Waste to Catalyst: Synthesis of Catalysts from Sewage Sludge of the Mining, Steel, and Petroleum Industries

Total Page:16

File Type:pdf, Size:1020Kb

Waste to Catalyst: Synthesis of Catalysts from Sewage Sludge of the Mining, Steel, and Petroleum Industries sustainability Article Waste to Catalyst: Synthesis of Catalysts from Sewage Sludge of the Mining, Steel, and Petroleum Industries Gabriela Castro-León, Erik Baquero-Quinteros, Bryan G. Loor, Jhoselin Alvear, Diego E. Montesdeoca Espín, Andrés De La Rosa and Carolina Montero-Calderón * Chemical Engineering Faculty, Universidad Central del Ecuador, Ritter s/n & Bolivia, Quito 17-01-3972, Ecuador; [email protected] (G.C.-L.); [email protected] (E.B.-Q.); [email protected] (B.G.L.); [email protected] (J.A.); [email protected] (D.E.M.E.); [email protected] (A.D.L.R.) * Correspondence: [email protected] Received: 5 August 2020; Accepted: 22 September 2020; Published: 25 November 2020 Abstract: The generation of sewage sludge presents a problem for several manufacturing companies as it results from industrial processes or effluent treatment systems. The treatment of this type of waste requires high economic investment, for this reason, it is necessary to find alternatives to recover the valuable materials of the sludges. In this study, metal catalysts were synthesized using waste sludge from the steel, mining, and hydrocarbon industries. The waste sludge was subjected to thermal treatments for the removal of organic content and the reduction of metals with hydrogen current to activate their catalytic properties. The sludge and synthesized catalysts were analyzed to determine their physical, chemical, thermoenergetic, and catalytic properties. Catalytic activity was evaluated using CO chemisorption and by thermal–catalytic decomposition of crude oil. The best conditions for synthesizing the catalysts were a calcination temperature between 300 and 500 ◦C and a reduction temperature between 300 and 900 ◦C. The catalysts presented a specific surface between 2.33 and 16.78 m2/g. The catalytic material had a heat capacity between 0.7 and 1.2 kJ/kg K. The synthesized · materials presented catalytic activity comparable to that of commercial catalysts. With this recovery technique, the industrial waste can be valorized, obtaining catalyst derived from the sludges and promoting the circular economy of manufacturing companies. Keywords: sewage sludge; mining tailings; steelworks; oil tank bottoms; catalysts; waste valorization; circular economy 1. Introduction Global waste generation is expected to double by 2025, of which industrial waste will comprise nearly 50% of the total. Global waste generation is projected to reach 11 million tons/day by 2100 [1]. Production processes use raw materials based on metals or containing metals, and some wastes are generated as sludge in the production stages, which often cannot be minimized. These process sludges, as well as those generated in water treatment systems, are considered hazardous waste according to Ecuadorian regulations [2]; therefore, sludge must be technically disposed of through environmental management. In Ecuador in 2017, it was estimated that 300 thousand tons of sewage sludge was generated and that companies invested approximately $200 million in environmental prevention processes [3]. Thus, Ecuador seeks to promote sustainable production and responsible consumption alternatives that include the recovery of raw materials from waste as part of its new economic development agenda based on the circular economy [4]. The economic potential of organic sewage sludge valorization for biogas production, co-incineration, or as a fertilizer in landscaping and agriculture is considered to be a possible Sustainability 2020, 12, 9849; doi:10.3390/su12239849 www.mdpi.com/journal/sustainability Sustainability 2020, 12, 9849 2 of 16 line of action for the support of the social and solidarity economy of communities in developing countries [5]. Alternatives involving the encapsulation of sludge as a part of construction materials have been proposed, such as the incorporation of tailings from lead mine washing plants in ceramics for bricks [6], the use of gold mine tailings as cement mortar [7,8], and the preparation of high-porosity bricks by utilizing red mud and mine tailings [9]. Some recovery alternatives for the synthesis of chemicals for the retention of metal contaminants have been reported, such as the use of residuals from drinking