Life Cycle Assessment of Maillart's Bridges

Total Page:16

File Type:pdf, Size:1020Kb

Life Cycle Assessment of Maillart's Bridges Politecnico di Torino École polytechnique fédérale de Lausanne Master Course in Civil Engineering Master Thesis: Life Cycle Assessment of Maillart’s Bridges Giulia Pirro Professors: Supervisor: C. Fivet and C. De Wolf R. Ceravolo Academic Year 2018/2019 Life Cycle Assessment of Maillart’s Bridges Giulia Pirro 1 Master Thesis, 2019 Life Cycle Assessment of Maillart’s Bridges Abstract Robert Maillart’s contribution to the community of civil engineers and, most of all, his crucial role in the evolution of the structural art are undeniable. He was able to merge not only mechanical efficiency with innovative solutions but also aesthetic expression as a real artist, always balancing his choices with limited resources both in terms of construction materials and costs. Following these three key parameters he succeeded in producing structures which can be considered a very good combination of structural performance and sustainability. The actual goal is to understand to what extent Maillart’s bridges are indeed sustainable in addition to be efficient and elegant. That is why performing a Life Cycle Assessment (LCA) of his bridges is a valid quantitative confirmation of his achievements. The followed procedure is, thus, based on the computation of construction materials volumes. Starting from the original drawings [1], elaborating them as 3D model, the contribution of concrete and steel is computed. Then, the volume of masonry is also calculated and, where present, the timber for the scaffolding. The goal is to compute the Global Warming Potential (GWP) of each bridge, to normalise them per deck area and to be able to compare them according to different strategies. The amount of equivalent carbon dioxide (kg CO2e) is computed as a linear combination of each structural material quantity (SMQ) with a relative Embodied Carbon Coefficient (ECC) [2]. Moreover, considering their structural scheme, their foundation soils and all the geometrical parameters of the decks and arches, it is possible to gather different bridges and to find relationships according to the similarities of emissions of each class. The main results are found in the structural and soil properties. First, in the correlation between GWP only due to steel with respect to the total one of each bridge and the amount of steel for each static scheme. Then, in the average values among two macro groups of terrains which make the bridges to assume similar GWPs within these macro classes themselves. Giulia Pirro 2 Master Thesis, 2019 Life Cycle Assessment of Maillart’s Bridges Summary ABSTRACT ............................................................................................................................................... 2 SUMMARY................................................................................................................................................ 3 NOTATIONS ............................................................................................................................................. 5 INTRODUCTION ..................................................................................................................................... 6 Motivations ................................................................................................................................................. 6 Problem statement ....................................................................................................................................... 6 Life Cycle Assessment ................................................................................................................................. 7 Literature Review ........................................................................................................................................ 9 Maillart’s legacy .........................................................................................................................................11 CATALOGUE: MAILLART’S BRIDGES .............................................................................................19 Stauffacher Bridge ......................................................................................................................................27 Zuoz Bridge ................................................................................................................................................30 Steinach Bridge ..........................................................................................................................................34 Tavanasa Bridge .........................................................................................................................................38 Aarburg Bridge ...........................................................................................................................................42 Marignier Bridge ........................................................................................................................................46 Flienglibach Bridge ....................................................................................................................................49 Ziggenbach Bridge......................................................................................................................................53 Schrähbach Bridge ......................................................................................................................................56 Lorraine Bridge ..........................................................................................................................................60 Salginatobel Bridge ....................................................................................................................................64 Schwandbach Bridge ..................................................................................................................................68 Felsegg Bridge ............................................................................................................................................72 Birs Bridge .................................................................................................................................................75 Vessy Bridge ..............................................................................................................................................79 PARALLEL CATALOGUE: NON MAILLART’S BRIDGES ..............................................................82 Langwieser Bridge by Schürch ...................................................................................................................82 Giulia Pirro 3 Master Thesis, 2019 Life Cycle Assessment of Maillart’s Bridges Tamina Bridge by LAP ...............................................................................................................................85 ANALYSIS................................................................................................................................................88 Elaboration of data ......................................................................................................................................88 Maillart vs other engineers ........................................................................................................................ 107 GWP compared with car emissions and trees ............................................................................................ 109 CONCLUSIONS ..................................................................................................................................... 114 APPENDIX ............................................................................................................................................. 119 INDEXES ................................................................................................................................................ 122 Tables ....................................................................................................................................................... 122 Figures ..................................................................................................................................................... 124 Equations .................................................................................................................................................. 127 REFERENCES ....................................................................................................................................... 128 Giulia Pirro 4 Master Thesis, 2019 Life Cycle Assessment of Maillart’s Bridges Notations ECC – Embodied Carbon Coefficient CO2 – Carbon dioxide CO2e – Equivalent Carbon dioxide GHG – Greenhouse Gases GWP – Global Warming Potential KBOB – Coordination Conference of the Building and Property Organs of Public Builders. Translated form the German acronym of “Koordinationskonferenz der Bau - und Liegenschaftsorgane der öffentlichen Bauherren” LCA – Life Cycle Assessment LCI – Life Cycle Inventory LCIA – Life Cycle Impact Assessment SMQ – Structural Material Quantity Giulia Pirro 5 Master Thesis, 2019 Life Cycle Assessment of Maillart’s Bridges Introduction Motivations When it comes to bridges, it is always difficult to distinguish the structural and the architectural role of engineering. Their philosophical and social meaning increase their importance and could give them additional symbolic significance. However, the great innovations rise in the combinations
Recommended publications
  • A Hydrographic Approach to the Alps
    • • 330 A HYDROGRAPHIC APPROACH TO THE ALPS A HYDROGRAPHIC APPROACH TO THE ALPS • • • PART III BY E. CODDINGTON SUB-SYSTEMS OF (ADRIATIC .W. NORTH SEA] BASIC SYSTEM ' • HIS is the only Basic System whose watershed does not penetrate beyond the Alps, so it is immaterial whether it be traced·from W. to E. as [Adriatic .w. North Sea], or from E. toW. as [North Sea . w. Adriatic]. The Basic Watershed, which also answers to the title [Po ~ w. Rhine], is short arid for purposes of practical convenience scarcely requires subdivision, but the distinction between the Aar basin (actually Reuss, and Limmat) and that of the Rhine itself, is of too great significance to be overlooked, to say nothing of the magnitude and importance of the Major Branch System involved. This gives two Basic Sections of very unequal dimensions, but the ., Alps being of natural origin cannot be expected to fall into more or less equal com­ partments. Two rather less unbalanced sections could be obtained by differentiating Ticino.- and Adda-drainage on the Po-side, but this would exhibit both hydrographic and Alpine inferiority. (1) BASIC SECTION SYSTEM (Po .W. AAR]. This System happens to be synonymous with (Po .w. Reuss] and with [Ticino .w. Reuss]. · The Watershed From .Wyttenwasserstock (E) the Basic Watershed runs generally E.N.E. to the Hiihnerstock, Passo Cavanna, Pizzo Luceridro, St. Gotthard Pass, and Pizzo Centrale; thence S.E. to the Giubing and Unteralp Pass, and finally E.N.E., to end in the otherwise not very notable Piz Alv .1 Offshoot in the Po ( Ticino) basin A spur runs W.S.W.
