Special Issue on School Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Special Issue on School Mathematics A Newsletter from Azim Premji Foundation For Private Circulation only Issue XIV, March 2010 8 12 14 2 10 6 4 9 16 Special Issue on School Mathematics A The Broad Picture D The Role of Assessment B Some Perspectives E Personal Reflections on Mathematics C In the Classroom F Book Review and Resources In this issue In Also inside: Trivia, Logico-Math Brain Teasers and more.... Editorial Team D D Karopady, Madhumita Sudhakar, Neeraja Raghavan, Nidhi Tiwari, S. Giridhar and Umashanker Periodi Advisors to the Issue Hriday Kant Dewan, N. Venu and Rohit Dhankar Cartoons by Balraj KN Email : [email protected] Design Dhanesh, Prajeesh, Shubhangi, Sam Adroit Human Creative Services Pvt. Ltd., Email : [email protected] Printed by Pragathi Prints Bangalore - 560 103 Please Note: All views and opinions expressed in this issue are that of the authors and Azim Premji Foundation bears no responsibility for the same. From The Editor t is a pleasure to bring you this Special Issue of We found it immensely Learning Curve on Mathematics. It is the third enriching to read the essays Iin the series to be devoted to a particular of students to understand theme or subject, the previous ones being on what goes through their minds and souls as they comes Science and Language learning. to terms with Math? Putting together this special issue on Mathematics Nearly 20 years ago in Delhi, I accompanied my has been a precious learning experience for us. daughter for admission to kindergarten class. The Unlike the issues on Science and Language, one head mistress after the usual ice breakers, asked realized that one must address all the extreme the child, whether one is bigger or two is bigger. The emotions that surface at the very mention of Math: child immediately said one. To which the kind lady fear, hate, terror and absolute love and ecstasy too. opened both her palms and asked the child whether Topics that we thought were obvious turned out to she wanted one chocolate or two. The child took be not so obvious. In the very process of discussing two and the lady repeated her question. Is one and finalizing the menu, our own perspective about bigger or two? One repeated the child firmly. To the the subject grew visibly. eternal credit of the head mistress, she promptly admitted the child. Over the years nothing seems to As always, we reached out to a distinguished panel have changed because last week as I flipped of contributors and as usual we have run up a huge through the cartoon strip in a newspaper I saw a debt of gratitude. Each one of the contributors person presumably a teacher ask a child, "If I had responded to our unreasonable deadlines with four apples in this hand and four in the other hand, tolerance and enthusiasm. One contributor, what would I have?" To which the child answers very correctly "Really big hands!” unfailingly humorous at all times told me that I might as well sign my letters as "naggingly yours" Your views on this edition of Learning Curve are instead of the customary "sincerely yours". Prof H. most important. While your encouragement has Subramanian ignored ill health and wedding duties been the tonic, your candid feedback helps us to in the family to submit his article in time. With that continuously improve subsequent editions. one gesture he has forever a special place in our hearts. It is only such support that enables us to S. Giridhar bring out Learning Curve. Head - Programs & Advocacy We are hopeful that every article will strike a chord in you; for instance while one article discusses the very nature of Mathematics the other traces the history of the subject; similarly while one describes the pedagogy of the subject the other shares insights and the practical perspective of the teacher. And so on. Pg No: 3 CONTENTS Mother's Math and the Art of Estimation 40 - Nat Ramachandran Issue XIV : March, 2010 Special Issue on School Mathematics What Ails Mathematics Teaching? 42 - D D Karopady SECTION A: The Broad Picture Ancient India and Mathematics 48 - Sundar Sarukkai A Culture of Enjoying Mathematics 7 - Shashidhar Jagadeeshan How Sound are our Mathematics Teachers? Insights from the SchoolTELLS The Nature of Mathematics and its Survey 52 Relation to School Education 12 - Amitabha Mukherji - Geeta Gandhi Kingdon & Rukmini Banerji Pedagogy of Mathematics 16 Section C: In the Classroom - Hriday Kant Dewan Computational & Mathematical Concepts in Arts and Sciences 23 - Krishnan Balasubramanian Meaningful Teaching of Mathematics 57 - Vijay Gupta & Devika Nadig Culture in the Learning of Mathematics 26 - K Subramaniam Section B: Some Perspectives Concept Attainment Model 60 - Arun Naik Number: The Role of Pattern and Play Dialogue in Math Teaching: Realities and in its Teaching Challenges - Shailesh Shirali 30 - Ekta Sharma 63 Mathematics and the National The Role of Concrete Experiences in Curriculum Framework 34 Learning Primary School Math 66 - Indu Prasad - Meena Suresh Important Concepts in Primary School The Value of Drill and Practice in Math: A Mathematics 37 Perspective 69 - Kamala Mukunda - Uma Harikumar 2 + 2 = ? A Case for Early Identification Learning to Add: Are we Subtracting the of Dyscalculia 72 Importance of the Home Environment? - Sulata Shenoy - Amita Chudgar 114 Fold Paper and Learn Mathematics Confessions of a Victim of Mathematics - V S S Sastry 77 - Indu Prasad 117 Broomstick Tables 81 - Arvind Gupta The Elusive “Mr. Math” 120 - Shwetha Ram Section D: The Role of Assessment Math for the Non-Mathematical Soul 122 Lessons from the International PISA - Devika Narayan Project 84 - Ross Turner Unsung Heroes: What is it that makes them Stand Out? 124 - Anant Gangola Response Analysis: Understanding Children from their Frame of Reference 88 - Abhishek S Rathore & Falguni Sarangi Engineers, Accountants and Mathematics 126 - V S Kumar Insights about Student Learning from an Adaptive Learning Math Program - Sridhar Rajagopalan 93 Section F: Book Review and Resources Section E: Personal Reflections on Mathematics Two Books Worth a Read 130 Ten Great Mathematicians 101 - Neeraja Raghavan - Hari Subramanian Digital Resources for Mathematics The Hypocrisy in Math 109 Teachers 133 - S C Behar - S N Gananath Resource Kit Math Missionary - P. K. Srinivasan 111 136 - Arvind Gupta - Nidhi Tiwari & Madhumita Sudhakar s e c t i o n A T H E The Broad B R OPicture A D P I C T U R E 1 A Culture of Enjoying Mathematics Shashidhar Jagadeeshan Introduction and teachers have about Mathematics? And perhaps t appears that whether we like it or not, Mathematics most importantly, what are the pervades all aspects of our lives. Whether you are a factors that motivate humans to farmer or a techie, a comfortable relationship with I learn? In this article I hope to Mathematics, and competency at the level at which one begin such an exploration by first uses it, is a requisite in an equitable society. Some will argue describing the various ways in which Mathematics is viewed that even if the content of Mathematics learnt at school is and experienced, and how these views might affect forgotten, students will retain the ability to think clearly and curriculum if applied in isolation. I then go on to look at logically (an essential life skill) because of their exposure to curriculum design and pedagogy and see if we can truly mathematical reasoning. The tacit assumption here is that create a culture of enjoying Mathematics not just for a elite learning Mathematics will not only help us in our daily lives few but for all. but will also enhance the quality of our life. How ironic that for a vast majority their experience with Mathematics is so The Blind Men and Mathematics contrary to this assumption. Enough has been written We are all familiar with the famous Jataka tale about the bemoaning the state of Mathematics education the world blind men and the elephant. Each one makes tactile contact over, and the term 'Mathphobia' has become part of with a different part of the elephant, and comes up with common parlance. A major reason for school dropout is the descriptions ranging from a wall to a rope! Mathematics too inability to cope with Mathematics; it seems to be a suffers from partial perceptions. Perhaps the mystery, universal phenomenon that many students fear and dread depth and richness of Mathematics is revealed in the fact Mathematics. Sadly, this feeling often persists into that it can be seen in so many different ways. Let us look at adulthood. some of these perceptions and how they impact curriculum There have been many attempts to reform Mathematics design and pedagogy. education, and huge sums of money have been dedicated Mathematics as accountancy: For a large majority of to this cause. Unfortunately, the motives for reform are people, Mathematics is synonymous with accountancy. suspect and, in my opinion, this is part of the problem. Perhaps it is not unreasonable to say that the bulk of Advanced nations want to improve their citizens' humanity uses Mathematics to compare prices, make sure Mathematics competency out of a fear that citizens of rival they are not being cheated of the correct change, perhaps nations are outperforming them. Emerging nations want to calculate interests, discounts and rebates; some may even improve their Matheducation so that they can create a calculate areas and volumes. The more advanced may use 'knowledge society'. Humans empowered with knowledge it in book keeping. It is also true that many discoveries in are seen as a great asset in the market place. Reforms arithmetic probably came from the need to keep records of based on these motivations do not seem to have made land and accounts of trade.