water treatment as an adsorbent for the retention of phosphorus compounds [10], for metal removal from electroplating wastewater effluent [11], or the adsorption of heavy metal ions by porous material prepared with silicate tailings [12]. The recovery of metal components present in sludge includes the production of iron-based secondary raw material from bauxite tailings and red muds [13] and gold recovery from mining waste by thiosulphate leaching [14]. Sludges from the electroplating process have been used to produce inorganic pigments for applications in ceramic glazes [15], and kimberlite tailings have been used in carbon capture [16]. The synthesis of metal catalysts from sewage sludge and their application in the oxidation of hydrocarbons has been reported since 2000 [17]. Since then, similar applications have been reported for multiple purposes, such as the oxidative dehydrogenation of propane with textile sludge-based catalysts [18], for the removal of volatile organic compounds using ferric catalysts derived from sludge produced by water purification [19], and for the N H insertion reaction using catalysts derived from − sewage sludge of carbonaceous materials [20]. Our research group has studied catalytic activity in crude cracking reactions using a catalyst derived from sludge resulting from wastewater treatment by the textile [21], the galvanoplasty [22], and tannery [23] industries, obtaining yields comparable to those for commercial catalysts. These catalysts have also been tested in terms of the catalytic decomposition of methane [24], in which conversion rates of reactants higher than 90% were obtained. Due to this, materials that have part of the organic or polymeric matrix with oxides or metals [25,26] can be used as photocatalyst. This work evaluated the possibility of synthesizing catalysts from waste sludge from three industries with the potential for economic development in Ecuador: sludge from the wastewater treatment plants of steelworks, metal mining tailings, and tank bottom sludge from hydrocarbon storage. These sludges contain metals such as iron, gold, and copper that could confer catalytic properties. After synthesis, the physical, chemical, and thermoenergetic properties were characterized, and the catalytic capacity of the materials was determined. The catalysts derived from mining tailings presented good thermal stability and a catalytic activity comparable to commercial catalysts. This alternative method to valorize hazardous sludges could aid in the implementation of the national development plans based on the circular economy. 2. Results 2.1. Samples Identification The sludge samples were supplied by three different manufacturing companies located in Ecuador (Table1). Company 1, located in the south of Ecuador, is a mine tailing deposit where artisanal mining waste is collected. This company generates two types of sludge: aged tailings (S1) and fresh tailings (S2). Company 2, located in the center of Ecuador, is a steelwork facility where the residual sludge comes from its wastewater treatment plant (S3). Company 3 is located in the Amazon region of Ecuador, and the sludge (S4) is bottom waste from petroleum storage tanks. The catalytic materials derived from each of these sludges were identified as C1, C2, C3, and C4 (Figure1a–d). Sustainability 2020, 12, 9849 3 of 16 Sustainability 2020, 12, x FOR PEER REVIEW 3 of 16 Table 1. Nomenclature used for the different studied sludges. Table 1. Nomenclature used for the different studied sludges. Company Type of Sludge Sludge Catalytic Material 1aCompany AgedType mining of Sludge tailings Sludge S1 Catalytic Material C1 1b1a FreshAged mining mining tailingstailings S1 S2 C1 C2 21b WastewaterFresh sludge mining from tailings a steelwork S2 S3 C2 C3 32 BottomWastewater sludge from sludge petroleum from a steelwork storage tanks S3 S4 C3 C4 3 Bottom sludge from petroleum storage tanks S4 C4 (a) (b) (c) (d) FigureFigure 1. Dried1. Dried fresh fresh mine mine tailings tailings S1 ( aS1), aged(a), aged mine mine tailings tailings S2 (b), S2 wastewater (b), wastewater sludge sludge from a steelworkfrom a S3steelwork (c), and bottom S3 (c), sludgeand bottom from sludge petroleum from storagepetroleum tanks storage S4 (d tanks). S4 (d). 