    [Show full text]
  • Robert Maillart Ein Innovativer Brückenbauer
    Robert Maillart ein innovativer Brückenbauer "Robert Maillart war einer der wenigen echten Konstrukteure unserer Epoche. Er dachte in Zusammenhängen, im Gesamten" Max Bill, 1947 Robert Maillart ist vor allem bekannt als innovativer Brückenbauer, der sich zum eigentlichen Brückenbaukünstler entwickelte. Er leistete aber auch als innovativer Hochbauer und als Autor wissenschaftlicher Beiträge Wesentliches zur Entwicklung der Betonbauweise und des konstruktiven Ingenieurbaus. Sein Werk hat weltweite Ausstrahlung und Bedeutung. Zur Entwicklung der Eisenbetonbauweise Beton mit aus Kalk und Puzzolanerde hergestelltem Zement wird bereits von den Römern verwendet. Im Mittelalter gerät der Beton in Vergessenheit. Erst zu Beginn des 19. Jahrhunderts finden sich wieder Anfänge: Joseph Aspdin stellt 1824 erstmals Zement durch Brennen einer Mischung von Ton und Kalkstein her. Diesem sogenannten Portlandzement verhilft Isaac Charles Johnson 1844 zum Durchbruch. Portlandzement bleibt bis heute die wichtigste Zementart. 1854 zeigt Joseph Louis Lambot an der Weltausstellung in Paris ein Boot in armierter Zementbauweise. 1861 veröffentlicht François Coiguet die Ergebnisse seiner Versuche an mit Drahtgeflecht armierten Balken und Decken. Etwa zur gleichen Zeit erkennt der Amerikaner Thaddeus Hyatt anhand von Experimenten mit armierten Balken das Zusammenwirken von Beton und Bewehrung: Beton ist druckfest, aber nur wenig zugfest und reisst deshalb schon bei geringer Dehnung; erst im Verbund mit Bewehrungseinlagen, welche die Zugkräfte aufnehmen, wird der Beton für beliebige Bauteile anwendbar. Der Durchbruch der Eisenbetonbauweise beginnt, als sich Joseph Monier nach ersten Experimenten zur Herstellung von Pflanzenbehältern 1878 verschiedene Patente für die neue Bauweise ausstellen lässt. Die nachhaltigste Förderung erfährt die Eisenbetonbauweise durch den Unternehmer François Hennebique (1842-1921), der ein eigentliches Bausystem entwickelt und ein Agentensystem in ganz Europa aufbaut (schweizerische Generalagent des Systems Hennebique, Samuel de Mollins).
    [Show full text]
  • Arched Bridges Lily Beyer University of New Hampshire - Main Campus
    University of New Hampshire University of New Hampshire Scholars' Repository Honors Theses and Capstones Student Scholarship Spring 2012 Arched Bridges Lily Beyer University of New Hampshire - Main Campus Follow this and additional works at: https://scholars.unh.edu/honors Part of the Civil and Environmental Engineering Commons Recommended Citation Beyer, Lily, "Arched Bridges" (2012). Honors Theses and Capstones. 33. https://scholars.unh.edu/honors/33 This Senior Honors Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Honors Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. UNIVERSITY OF NEW HAMPSHIRE CIVIL ENGINEERING Arched Bridges History and Analysis Lily Beyer 5/4/2012 An exploration of arched bridges design, construction, and analysis through history; with a case study of the Chesterfield Brattleboro Bridge. UNH Civil Engineering Arched Bridges Lily Beyer Contents Contents ..................................................................................................................................... i List of Figures ........................................................................................................................... ii Introduction ............................................................................................................................... 1 Chapter I: History
    [Show full text]
  • CS 467 Risk Management and Structural Assessment of Concrete Deck Hinge Structures
    Design Manual for Roads and Bridges Highway Structures & Bridges Inspection & Assessment CS 467 Risk management and structural assessment of concrete deck hinge structures (formerly BA 93/09) Revision 1 Summary The use of this document enables the safety and serviceability of concrete hinge deck structures to be assessed and managed, allowing to manage risks and maintain a safe and operational network. Application by Overseeing Organisations Any specific requirements for Overseeing Organisations alternative or supplementary to those given in this document are given in National Application Annexes to this document. Feedback and Enquiries Users of this document are encouraged to raise any enquiries and/or provide feedback on the content and usage of this document to the dedicated Highways England team. The email address for all enquiries and feedback is: [email protected] This is a controlled document. CS 467 Revision 1 Contents Contents Release notes 3 Foreword 4 Publishing information . 4 Contractual and legal considerations . 4 Introduction 5 Background . 5 Assumptions made in the preparation of this document . 5 Abbreviations and symbols 6 Terms and definitions 7 1. Scope 8 Aspects covered . 8 Implementation . 8 Use of GG 101 . 8 2. Risk management process and prioritisation 9 Risk management report . 11 Initial review . 11 Risk assessment for structural assessment . 11 Structural review . 12 Structural assessment . 12 Risk assessment for management . 12 Management plan . 12 Prioritisation of deck hinge structures . 12 3. Initial review 13 4. Risk assessment for structural assessment 14 Risk assessment . 14 Primary risks . 14 Condition risk . 15 Structural risk . 15 Secondary risks . 15 Consequential risk . 16 Vulnerable details risk .
