State of Utah DIVISION of WASTE MANAGEMENT GARY R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Assessment of the Possible Reuse of Extractive Waste Coming from Abandoned Mine Sites: Case Study in Gorno, Italy
sustainability Article Assessment of the Possible Reuse of Extractive Waste Coming from Abandoned Mine Sites: Case Study in Gorno, Italy Neha Mehta 1,2, Giovanna Antonella Dino 1,*, Iride Passarella 3, Franco Ajmone-Marsan 4, Piergiorgio Rossetti 1 and Domenico Antonio De Luca 1 1 Department of Earth Sciences, University of Turin, 10125 Torino, Italy; [email protected] (N.M.); [email protected] (P.R.); [email protected] (D.A.D.L.) 2 School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, BT9 5AH, UK 3 Horizon s.r.l., 10095 Grugliasco (TO), Italy; [email protected] 4 Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Grugliasco (TO), Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-011-6705150 Received: 21 January 2020; Accepted: 17 March 2020; Published: 21 March 2020 Abstract: Supply of resources, a growing population, and environmental pollution are some of the main challenges facing the contemporary world. The rapid development of mining activities has produced huge amounts of waste. This waste, found in abandoned mine sites, provides the potential opportunity of extracting raw material. The current study, therefore, focuses on testing the validation of a shared methodology to recover extractive waste from abandoned mines, and applies this methodology to a case study in Gorno, northwest Italy. The methods focused on: (1) analyzing the impact of tailings and fine fraction of waste rock (<2 mm) on plants (Cress - Lepidium Sativum) to assess usability of both as soil additive, and (2) recovering raw materials from tailings and coarse fraction (>2 mm) of waste rock, by means of dressing methods like wet shaking table and froth flotation. -
Environmental Lmpact Mine Development and Tailings Disposal
.--L South Pocific Regionol Environm€nf Progromme ft -- Ittltt-'r'tl SPREP Reports ond Studies Series no, 95 WJ: Environmental lmPact Hffi Assessment Guidelines for Mine DeveloPment and ffi Tailings Disposal at Tropical Coastal Mines ar'' -il South Pocific Reglonol Environment Progromrre Environmental lmpact Assessment Guidelines for Mine Development and Tailings Disposal at Tropical Coastal Mines Prepared by Derek Ellls Assisted by Jacquellne Connolly SPREP Librry Cataloguing-in-Publication Dara Ellis,Dcsck Erwironmental impact ascsmcot guiddinca fq minc dcrrclopment 2ad t.ilingr dispod et topicel costal rnincs / grcprrcd \ p6d Ellir ard **itt"d bJ.cqudinc Connolly. - Apie,Vftstcrn Samoa : SPREB 1996. viii,26p. : 69., placcs, ublcs : 29 can- ISBN:982-04-0150-X 1. Environncntal impact rtetcmens.2. Mincs and rnincrrl rrsouroae - Erndrronmcnal aspccs, 3. Erwironmcnal monitori.g- I. C.onnolly, Jacquclinc. II. South Pacific Rcgiond Environmcnt Prognmmc. IV Tida 333.765 kcprrcd for putilication by thc South Pacifc Rcgionel Ernironmcot kogrlmmc, PO Bc 24o,Apb,Wcrtcrn Samoa @ South PacificRcgiorrl Environmcnt Plogrannc, 1996 Thc South Pecifc Rcgional En'ironncnt Plogrililnc authcbcs thc rcproduction of tcmud netcrid, wholc or parq in any form, providcd approprbtc acknorlcdgcmcot b gi\r€o. Original 3srt; F'ngfirh Editor Barbare Hcason Production Pctcr Erans Photographs Plare I (covcr and p.4) reproduced with permission of Island Copper Mine, BHP Minerals Canada Ltd; platc 6 (cover and p.6) and plate 5 reproduced with permission of Placcr Pacific Limited, Typeset in I l/13 Bembo and UR\7 Casde Printed on I l0gsm Tudor RP. (100% recyded) by ABC Printing, Brisbane, Australia Printed with finaocial assistance from AusAID Covcr photographs Top:The seale of uwu produaionfmm ninitg and milling prouses an be enotmorn, Hererun see the *uste mck dunry anil their redamation at klanil Coppa Mine, Canada. -
Municipal Solid Waste Landfill Operation and Management Workbook
MUNICIPAL SOLID WASTE LANDFILL OPERATION AND MANAGEMENT WORKBOOK Revised April 2018 Preface In many ways, constructing, operating and maintaining a municipal solid waste landfill is similar to constructing, operating, and maintaining a highway, dam, canal, bridge, or other engineered structure. The most important similarity is that landfills, like other engineered structures, must be constructed and operated in a manner that will provide safe, long-term, and reliable service to the communities they serve. Proper design, construction, operation, monitoring, closure and post-closure care are critical because after disposal the waste can be a threat to human health and the environment for decades to centuries. This workbook is intended to provide municipal landfill operators and managers in Wyoming with the fundamental knowledge and technical background necessary to ensure that landfills are operated efficiently, effectively, and in a manner that is protective of human health and the environment. This workbook contains information regarding basic construction and operation activities that are encountered on a routine basis at most landfills. The basic procedures and fundamental elements of landfill permitting, construction management, monitoring, closure, post-closure care, and financial assurance are also addressed. The workbook includes informative tips and information that landfill operators and managers can use to conserve landfill space, minimize the potential for pollution, reduce operating costs, and comply with applicable rules and regulations. In addition to this workbook, operators and managers need to become familiar with the Wyoming Solid Waste Rules and Regulations applicable to municipal solid waste. The DEQ also provides numerous guidelines that may help understand regulatory requirements in more detail. -