Recommended publications
  • Sripati: an Eleventh-Century Indian Mathematician
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector HlSTORlA MATHEMATICA 12 (1985). 2.544 Sripati: An Eleventh-Century Indian Mathematician KRIPA NATH SINHA University of Kalyani, P.O. Kalyani, District Nadia, West Bengal, India Srlpati (fl. A.D. 1039-1056) is best known for his writings on astronomy, arithmetic, mensuration, and algebra. This article discusses Sripati’s arithmetic, the Ganitatilaka, as well as the arithmetical and algebraic chapters of the SiddhdntaSekhara. In addition to discussing the kinds of problems considered by Srlpati and the techniques he used to solve them, the article considers the sources upon which Sripati drew. A glossary of Indian treatises and technical terms is provided. o 1985 Academic PKSS. IOC. Srlpati (actif vers 1039-1056 ap. J.C.) est surtout connu pour ses Ccrits sur I’astronomie, I’arithmetique, le toise, et I’algebre. Dans cet article, nous abordons I’arithmetique de Sripati, le Ganitatilaka, de m&me que les chapitres arithmetiques et algebriques de son SiddhrintaSekh’ara. En plus d’aborder les types de problemes Ctudies par Sripati et les techniques qu’il a employees pour les resoudre, nous exminons aussi les sources auxquelles Srlpati fait appel. Un glossaire des trait& et des termes techniques indiens complete cet article. 0 1985 Academic Press, Inc. Sripati, der zwischen 1039 und 1056 wirkte, ist vor allem durch seine Schriften tiber Astronomie, Arithmetik, Mensuration und Algebra bekannt. In diesem Beitrag werden seine Arithmetik, die Gavitatilaka, und die arithmetischen und algebraischen Kapitel aus SiddhhtaSekhara behandelt. Neben der Art der Probleme, die Srlpati studierte, und den von ihm verwendeten Losungsmethoden werden such die von ihm benutzten Quellen be- trachtet.
    [Show full text]
  • Notices of the American Mathematical Society June/July 2006
    of the American Mathematical Society ... (I) , Ate._~ f.!.o~~Gffi·u.­ .4-e.e..~ ~~~- •i :/?I:(; $~/9/3, Honoring J ~ rt)d ~cLra-4/,:e~ o-n. /'~7 ~ ~<A at a Gift from fL ~ /i: $~ "'7/<J/3. .} -<.<>-a.-<> ~e.Lz?-1~ CL n.y.L;; ro'T>< 0 -<>-<~:4z_ I Kumbakonam li .d. ~ ~~d a. v#a.d--??">ovt<.·c.-6 ~~/f. t:JU- Lo,.,do-,......) ~a page 640 ~!! ?7?.-L ..(; ~7 Ca.-uM /3~~-d~ .Y~~:Li: ~·e.-l a:.--nd '?1.-d- p ~ .di.,r--·c/~ C(c£~r~~u . J~~~aq_ f< -e-.-.ol ~ ~ ~/IX~ ~ /~~ 4)r!'a.. /:~~c~ •.7~ The Millennium Grand Challenge .(/.) a..Lu.O<"'? ...0..0~ e--ne_.o.AA/T..C<.r~- /;;; '7?'E.G .£.rA-CLL~ ~ ·d ~ in Mathematics C>n.A..U-a.A-d ~~. J /"-L .h. ?n.~ ~?(!.,£ ~ ~ &..ct~ /U~ page 652 -~~r a-u..~~r/a.......<>l/.k> 0?-t- ~at o ~~ &~ -~·e.JL d ~~ o(!'/UJD/ J;I'J~~Lcr~~ 0 ??u£~ ifJ>JC.Qol J ~ ~ ~ -0-H·d~-<.() d Ld.orn.J,k, -F-'1-. ~- a-o a.rd· J-c~.<-r:~ rn-u-{-r·~ ~'rrx ~~/ ~-?naae ~~ a...-'XS.otA----o-n.<l C</.J.d:i. ~~~ ~cL.va- 7 ??.L<A) ~ - Ja/d ~~ ./1---J- d-.. ~if~ ~0:- ~oj'~ t1fd~u: - l + ~ _,. :~ _,. .~., -~- .. =- ~ ~ d.u. 7 ~'d . H J&."dIJ';;;::. cL. r ~·.d a..L- 0.-n(U. jz-o-cn-...l- o~- 4; ~ .«:... ~....£.~.:: a/.l~!T cLc.·£o.-4- ~ d.v. /-)-c~ a;- ~'>'T/JH'..,...~ ~ d~~ ~u ~­ ~ a..t-4. l& foLk~ '{j ~~- e4 -7'~ -£T JZ~~c~ d.,_ .&~ o-n ~ -d YjtA:o ·C.LU~ ~or /)-<..,.,r &-.