2.2.2.2. Catalyst Catalyst Preparation Preparation TheThe preparation preparation of of catalysts catalysts has has beenbeen describeddescribed in previous previous works works by by our our research research group group [21,22]. [21,22 ]. TheThe samples samples were were gradually gradually dried dried in in order order toto preventprevent damage to to their their porous porous structure. structure. At At the the same same time,time, temperatures temperatures and and calcination calcination timestimes werewere chosen based based on on the the metals metals present present in inthe the sludge, sludge, namelynamely Au Au [27 [27–29],–29], Fe Fe [30 [30–33],–33], and and Cu Cu [[29,34,35].29,34,35]. The range range of of calcination calcination te temperaturesmperatures was was selected selected accordingaccording to to the the possible possible metals metals containedcontained inin the samples to to avoid avoid metal metal sintering sintering due due to tohigh high temperatures.temperatures. The The conditions conditions for for sludge
Recommended publications
  • State of Utah DIVISION of WASTE MANAGEMENT GARY R
    Department of Environmental Quality L. Scott Baird Executive Director State of Utah DIVISION OF WASTE MANAGEMENT GARY R. HERBERT AND RADIATION CONTROL Governor Ty L. Howard SPENCER J. COX Director Lieutenant Governor November 5, 2020 Cassady Kristensen Environmental Business Partner Rio Tinto Kennecott 4700 Daybreak Parkway South Jordan, UT 84009 RE: Kennecott Utah Copper Tailings Impoundment Refuse Class IIIb Landfill Permit Dear Ms. Kristensen: The Division of Waste Management and Radiation Control (Division) has completed its review of the application to permit the Rio Tinto Kennecott Utah Copper Tailings Impoundment Refuse Class IIIb Landfill located on the Rio Tinto Kennecott Tailings Impoundment facility in Salt Lake County, Utah. Enclosed with this letter is the approved Permit Number 1905 and applicable attachments from portions of the application. The Permit approval and expiration dates are shown on the permit cover page. Also, the Statement of Basis for this permit (DSHW-2020-014707) is included with the permit. If you have any questions, please call Doug Taylor at (801) 536-0240. Sincerely, Ty L. Howard, Director Division of Waste Management and Radiation Control (Over) DSHW-2020-014711 195 North 1950 West • Salt Lake City, UT Mailing Address: P.O. Box 144880 • Salt Lake City, UT 84114-4880 Telephone (801) 536-0200 • Fax (801) 536-0222 • T.D.D. (801) 536-4284 www.deq.utah.gov Printed on 100% recycled paper TLH/DT/ar Enclosures: Permit (DSHW-2020-004084) Attachment #1 - Landfill Design (DSHW-2020-004510) Attachment #2 – Operation Plan (DSHW- 2020-004512) Attachment #3 – Closure and Post-Closure Plan (DSHW-2020-004514) Statement of Basis (DSHW-2020-014707) c: Gary Edwards, MS, Health Officer, Salt Lake County Health Dept.
    [Show full text]
  • Assessment of the Possible Reuse of Extractive Waste Coming from Abandoned Mine Sites: Case Study in Gorno, Italy
    sustainability Article Assessment of the Possible Reuse of Extractive Waste Coming from Abandoned Mine Sites: Case Study in Gorno, Italy Neha Mehta 1,2, Giovanna Antonella Dino 1,*, Iride Passarella 3, Franco Ajmone-Marsan 4, Piergiorgio Rossetti 1 and Domenico Antonio De Luca 1 1 Department of Earth Sciences, University of Turin, 10125 Torino, Italy; [email protected] (N.M.); [email protected] (P.R.); [email protected] (D.A.D.L.) 2 School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, BT9 5AH, UK 3 Horizon s.r.l., 10095 Grugliasco (TO), Italy; [email protected] 4 Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Grugliasco (TO), Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-011-6705150 Received: 21 January 2020; Accepted: 17 March 2020; Published: 21 March 2020 Abstract: Supply of resources, a growing population, and environmental pollution are some of the main challenges facing the contemporary world. The rapid development of mining activities has produced huge amounts of waste. This waste, found in abandoned mine sites, provides the potential opportunity of extracting raw material. The current study, therefore, focuses on testing the validation of a shared methodology to recover extractive waste from abandoned mines, and applies this methodology to a case study in Gorno, northwest Italy. The methods focused on: (1) analyzing the impact of tailings and fine fraction of waste rock (<2 mm) on plants (Cress - Lepidium Sativum) to assess usability of both as soil additive, and (2) recovering raw materials from tailings and coarse fraction (>2 mm) of waste rock, by means of dressing methods like wet shaking table and froth flotation.