Five Facts About Incineration Five Facts About Incineration
Five facts about incineration Five facts about incineration Across the globe, cities are looking for ways to improve their municipal solid waste systems. In the search for services that are affordable, green and easy to implement, many cities are encouraged to turn to waste-to-energy (WtE) technologies, such as incineration.1 But, as found in WIEGO’s Technical Brief 11 (Waste Incineration and Informal Livelihoods: A Technical Guide on Waste-to-Energy Initiatives by Jeroen IJgosse), incineration is far from the perfect solution and, particularly in the Global South, can be less cost-effective, more complicated and can negatively impact the environment and informal waste workers’ livelihoods. Below, we have collected the top five issues highlighted in the study that show why this technology is a risky choice: 1. Incineration costs more than recycling. How incineration may be promoted: Incineration is a good economic decision because it reduces the costs associated with landfill operations while also creating energy that can be used by the community. The reality: • In 2016, the World Energy Council reported that, “energy generation from waste is a costly option, in comparison with other established power generation sources.” • Setting up an incineration project requires steep investment costs from the municipality. • For incineration projects to remain financially stable long-term, high fees are required, which place a burden on municipal finances and lead to sharp increases in user fees. • If incinerators are not able to collect enough burnable waste, they will burn other fuels (gas) instead. Contract obligations can force a municipality to make up the difference if an incinerator doesn’t burn enough to create the needed amount of energy. -
Litter Decomposition on Directly Revegetated Tailings at the Kidston Gold Mine, North Queensland, Australia1
LITTER DECOMPOSITION ON DIRECTLY REVEGETATED TAILINGS AT THE KIDSTON GOLD MINE, NORTH QUEENSLAND, AUSTRALIA1 Andrew H. Grigg2 Abstract. An investigation of litter decomposition was undertaken at the Kidston Gold Mine in north Queensland, Australia with the aim of assessing the status of nutrient cycling capacity on a directly-revegetated tailings dam. Weight losses from leaf litter contained in litterbags placed in a 5-year old revegetated section of the dam were not significantly different from losses observed at two unmined reference sites over the 18 month study period, representing a rapid improvement in nutrient cycling capacity in the reconstructed ecosystem. However, fitted decay curves for each site predicted a slower decay constant and a longer litter half-life on the dam, which indicated that full pre-mining capability had not yet been achieved. Weight loss in the reconstructed system was most constrained by the low build-up of microbial biomass within the surface soil, which is expected to take at least 10 years to achieve pre-mining levels. In contrast, weight losses in the unmined sites appeared more related to the abundance of invertebrate fauna rather than microbial content. The results presented here of a developing system suggest that the importance of different factors affecting decomposition will reflect those that are most limiting over the course of ecosystem recovery. Additional Key Words: nutrient cycling, ecosystem recovery, microbial biomass, invertebrates. _____________________ 1Paper presented at the 2002 National Meeting of the American Society of Mining and Reclamation, Lexington KY, June 9-13, 2002. Published by ASMR, 3134 Montavesta Rd., Lexington, KY 40502. -
Dust Emissions from Landfill Due to Deposition of Industrial Waste: a Case Study in Malmberget Mine, Sweden
Dust Emissions from Landfill due to Deposition of Industrial Waste: A Case Study in Malmberget Mine, Sweden Qi Jia, Yi Huang, Nadhir Al-Ansari and Sven Knutsson Civil, Mining and Nature Resources Engineering of Luleå University of Technology Abstract A great amount of industrial wastes are produced in Sweden every year. In 2008 there were 97.9 million tons of wasted generated, among which 93 million tons industrial waste were produced. 64.1% of industrial wastes were deposited in the landfill sites. Dust generation is one of the most important problems associated with industrial waste and landfills. The particulate dust emissions come from the industrial waste may contain heavy metal and produce environmental problems and potential health risks. Active and passive samplers, deposition pans are common equipment to collect dust samples. Real-time monitors use laser diffraction to recording continuous dust concentration. Dust emission from Malmberget mine in Sweden was analyzed as a case study. Dust was collected by NILU deposit gauge from 26 stations. Generally speaking the amount of dust fallout was decreasing with time because of implemented dust control methods. During the period August 2009 to August 2010, among all the measuring stations through the year, the maximum and the minimum value were 1284 g/100m2/30d and 9 g/100m2/30d. Two sources of dust generation were identified. The first was located close to the open pit, and the second near the current mining industrial center. The dust generation due to road construction was calculated. On the other hand dust generation was also closely related to weather conditions. -