    [Show full text]
  • Secondary Indian Culture and Heritage
    Culture: An Introduction MODULE - I Understanding Culture Notes 1 CULTURE: AN INTRODUCTION he English word ‘Culture’ is derived from the Latin term ‘cult or cultus’ meaning tilling, or cultivating or refining and worship. In sum it means cultivating and refining Ta thing to such an extent that its end product evokes our admiration and respect. This is practically the same as ‘Sanskriti’ of the Sanskrit language. The term ‘Sanskriti’ has been derived from the root ‘Kri (to do) of Sanskrit language. Three words came from this root ‘Kri; prakriti’ (basic matter or condition), ‘Sanskriti’ (refined matter or condition) and ‘vikriti’ (modified or decayed matter or condition) when ‘prakriti’ or a raw material is refined it becomes ‘Sanskriti’ and when broken or damaged it becomes ‘vikriti’. OBJECTIVES After studying this lesson you will be able to: understand the concept and meaning of culture; establish the relationship between culture and civilization; Establish the link between culture and heritage; discuss the role and impact of culture in human life. 1.1 CONCEPT OF CULTURE Culture is a way of life. The food you eat, the clothes you wear, the language you speak in and the God you worship all are aspects of culture. In very simple terms, we can say that culture is the embodiment of the way in which we think and do things. It is also the things Indian Culture and Heritage Secondary Course 1 MODULE - I Culture: An Introduction Understanding Culture that we have inherited as members of society. All the achievements of human beings as members of social groups can be called culture.
    [Show full text]
  • Ancient India and Mathematics Sundar Sarukkai
    11 Ancient India and Mathematics Sundar Sarukkai ne way to approach this very broad topic is to list There are some things in all that the ancient Indian mathematicians did – common between Indian and Oand they did do an enormous amount of Greek Mathematics but there Mathematics: arithmetic (including the creation of decimal are also significant differences – place notation, the invention of zero), trigonometry (the not just in style but also in the detailed tables of sines), algebra (binomial theorem, larger world view (which influences, for solving quadratic equations), astronomy and astrology example, the completely different ways of understanding (detailed numerical calculations). Later Indian the nature of numbers in the Greek and the Indian Mathematics, the Kerala school, discovered the notions of traditions). This difference has led many writers to claim infinite series, limits and analysis which are the precursors that Indians (and Chinese among others) did not possess to calculus. the notions of Science and Mathematics. The first, and enduring response, to the question of Science and Since these details are easily available I am not going to list Mathematics in ancient non-Western civilizations is one of them here. What is of interest to me is to understand in skepticism. Did the Indians and Chinese really have Science what sense these activities were 'mathematical'. By doing and Mathematics as we call it now? This skepticism has so, I am also responding to the charge that these people been held over centuries and by the most prominent were not doing Mathematics but something else. This is a thinkers of the west (and is in fact so widespread as to charge similar to that addressed to Science in ancient India include claims that Indians did not 'have' philosophy, logic – the claim here is that what was being done in metallurgy, and even religion).