    [Show full text]
  • Environmental Lmpact Mine Development and Tailings Disposal
    .--L South Pocific Regionol Environm€nf Progromme ft -- Ittltt-'r'tl SPREP Reports ond Studies Series no, 95 WJ: Environmental lmPact Hffi Assessment Guidelines for Mine DeveloPment and ffi Tailings Disposal at Tropical Coastal Mines ar'' -il South Pocific Reglonol Environment Progromrre Environmental lmpact Assessment Guidelines for Mine Development and Tailings Disposal at Tropical Coastal Mines Prepared by Derek Ellls Assisted by Jacquellne Connolly SPREP Librry Cataloguing-in-Publication Dara Ellis,Dcsck Erwironmental impact ascsmcot guiddinca fq minc dcrrclopment 2ad t.ilingr dispod et topicel costal rnincs / grcprrcd \ p6d Ellir ard **itt"d bJ.cqudinc Connolly. - Apie,Vftstcrn Samoa : SPREB 1996. viii,26p. : 69., placcs, ublcs : 29 can- ISBN:982-04-0150-X 1. Environncntal impact rtetcmens.2. Mincs and rnincrrl rrsouroae - Erndrronmcnal aspccs, 3. Erwironmcnal monitori.g- I. C.onnolly, Jacquclinc. II. South Pacific Rcgiond Environmcnt Prognmmc. IV Tida 333.765 kcprrcd for putilication by thc South Pacifc Rcgionel Ernironmcot kogrlmmc, PO Bc 24o,Apb,Wcrtcrn Samoa @ South PacificRcgiorrl Environmcnt Plogrannc, 1996 Thc South Pecifc Rcgional En'ironncnt Plogrililnc authcbcs thc rcproduction of tcmud netcrid, wholc or parq in any form, providcd approprbtc acknorlcdgcmcot b gi\r€o. Original 3srt; F'ngfirh Editor Barbare Hcason Production Pctcr Erans Photographs Plare I (covcr and p.4) reproduced with permission of Island Copper Mine, BHP Minerals Canada Ltd; platc 6 (cover and p.6) and plate 5 reproduced with permission of Placcr Pacific Limited, Typeset in I l/13 Bembo and UR\7 Casde Printed on I l0gsm Tudor RP. (100% recyded) by ABC Printing, Brisbane, Australia Printed with finaocial assistance from AusAID Covcr photographs Top:The seale of uwu produaionfmm ninitg and milling prouses an be enotmorn, Hererun see the *uste mck dunry anil their redamation at klanil Coppa Mine, Canada.
    [Show full text]
  • Safe Use of Wastewater in Agriculture: Good Practice Examples
    SAFE USE OF WASTEWATER IN AGRICULTURE: GOOD PRACTICE EXAMPLES Hiroshan Hettiarachchi Reza Ardakanian, Editors SAFE USE OF WASTEWATER IN AGRICULTURE: GOOD PRACTICE EXAMPLES Hiroshan Hettiarachchi Reza Ardakanian, Editors PREFACE Population growth, rapid urbanisation, more water intense consumption patterns and climate change are intensifying the pressure on freshwater resources. The increasing scarcity of water, combined with other factors such as energy and fertilizers, is driving millions of farmers and other entrepreneurs to make use of wastewater. Wastewater reuse is an excellent example that naturally explains the importance of integrated management of water, soil and waste, which we define as the Nexus While the information in this book are generally believed to be true and accurate at the approach. The process begins in the waste sector, but the selection of date of publication, the editors and the publisher cannot accept any legal responsibility for the correct management model can make it relevant and important to any errors or omissions that may be made. The publisher makes no warranty, expressed or the water and soil as well. Over 20 million hectares of land are currently implied, with respect to the material contained herein. known to be irrigated with wastewater. This is interesting, but the The opinions expressed in this book are those of the Case Authors. Their inclusion in this alarming fact is that a greater percentage of this practice is not based book does not imply endorsement by the United Nations University. on any scientific criterion that ensures the “safe use” of wastewater. In order to address the technical, institutional, and policy challenges of safe water reuse, developing countries and countries in transition need clear institutional arrangements and more skilled human resources, United Nations University Institute for Integrated with a sound understanding of the opportunities and potential risks of Management of Material Fluxes and of Resources wastewater use.
