnico di Torino École polytechnique fédérale de Lausanne Master Course in Civil Engineering Master Thesis: Life Cycle Assessment of Maillart’s Bridges Giulia Pirro Professors: Supervisor: C. Fivet and C. De Wolf R. Ceravolo Academic Year 2018/2019 Life Cycle Assessment of Maillart’s Bridges Giulia Pirro 1 Master Thesis, 2019 Life Cycle Assessment of Maillart’s Bridges Abstract Robert Maillart’s contribution to the community of civil engineers and, most of all, his crucial role in the evolution of the structural art are undeniable. He was able to merge not only mechanical efficiency with innovative solutions but also aesthetic expression as a real artist, always balancing his choices with limited resources both in terms of construction materials and costs. Following these three key parameters he succeeded in producing structures which can be considered a very good combination of structural performance and sustainability. The actual goal is to understand to what extent Maillart’s bridges are indeed sustainable in addition to be efficient and elegant. That is why performing a Life Cycle Assessment (LCA) of his bridges is a valid quantitative confirmation of his achievements. The followed procedure is, thus, based on the computation of construction materials volumes. Starting from the original drawings [1], elaborating them as 3D model, the contribution of concrete and steel is computed. Then, the volume of masonry is also calculated and, where present, the timber for the scaffolding. The goal is to compute the Global Warming Potential (GWP) of each bridge, to normalise them per deck area and to be able to compare them according to different strategies.
    [Show full text]