    [Show full text]
  • Jritisih Lfr1ai Q0urual. the JOURNAL of the BRITISH MEDICAL ASSOCIATION
    THE jritisih Lfr1aI Q0urual. THE JOURNAL OF THE BRITISH MEDICAL ASSOCIATION. - ~~~~~~~tinbon: PRINTED AND PUBLISHED AT THE OFFICE OF THE BRITISH MEDICAL ASSOCIATION, 429, STRAND, W.C. KEY TO DATES AND PAGES. THEF following table, giving a key to the dates of issue and the page numbers of the BRITISH MEDICAL JOURNAL and SUPPLEMENT in the second volume for 1921, may prove convenient to readers in search of a reference. Serial Date of Journal Supplement No. Issue. Pages. Pages. 3157 ...... July 2nd 1- 30 1- 16 3158 ...... ,. 9th 31- 64 17 24 3159 ...... ,, 16th 65- 102 25- 32 3160 ...... ,, 23rd 103- 136 33- 64 3161 ...... ,, 30th 137- 176 65- 92 3162 ...... Aug. 6th 177- 224 93- 96 3163 ...... 9 13th 225- 266 97 - 100 3164 ...... ,, 20th 267- 304 101 - 104 3165 ...... 27th 305- 342 105 - 108 3166 ...... Sept. 3rd 343- 384 3167 ...... ,, 10th 385- 424 109- 110 3168 ...... ,, 17th 425- 468 - 114 3169 ...... ,, 24th 469- 510 115 - 116 3170 ...... Oct. 1st 511- 544 117 - 132 3171 ...... 8th 545- 582 133- 144 3172 ...... ,, 15th 583- 620 145 - 152 3173 ...... 22nd 621- 678 153- 160 3174 ...... 29th 679- 726 161 - 176 3175 ...... Nov. 5th 727- 774 177 - 180 3176 ...... ,, 12th 775- 818 181 - 184 3177 ...... ,, 19th 819- 872 185- 192 3178 ...... ,, 26th 873.- 924 193 - 204 3179 ...... Dec. 3rd 925- 972 205 - 216 3180 ...... ,, 10th 973 - 1016 217 - 224 3181 ...... , 17th 1017- 1060 225- 232 3182 ...... ,, 24th 1061 - 1100 233 - 256 3183 ..... I ,, 31st 1101 - 1138 257 - 260 INDEX TO VOLUME II FOR 1921. READERS in search of a particular subject
    [Show full text]
  • David P. Billington Is a Professor of Civil and Environmental Engineering at Princeton University, Where He Is the Gordon Y.S
    DaviD P. Billington is a professor of civil and environmental engineering at Princeton University, where he is the Gordon Y.S. Wu Professor of Engineering. He has curated numerous museum exhibitions and is the author of 10 books, including most recently Power, Speed and Form: Engineers and the Making of the Twentieth Century (with David P. Billington, Jr.); The Art of Structural Design: A Swiss Legacy; Big Dams of the New Deal Era: A Confluence of Engineering and Politics (with Donald C. Jackson); and Félix Candela: Engineer, Builder and Structural Artist (with Maria E. Moreyra Garlock). Jeff Stein AIA is head of the school of architecture and dean of the Boston Architectural College. Civil Service David P. Billington talks with Jeff Stein AIA An engineer extols the virtues of efficiency, economy, and, yes, elegance. Jeff Stein: A decade ago, Engineering News Record named you one and I began to teach a structures course to architects through of the top five educators in civil engineering since 1874. beautiful works, slipping in the technical part. I finally decided that the course should be given to the whole university, not just David Billington: I don’t know how they measured that but it to the architecture students. So I began in 1974 the course called was nice to hear it. I hold the world’s record for having taught “Structures in the Urban Environment,”and it became popular. architecture students more years than any other civil engineering After that, the associate dean came to me in 1984 and said, professor. Most civil engineering professors don’t like to do that.