    [Show full text]
  • 2.2 Sewage Sludge Incineration
    2.2 Sewage Sludge Incineration There are approximately 170 sewage sludge incineration (SSI) plants in operation in the United States. Three main types of incinerators are used: multiple hearth, fluidized bed, and electric infrared. Some sludge is co-fired with municipal solid waste in combustors based on refuse combustion technology (see Section 2.1). Refuse co-fired with sludge in combustors based on sludge incinerating technology is limited to multiple hearth incinerators only. Over 80 percent of the identified operating sludge incinerators are of the multiple hearth design. About 15 percent are fluidized bed combustors and 3 percent are electric. The remaining combustors co-fire refuse with sludge. Most sludge incinerators are located in the Eastern United States, though there are a significant number on the West Coast. New York has the largest number of facilities with 33. Pennsylvania and Michigan have the next-largest numbers of facilities with 21 and 19 sites, respectively. Sewage sludge incinerator emissions are currently regulated under 40 CFR Part 60, Subpart O and 40 CFR Part 61, Subparts C and E. Subpart O in Part 60 establishes a New Source Performance Standard for particulate matter. Subparts C and E of Part 61--National Emission Standards for Hazardous Air Pollutants (NESHAP)--establish emission limits for beryllium and mercury, respectively. In 1989, technical standards for the use and disposal of sewage sludge were proposed as 40 CFR Part 503, under authority of Section 405 of the Clean Water Act. Subpart G of this proposed Part 503 proposes to establish national emission limits for arsenic, beryllium, cadmium, chromium, lead, mercury, nickel, and total hydrocarbons from sewage sludge incinerators.
    [Show full text]
  • Litter Decomposition on Directly Revegetated Tailings at the Kidston Gold Mine, North Queensland, Australia1
    LITTER DECOMPOSITION ON DIRECTLY REVEGETATED TAILINGS AT THE KIDSTON GOLD MINE, NORTH QUEENSLAND, AUSTRALIA1 Andrew H. Grigg2 Abstract. An investigation of litter decomposition was undertaken at the Kidston Gold Mine in north Queensland, Australia with the aim of assessing the status of nutrient cycling capacity on a directly-revegetated tailings dam. Weight losses from leaf litter contained in litterbags placed in a 5-year old revegetated section of the dam were not significantly different from losses observed at two unmined reference sites over the 18 month study period, representing a rapid improvement in nutrient cycling capacity in the reconstructed ecosystem. However, fitted decay curves for each site predicted a slower decay constant and a longer litter half-life on the dam, which indicated that full pre-mining capability had not yet been achieved. Weight loss in the reconstructed system was most constrained by the low build-up of microbial biomass within the surface soil, which is expected to take at least 10 years to achieve pre-mining levels. In contrast, weight losses in the unmined sites appeared more related to the abundance of invertebrate fauna rather than microbial content. The results presented here of a developing system suggest that the importance of different factors affecting decomposition will reflect those that are most limiting over the course of ecosystem recovery. Additional Key Words: nutrient cycling, ecosystem recovery, microbial biomass, invertebrates. _____________________ 1Paper presented at the 2002 National Meeting of the American Society of Mining and Reclamation, Lexington KY, June 9-13, 2002. Published by ASMR, 3134 Montavesta Rd., Lexington, KY 40502.
    [Show full text]
  • Energy Recovery from Sewage Sludge: the Case Study of Croatia
    energies Article Energy Recovery from Sewage Sludge: The Case Study of Croatia Dinko Đurđevi´c 1,* , Paolo Blecich 2 and Željko Juri´c 1 1 Energy Institute Hrvoje Požar, 10000 Zagreb, Croatia; [email protected] 2 Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia; [email protected] * Correspondence: [email protected] Received: 26 April 2019; Accepted: 16 May 2019; Published: 20 May 2019 Abstract: Croatia produced 21,366 tonnes of dry matter (DM) sewage sludge (SS) in 2016, a quantity expected to surpass 100,000 tonnes DM by 2024. Annual production rates for future wastewater treatment plants (WWTP) in Croatia are estimated at 5.8–7.3 Nm3/people equivalent (PE) for biogas and 20–25 kgDM/PE of sewage sludge. Biogas can be converted into 12–16 kWhel/PE of electricity and 19–24 kWhth/PE of heat, which is sufficient for 30–40% of electrical and 80–100% of thermal autonomy. The WWTP autonomy can be increased using energy recovery from sewage sludge incineration by 60% for electricity and 100% of thermal energy (10–13 kWhel/PE and 30–38 kWhth/PE). However, energy for sewage sludge drying exceeds energy recovery, unless solar drying is performed. 2 The annual solar drying potential is estimated between 450–750 kgDM/m of solar drying surface. The lower heating value of dried sewage sludge is 2–3 kWh/kgDM and this energy can be used for assisting sludge drying or for energy generation and supply to WWTPs. Sewage sludge can be considered a renewable energy source and its incineration generates substantially lower greenhouse gases emissions than energy generation from fossil fuels.