    [Show full text]
  • Equation Solving in Indian Mathematics
    U.U.D.M. Project Report 2018:27 Equation Solving in Indian Mathematics Rania Al Homsi Examensarbete i matematik, 15 hp Handledare: Veronica Crispin Quinonez Examinator: Martin Herschend Juni 2018 Department of Mathematics Uppsala University Equation Solving in Indian Mathematics Rania Al Homsi “We owe a lot to the ancient Indians teaching us how to count. Without which most modern scientific discoveries would have been impossible” Albert Einstein Sammanfattning Matematik i antika och medeltida Indien har påverkat utvecklingen av modern matematik signifi- kant. Vissa människor vet de matematiska prestationer som har sitt urspring i Indien och har haft djupgående inverkan på matematiska världen, medan andra gör det inte. Ekvationer var ett av de områden som indiska lärda var mycket intresserade av. Vad är de viktigaste indiska bidrag i mate- matik? Hur kunde de indiska matematikerna lösa matematiska problem samt ekvationer? Indiska matematiker uppfann geniala metoder för att hitta lösningar för ekvationer av första graden med en eller flera okända. De studerade också ekvationer av andra graden och hittade heltalslösningar för dem. Denna uppsats presenterar en litteraturstudie om indisk matematik. Den ger en kort översyn om ma- tematikens historia i Indien under många hundra år och handlar om de olika indiska metoderna för att lösa olika typer av ekvationer. Uppsatsen kommer att delas in i fyra avsnitt: 1) Kvadratisk och kubisk extraktion av Aryabhata 2) Kuttaka av Aryabhata för att lösa den linjära ekvationen på formen 푐 = 푎푥 + 푏푦 3) Bhavana-metoden av Brahmagupta för att lösa kvadratisk ekvation på formen 퐷푥2 + 1 = 푦2 4) Chakravala-metoden som är en annan metod av Bhaskara och Jayadeva för att lösa kvadratisk ekvation 퐷푥2 + 1 = 푦2.
    [Show full text]
  • Bringing the Buddha Closer: the Role of Venerating the Buddha in The
    BRINGING THE BUDDHA CLOSER: THE ROLE OF VENERATING THE BUDDHA IN THE MODERNIZATION OF BUDDHISM IN SRI LANKA by Soorakkulame Pemaratana BA, University of Peradeniya, 2001 MA, National University of Singapore, 2005 Submitted to the Graduate Faculty of The Dietrich School of Arts & Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2017 UNIVERSITY OF PITTSBURGH THE DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Soorakkulame Pemaratana It was defended on March 24, 2017 and approved by Linda Penkower, PhD, Associate Professor, Religious Studies Joseph Alter, PhD, Professor, Anthropology Donald Sutton, PhD, Professor Emeritus, Religious Studies Dissertation Advisor: Clark Chilson, PhD, Associate Professor, Religious Studies ii Copyright © by Soorakkulame Pemaratana 2017 iii BRINGING THE BUDDHA CLOSER: THE ROLE OF VENERATING THE BUDDHA IN THE MODERNIZATION OF BUDDHISM IN SRI LANKA Soorakkulame Pemaratana, PhD. University of Pittsburgh, 2017 The modernization of Buddhism in Sri Lanka since the late nineteenth century has been interpreted as imitating a Western model, particularly one similar to Protestant Christianity. This interpretation presents an incomplete narrative of Buddhist modernization because it ignores indigenous adaptive changes that served to modernize Buddhism. In particular, it marginalizes rituals and devotional practices as residuals of traditional Buddhism and fails to recognize the role of ritual practices in the modernization process. This dissertation attempts to enrich our understanding of modern and contemporary Buddhism in Sri Lanka by showing how the indigenous devotional ritual of venerating the Buddha known as Buddha-vandanā has been utilized by Buddhist groups in innovative ways to modernize their religion.