    [Show full text]
  • Northumberland Strait Crossing: Design Development of Precast Prestressed Bridge Structure
    PRECAST CONCRETE SOLVES 100-YEAR-OLD PROBLEM Northumberland Strait Crossing: Design Development of Precast Prestressed Bridge Structure The authors describe the design development process of the $840 million (Canadian dollars) Northumberland Strait Crossing Project from conceptual design in 1987 to the final project design. The 13 km (8 mile) long bridge links Prince Edward Island with New Brunswick and mainland Canada. The current design is based on main bridge spans of 250 m (820 ft) to minimize the number of piers and foundations in the Strait. Each span consists of a continuous precast, prestressed concrete variable depth double cantilever girder Barry Lester, P.Eng. with a length of 190 m (623 ft) and a drop-in segment of 60 m President (197 ft). The design took into consideration unusually heavy SLG Stanley Consultants Inc. vehicle loads, high wind loads, seismic factors, very high Calgary, Alberta icepack forces and possible ship collisions. Precast concrete Canada production began in the summer of 1994 and the main spans will be erected beginning in September 1995. The project is scheduled for completion in the summer of 1997. he Northumberland Strait gotiating the Terms of Confederation, Crossing Project (NSCP) is a the Federal Government of Canada T 13 km (8 mile) long bridge (see promised to promote efficient commu­ Fig. 1), with associated approach nication between the island and the roads and shoreside facilities, joining mainland, a promise that has been ful­ Prince Edward Island to New filled by the payment of annual subsi­ Brunswick and mainland Canada (see dies to support the island ferry service Fig.
    [Show full text]
  • Geschiebetransportmodell Rhone
    Morphology and Floods in the Alpine Region Benno Zarn, Hunziker, Zarn & Partner AG, CH-Domat/Ems KHR, From the Source to mouth, a sediment budget of the Rhine River 25-26 March 2015, Lyon France Content 1. Catchment 2. Hydrology 3. River Training - Morphology 4. Bed load transport Alpenrhein 26.03.15 1 1. Catchment drainage area: 6’119 km2 DE average altitude: 1’800 a.s.l. Bodensee glaciation: < 1.4% AT 100-year flood: 3’100 m3/s Ill bed load: 35’000 – 60’000 m3/y CH LI suspended load: 3 Mio. m3/y Landquart Vorderrhein Plessur Hinterrhein Lai da Toma IT Alpenrhein 26.03.15 2 Catchment Geology schist Alpenrhein 26.03.15 3 Catchment DE AT Val Parghera CH LI Val Pargehra IT schist Alpenrhein 26.03.15 4 Catchment tributaries moraine, sediment source Plessur Alpenrhein narrowing Hinterrhein (Domleschg) about 200 years ago 26.03.15 5 Catchment AT 1927 flood – torrent control e.g. Schraubach CH LI Rutschung Schuders um 1950, IT 15 – 20 Mio. m3 Dammbruch Buchs / Schaan 1927 950 [ m a.s.] 900 2003 850 1896 800 750 [m] Alpenrhein 6000 5000 4000 3000 26.03.15 6 river training - morphology Schraubach 2. Hydrology 1999, 2005 Nord, 1910 main divide Süd, 1987 1834, 1868, 1927, 1954, (2002) Alpenrhein 26.03.15 7 hydrology large floods in the past catastrophic floods extrem large floods very large floods large floods 4 3 2 1 0 1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 1520 1540 1560 1580 1600 4 1927 1987 3 2 1 0 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 Alpenrhein 26.03.15 8 hydrology 1927- and 1987 floods Alpenrhein Rhine gorge – ruin aulta (Vorderrhein) 26.03.15 9 hydrology hydro power – storage basin storage volume [106 m3] 800 Ragall Kops Kops 1967 600 Spullersee 1965 Spullersee Panix 1992 Panix Feldkirch Spullersee 400 1976 Gigerwald Buchs Lünersee 1959 Lünersee St.