    [Show full text]
  • Safe Use of Wastewater in Agriculture Safe Use of Safe Wastewater in Agriculture Proceedings No
    A UN-Water project with the following members and partners: UNU-INWEH Proceedings of the UN-Water project on the Safe Use of Wastewater in Agriculture Safe Use of Wastewater in Agriculture Wastewater Safe of Use Proceedings No. 11 No. Proceedings | UNW-DPC Publication SeriesUNW-DPC Coordinated by the UN-Water Decade Programme on Capacity Development (UNW-DPC) Editors: Jens Liebe, Reza Ardakanian Editors: Jens Liebe, Reza Ardakanian (UNW-DPC) Compiling Assistant: Henrik Bours (UNW-DPC) Graphic Design: Katja Cloud (UNW-DPC) Copy Editor: Lis Mullin Bernhardt (UNW-DPC) Cover Photo: Untited Nations University/UNW-DPC UN-Water Decade Programme on Capacity Development (UNW-DPC) United Nations University UN Campus Platz der Vereinten Nationen 1 53113 Bonn Germany Tel +49-228-815-0652 Fax +49-228-815-0655 www.unwater.unu.edu [email protected] All rights reserved. Publication does not imply endorsement. This publication was printed and bound in Germany on FSC certified paper. Proceedings Series No. 11 Published by UNW-DPC, Bonn, Germany August 2013 © UNW-DPC, 2013 Disclaimer The views expressed in this publication are not necessarily those of the agencies cooperating in this project. The designations employed and the presentation of material throughout this publication do not imply the expression of any opinion whatsoever on the part of the UN, UNW-DPC or UNU concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Unless otherwise indicated, the ideas and opinions expressed by the authors do not necessarily represent the views of their employers.
    [Show full text]
  • Sewage (Wastewater) Treatment*
    Sewage (Wastewater) Treatment* Sewage, or wastewater, includes all the water Primary Sewage Treatment from a household that is used for washing and toilet The usual first step in sewage treatment is called wastes. Rainwater flowing into street drains and primary sewage treatment (Figure 2). In this proc- some industrial wastes enter the sewage system in ess, large floating materials in incoming wastewater many cities. Sewage is mostly water and contains are screened out, the sewage is allowed to flow little particulate matter, perhaps only 0.03%. Even so, through settling chambers to remove sand and similar in large cities the solid portion of sewage can total gritty material, skimmers remove floating oil and more than 1000 tons of solid material per day. grease, and floating debris is shredded and ground. Until environmental awareness intensified, a After this step, the sewage passes through sedimenta- surprising number of large American cities had only tion tanks, where more solid matter settles out. Sew- a rudimentary sewage treatment system or no system age solids collecting on the bottom are called at all. Raw sewage, untreated or nearly so, was sim- sludge—at this stage, primary sludge. About 40– ply discharged into rivers or oceans. A flowing, well- 60% of suspended solids are removed from sewage aerated stream is capable of considerable self- by this settling treatment, and flocculating chemicals purification. Therefore, until expanding populations that increase the removal of solids are sometimes and their wastes exceeded this capability, this casual added at this stage. Biological activity is not particu- treatment of municipal wastes did not cause prob- larly important in primary treatment, although some lems.