Health Effects of Residence Near Hazardous Waste Landfill Sites: a Review of Epidemiologic Literature
Health Effects of Residence Near Hazardous Waste Landfill Sites: A Review of Epidemiologic Literature Martine Vrijheid Environmental Epidemiology Unit, Department of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom This review evaluates current epidemiologic literature on health effects in relation to residence solvents, polychlorinated biphenyls (PCBs), near landfill sites. Increases in risk of adverse health effects (low birth weight, birth defects, certain and heavy metals, have shown adverse effects types of cancers) have been reported near individual landfill sites and in some multisite studies, on human health or in animal experiments. and although biases and confounding factors cannot be excluded as explanations for these A discussion of findings from either epi findings, they may indicate real risks associated with residence near certain landfill sites. A general demiologic or toxicologic research on health weakness in the reviewed studies is the lack of direct exposure measurement. An increased effects related to specific chemicals is beyond prevalence of self-reported health symptoms such as fatigue, sleepiness, and headaches among the scope of this review. residents near waste sites has consistently been reported in more than 10 of the reviewed papers. It is difficult to conclude whether these symptoms are an effect of direct toxicologic action of Epidemiologic Studies on chemicals present in waste sites, an effect of stress and fears related to the waste site, or an Health Effects of Landfill Sites risks to effect of reporting bias. Although a substantial number of studies have been conducted, The majority of studies evaluating possible is insufficient exposure information and effects health from landfill sites are hard to quantify. -
Appendix a Basics of Landfill
APPENDIX A BASICS OF LANDFILL GAS Basics of Landfill Gas (Methane, Carbon Dioxide, Hydrogen Sulfide and Sulfides) Landfill gas is produced through bacterial decomposition, volatilization and chemical reactions. Most landfill gas is produced by bacterial decomposition that occurs when organic waste solids, food (i.e. meats, vegetables), garden waste (i.e. leaf and yardwaste), wood and paper products, are broken down by bacteria naturally present in the waste and in soils. Volatilization generates landfill gas when certain wastes change from a liquid or solid into a vapor. Chemical reactions occur when different waste materials are mixed together during disposal operations. Additionally, moisture plays a large roll in the speed of decomposition. Generally, the more moisture, the more landfill gas is generated, both during the aerobic and anaerobic conditions. Landfill Gas Production and Composition: In general, during anaerobic conditions, the composition of landfill gas is approximately 50 percent methane and 50 percent carbon dioxide with trace amounts (<1 percent) of nitrogen, oxygen, hydrogen sulfide, hydrogen, and nonmethane organic compounds (NMOCs). The more organic waste and moisture present in a landfill, the more landfill gas is produced by the bacteria during decomposition. The more chemicals disposed in a landfill, the more likely volatile organic compounds and other gasses will be produced. The Four Phases of Bacterial Decomposition: “Bacteria decompose landfill waste in four phases. The composition of the gas produced changes with each of the four phases of decomposition. Landfills often accept waste over a 20-to 30-year period, so waste in a landfill may be undergoing several phases of decomposition at once. -
Introduction to Municipal Solid Waste Disposal Facility Criteria C R Training Module Training
Solid Waste and Emergency Response (5305W) EPA530-K-05-015 A R Introduction to Municipal Solid Waste Disposal Facility Criteria C R Training Module Training United States Environmental Protection September 2005 Agency SUBTITLE D: MUNICIPAL SOLID WASTE DISPOSAL FACILITY CRITERIA CONTENTS 1. Introduction ............................................................................................................................. 1 2. Regulatory Summary .............................................................................................................. 2 2.1 Subpart A: General Requirements ................................................................................... 3 2.2 Subpart B: Location Restrictions ..................................................................................... 6 2.3 Subpart C: Operating Criteria .......................................................................................... 8 2.4 Subpart D: Design Criteria ..............................................................................................12 2.5 Subpart E: Groundwater Monitoring and Corrective Action ..........................................12 2.6 Subpart F: Closure and Post-Closure Care ......................................................................17 2.7 Subpart G: Financial Assurance Criteria .........................................................................19 Municipal Solid Waste Disposal Facility Criteria - 1 1. INTRODUCTION This module provides a summary of the regulatory criteria for municipal solid waste -