    [Show full text]
  • GHORT LINC \*J by 225 MILES Mmm
    \'s\. 1 •• ' .;"T II I I I I I I I I I I I I I 1 I I I I I 1 I HH I I I I II I I I I I I II I I I I II I I 1 II THE IS THE GHORT LINC \*J BY 225 MILES mmm WHICH MEANS A DAY SAVED /"• i. BETWEEN it Chicago, St. Louj^, Kansas and Points East and North . **V' -AND- El Paso and the Gfeat Southwest .-. Passenger equipment consisting of New Sleeping and Chair Cars, Buffet Library and Smoker, runs through solid without change. "We Feed You" in DINING CARS in11mnniiiiiiiiiiini ii1111 [te^V> .Qfy&%'& /A^Q-I^S'^ ->».• -i- .;. t V I"!' II II I 111 Mill II I M I II I I 111 1 11.11 I I II I 1H II 111 1 I I MMI't " F. C. EARLE, MANAGER T. S. AUSTIN, SUPT. " "•" EL PASO, TEX. EL PASO. TEX. "•* CONSOLIDATED \ Kansas City Smelting 1 anil Refining Co. EL PASO SMELTING WORKS .•••;•.."• BUYERS OF , ORE, BULLION, MATTE AND ALL CLASSES OF FURNACE PRODUCTS. MANUFACTURERS OF I ALCHEMIST BRANDS BLUE VITRIOL, ZINC SULPHATE. + , EL PASO, TEXAS I BELGIAN BAKERY -••'..'" i v The only place in the City to | get FINE DESSERTS AND CAKES FOR WEDDINGS AND PARTIES !!•'HEALTH BREADS A SPECIALTY .:: • • - • i • MRS. J: GEli/IOETS, Proprietor 210 E. OVERLAND ~ TELEPHONE 310 111111 M 111111111111111111 MI 111111111111 n i u u i ii i'" I I II II llll III I I I II III I II 1 I 1 II IMI I II I I I I II II I II II II^ If W.