    [Show full text]
  • The Causes of Urban Stormwater Pollution
    THE CAUSES OF URBAN STORMWATER POLLUTION Some Things To Think About Runoff pollution occurs every time rain or snowmelt flows across the ground and picks up contaminants. It occurs on farms or other agricultural sites, where the water carries away fertilizers, pesticides, and sediment from cropland or pastureland. It occurs during forestry operations (particularly along timber roads), where the water carries away sediment, and the nutrients and other materials associated with that sediment, from land which no longer has enough living vegetation to hold soil in place. This information, however, focuses on runoff pollution from developed areas, which occurs when stormwater carries away a wide variety of contaminants as it runs across rooftops, roads, parking lots, baseball diamonds, construction sites, golf courses, lawns, and other surfaces in our City. The oily sheen on rainwater in roadside gutters is but one common example of urban runoff pollution. The United States Environmental Protection Agency (EPA) now considers pollution from all diffuse sources, including urban stormwater pollution, to be the most important source of contamination in our nation's waters. 1 While polluted runoff from agricultural sources may be an even more important source of water pollution than urban runoff, urban runoff is still a critical source of contamination, particularly for waters near cities -- and thus near most people. EPA ranks urban runoff and storm-sewer discharges as the second most prevalent source of water quality impairment in our nation's estuaries, and the fourth most prevalent source of impairment of our lakes. Most of the U.S. population lives in urban and coastal areas where the water resources are highly vulnerable to and are often severely degraded by urban runoff.
    [Show full text]
  • Overview of Anaerobic Digestion for Municipal Solid Waste
    Global Methane Initiative Overview of Anaerobic Digestion for Municipal Solid Waste Updated: October 2016 1 About This Presentation . Introduces the process of anaerobic digestion (AD) for municipal solid waste (MSW) . Provides an overview of anaerobic digestion microbiology . Helps you understand how you might benefit from AD . Guides you through the key areas to consider when developing an AD project . Reviews the status of AD globally and provides selected case studies Using Bookmarks to Navigate This presentation contains bookmarks to help you navigate. Using the panel on the left, click the bookmark to jump to the slide. For Chrome users, the bookmarks can be viewed by clicking on the bookmark icon ( ) at the top right of the screen. 2 Global Methane Initiative GMI is a voluntary, multilateral partnership that aims to reduce global methane emissions and to advance the abatement, recovery and use of methane as a valuable clean energy source. OBJECTIVES BENEFITS . Reduce anthropogenic methane . Decline in methane concentrations emissions and advance the and methane utilization will result recovery and use of methane in: while: – Sustainability – Enhancing economic growth – Energy security – Promoting energy security – Health and safety – Improving local air quality – Profitability and public health. 3 GMI Partners . Grew from 14 to 42 Partner governments, plus the European Commission . Accounts for nearly 70% of global anthropogenic methane emissions 4 Main Menu 1. Introduction – what is AD and why should it interest me? Click here for an introduction to AD 2. Is AD suitable for me? Click here for more info about the potential for AD 3. Step-by-step guide Click here for detailed information about the key issues to consider when developing an AD project 4.
    [Show full text]
  • Tailings Pond Rehabilitation Project and Effluent Management System Upgrade, Baldivis
    Tailings pond rehabilitation project and effluent management system upgrade, Baldivis Western Mining Corporation Ltd Report and recommendation of the Environmental Protection Authority Environmental Protection Authority Bulletin 489 January 1991 Taiiings pond rehabiiitation project and effluent management system upgrade, Baldivis Western Mining Corporation Ltd Report and recommendation of the Environmentai Protection Authority ISBN 0 7309 3593 0 ISSN 1030 0120 Assessment Number 323 Contents Page Summary and recommendation 1. Background 1 2. The proposal 1 2.1 The tailings pond 2.2 Timing 3 3. Potential environmental impacts assessed by the Environmental Protection Authority 3 3.1 Lake Cooloongup 3 3.2 Terrestrial vegetation 3 4~ Conclusion 5 Figures 1 ~Tailings pond locality plan 2 2. Proposed timing of activities described in CER 4 Appendices 1 List of Commitments made by the Proponent 2. Proponent's response to issues raised during the assessment process 3. Llst of organisations and members of the public that made submissions Summary and recommendation In 1969, Western Mining Corporation Limited (WMC's) constructed a tailings pond in Baldivis, 7 km from the Company's Kwinana Nickel Refinery, to store solid and liquid wastes from the refinery. In March 1979, it was discovered that the tailings pond was leaking ammonium sulphate solution to the ground1..vater resulting in contamination of tr1e bottom ·third of the groundv;ater body (aquifer). it is not c!ear whether any subsequent environmental impacts have occurred and none has been properly identified at this time. However, this absence of obvious environmental impact could be attributed to the depth of the contamination within the aquifer and that it is overlain by a significant thickness of good quality groundwater.
    [Show full text]