Inert Landfill Operations Inert Waste Definition
Inert Landfill Operations Inert Waste Definition North Dakota Administrative Code 33-20-01.1-03 (26) defines inert waste as: “Inert waste” means nonputrescible solid waste which will not generally contaminate water or form a contaminated leachate. Inert waste does not serve as food for vectors. Inert waste includes, but is not limited to: construction and demolition material such as metal, wood, bricks, masonry and cement concrete; asphalt concrete; metal; tree branches; bottom ash from coal fired boilers; and waste coal fines from air pollution control equipment. Acceptable Wastes for Disposal? Yes (although concrete could No (aerosol cans, chemical be recycled) containers and electronics are not inert) Acceptable Wastes for Disposal? No (household waste could attract No (could attract vectors, vectors, create leachate putrescible) and/or be putrescible) Waste Collected for Non-Disposal Management • Major Appliances: – Freezers, Refrigerators, Ovens, Water Heaters, etc. – May require Freon removal with licensed equipment or removal of residual liquids – Aka “White Goods” • Scrap Metal Waste Collected for Non-Disposal Management • Grass and Leaves: – Manage by Composting – Separate from Burn Pile and Disposal Area – Soil Amendment for Cover or for Contractor/Resident Landscaping Projects – Run-off Management Waste Collected for Non-Disposal Management • Electronics*: No! – Challenging waste to recycle: • Storage • Outlet • May Contain Heavy Metals and Other Toxic Substances – Aka “E-Waste” or “Brown Goods” – Recycling Facilities and MSW -
How a Landfill Works Presented By: American Environmental Landfill, Inc
How a Landfill Works Presented by: American Environmental Landfill, Inc. 1420 W. 35th Street, Suite B Tulsa, OK 74107 Phone: 918-245-7786 Fax: 918-245-7774 How a Landfill Works So you have just finished your meal at a fast food restaurant and you throw your uneaten food, food wrappers, drink cup, utensils and napkins into the trash can. Odds are you don’t think about that waste again. On trash pickup day in your neighborhood, you push your can out to the curb, and workers dump the contents into a big truck and haul it away. You don’t have to think about that waste again, either. But maybe you have wondered, as you watch the trash truck pull away, just where that garbage ends up. Americans generate trash at an astonishing rate of four to seven pounds per day per person, which translates to at least 600,000 tons per day or at least 210 million tons per year! This is almost twice as much trash per person as most other major countries. What happens to this trash? Some gets recycled or recovered and some is burned, but the majority is buried in landfills. In this overview of how a landfill works, we will examine how a landfill is made, what happens to the trash in landfills, what risks are associated with a landfill and how these risks are solved. How is Trash Disposed of? The trash production in the United States has almost tripled since 1960 (Figure 2). This trash is handled in various ways. About 27 % of the trash is recycled or composted, 16% is burned and 57% is buried in landfills. -
Landfills Are Bad, but Incinerators (With Ash Landfilling) Are Worse
Landfills are bad, but incinerators (with ash landfilling) are worse Incinerators do not avoid landfills. For every 100 tons of trash burned, 30 tons become toxic ash that goes to landfills. The other 70 tons don’t turn into energy, but become air pollution. In terms of air pollution, and groundwater impacts, burning waste then burying ash is far worse than direct landfilling, and both are worse than a Zero Waste approach.1 A Zero Waste approach means zero incineration and at least 90% reduction from landfilling, with residuals biologically stabilized prior to landfilling, to minimize odors, leachate, gas formation and toxic migration. The most recent data comparing incinerators to landfills is from air emissions data provided by the Pennsylvania Department of Environmental Protection (DEP). For 2017, this includes data on all six trash incinerators in PA and 17 landfills in DEP’s southeast and southcentral regions. Incinerators are __ Pollutant (all data in tons) Incinerators Landfills times as polluting Greenhouse Gases (CO2e) 482,770 268,763 1.8 Total Health Damaging Pollution 1,975 1,236 1.6 Carbon Monoxide (CO) 119 22 5 Hydrochloric Acid (HCl) 17 1 21 Nitrogen Oxides (NOx) 625 6 105 Particulate Matter, Condensable 25 1 17 Particulate Matter (PM10) 26 17 1.6 Fine Particulate Matter (PM2.5) 17 4 5 Sulfur Oxides (SOx) 55 3 19 Total Suspended Particulate (TSP) 2,178 2,486 0.88 Volatile Organic Compounds (VOC) 3 9 0.34 This shows that incineration is 80% worse than landfills for the climate, and that other pollutants that directly harm human health are 60% worse from incineration.