    [Show full text]
  • Arched Bridges
    University of New Hampshire University of New Hampshire Scholars' Repository Honors Theses and Capstones Student Scholarship Spring 2012 Arched Bridges Lily Beyer University of New Hampshire - Main Campus Follow this and additional works at: https://scholars.unh.edu/honors Part of the Civil and Environmental Engineering Commons Recommended Citation Beyer, Lily, "Arched Bridges" (2012). Honors Theses and Capstones. 33. https://scholars.unh.edu/honors/33 This Senior Honors Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Honors Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. UNIVERSITY OF NEW HAMPSHIRE CIVIL ENGINEERING Arched Bridges History and Analysis Lily Beyer 5/4/2012 An exploration of arched bridges design, construction, and analysis through history; with a case study of the Chesterfield Brattleboro Bridge. UNH Civil Engineering Arched Bridges Lily Beyer Contents Contents ..................................................................................................................................... i List of Figures ........................................................................................................................... ii Introduction ............................................................................................................................... 1 Chapter
    [Show full text]
  • A Survey on Cyclic Response of Unbonded Posttensioned Precast Pier with Ductile Fiber- Reinforced Concrete
    ISSN (Online): 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (A High Impact Factor, Monthly, Peer Reviewed Journal) Visit: www.ijirset.com Vol. 7, Issue 1, January 2018 A Survey on Cyclic Response of Unbonded Posttensioned Precast Pier with Ductile Fiber- Reinforced Concrete Vaibhav Dadarao Shinde, Prof. V.S. Thorat M.Tech Student. (Civil-Structural), G.H.Raisoni College of Engineering and Management, Pune, Maharashtra, India Assistant Professor, G.H.Raisoni College of Engineering and Management, Pune, Maharashtra, India ABSTRACT: A precast segmental concrete bridge pier system is being investigated for use in seismic regions. The proposed system uses unbonded posttensioning (UBPT) to join the precast segments and has the option of using a ductile fiber-reinforced cement-based composite (DRFCC) in the precast segments at potential plastic hinging regions. The UBPT is expected to cause minimal residual displacements and a low amount of hysteretic energy dissipation. The DFRCC material is expected to add hysteretic energy dissipation and damage tolerance to the system. Small-scale experiments on cantilever columns using the proposed system were conducted. The two main variables were the material used in the plastic hinging region segment and the depth at which that segment was embedded in the column foundation. It was found that using DFRCC allowed the system to dissipate more hysteretic energy than traditional concrete up to drift levels of 3–6%. Furthermore, DFRCC maintained its integrity better than reinforced concrete under high cyclic tensile compressive loads. The embedment depth of the bottom segment affected the extent of microcracking and hysteretic energy dissipation in the DFRCC.
    [Show full text]
  • Case Study Rhine
    International Commission for the Hydrology of the Rhine Basin Erosion, Transport and Deposition of Sediment - Case Study Rhine - Edited by: Manfred Spreafico Christoph Lehmann National coordinators: Alessandro Grasso, Switzerland Emil Gölz, Germany Wilfried ten Brinke, The Netherlands With contributions from: Jos Brils Martin Keller Emiel van Velzen Schälchli, Abegg & Hunzinger Hunziker, Zarn & Partner Contribution to the International Sediment Initiative of UNESCO/IHP Report no II-20 of the CHR International Commission for the Hydrology of the Rhine Basin Erosion, Transport and Deposition of Sediment - Case Study Rhine - Edited by: Manfred Spreafico Christoph Lehmann National coordinators: Alessandro Grasso, Switzerland Emil Gölz, Germany Wilfried ten Brinke, The Netherlands With contributions from: Jos Brils Martin Keller Emiel van Velzen Schälchli, Abegg & Hunzinger Hunziker, Zarn & Partner Contribution to the International Sediment Initiative of UNESCO/IHP Report no II-20 of the CHR © 2009, KHR/CHR ISBN 978-90-70980-34-4 Preface „Erosion, transport and deposition of sediment“ Case Study Rhine ________________________________________ Erosion, transport and deposition of sediment have significant economic, environmental and social impacts in large river basins. The International Sediment Initiative (ISI) of UNESCO provides with its projects an important contribution to sustainable sediment and water management in river basins. With the processing of exemplary case studies from large river basins good examples of sediment management prac- tices have been prepared and successful strategies and procedures will be made accessible to experts from other river basins. The CHR produced the “Case Study Rhine” in the framework of ISI. Sediment experts of the Rhine riparian states of Switzerland, Austria, Germany and The Netherlands have implemented their experiences in this publication.
    [Show full text]