    [Show full text]
  • Ancient Indian Mathematics – a Conspectus*
    GENERAL ARTICLE Ancient Indian Mathematics – A Conspectus* S G Dani India has had a long tradition of more than 3000 years of pursuit of Mathematical ideas, starting from the Vedic age. The Sulvasutras (which in- cluded Pythagoras theorem before Pythagoras), the Jain works, the base 10 representation (along with the use of 0), names given to powers of 10 S G Dani is a Distinguished up to 1053, the works of medieval mathematicians Professor at the Tata motivated by astronomical studies, and ¯nally Institute of Fundamental Research, Mumbai. He the contributions of the Kerala school that came obtained his bachelor’s, strikingly close to modern mathematics, repre- master’s and PhD degrees sent the various levels of intellectual attainment. from the University of Mumbai. His areas of There is now increasing awareness around the world that interest are dynamics and as one of the ancient cultures, India has contributed sub- ergodic theory of flows on stantially to the global scienti¯c development in many homogeneous spaces, spheres, and mathematics has been one of the recognized probability measures on Lie groups areas in this respect. The country has witnessed steady and history of mathematics. mathematical developments over most part of the last He has received 3,000 years, throwing up many interesting mathemati- several awards including cal ideas well ahead of their appearance elsewhere in the the Ramanujan Medal and the world, though at times they lagged behind, especially in TWAS Prize. the recent centuries. Here are some episodes from the fascinating story that forms a rich fabric of the sustained * This is a slightly modified ver- intellectual endeavour.
    [Show full text]
  • Mathematics in India Is Published by Princeton University Press and Copyrighted, © 2008, by Princeton University Press
    COPYRIGHT NOTICE: Kim Plofker: Mathematics in India is published by Princeton University Press and copyrighted, © 2008, by Princeton University Press. All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher, except for reading and browsing via the World Wide Web. Users are not permitted to mount this file on any network servers. Follow links for Class Use and other Permissions. For more information send email to: [email protected] Chapter One Introduction 1.1 BACKGROUND AND AIMS OF THIS BOOK The mathematical heritage of the Indian subcontinent has long been recog­ nized as extraordinarily rich. For well over 2500 years, Sanskrit texts have recorded the mathematical interests and achievements of Indian scholars, scientists, priests, and merchants. Hundreds of thousands of manuscripts in India and elsewhere attest to this tradition, and a few of its highlights— decimal place value numerals, the use of negative numbers, solutions to indeterminate equations, power series in the Kerala school—have become standard episodes in the story told by general histories of mathematics. Un­ fortunately, owing mostly to various difficulties in working with the sources, the broader history of Indian mathematics linking those episodes still re­ mains inaccessible to most readers. This book attempts to address that lack. The European scholars who encountered Indian mathematical texts in the eighteenth and nineteenth centuries were often completely at sea concerning the ages of the texts, their interrelationships, and even their identities. The sheer number of such works and the uncertainty surrounding even the most basic chronology of Sanskrit literature gave rise to great confusion, much of which survives to this day in discussions of Indian mathematics.
    [Show full text]
  • Bibliography
    Bibliography A. Aaboe, Episodes from the Early History of Mathematics (Random House, New York, 1964) A.D. Aczel, Fermat’s Last Theorem: Unlocking the Secret of an Ancient Mathematical Problem (Four Walls Eight Windows, New York, 1996) D. Adamson, Blaise Pascal: Mathematician, Physicist, and Thinker About God (St. Martin’s Press, New York, 1995) R.P. Agarwal, H. Agarwal, S.K. Sen, Birth, Growth and Computation of Pi to ten trillion digits. Adv. Differ. Equat. 2013, 100 (2013) A.A. Al-Daffa’, The Muslim Contribution to Mathematics (Humanities Press, Atlantic Highlands, 1977) A.A. Al-Daffa’, J.J. Stroyls, Studies in the Exact Sciences in Medieval Islam (Wiley, New York, 1984) E.J. Aiton, Leibniz: A Biography (A. Hilger, Bristol, Boston, 1984) R.E. Allen, Greek Philosophy: Thales to Aristotle (The Free Press, New York, 1966) G.J. Allman, Greek Geometry from Thales to Euclid (Arno Press, New York, 1976) E.N. da C. Andrade, Sir Issac Newton, His Life and Work (Doubleday & Co., New York, 1954) W.S. Anglin, Mathematics: A Concise History and Philosophy (Springer, New York, 1994) W.S. Anglin, The Queen of Mathematics (Kluwer, Dordrecht, 1995) H.D. Anthony, Sir Isaac Newton (Abelard-Schuman, New York, 1960) H.G. Apostle, Aristotle’s Philosophy of Mathematics (The University of Chicago Press, Chicago, 1952) R.C. Archibald, Outline of the history of mathematics.Am. Math. Monthly 56 (1949) B. Artmann, Euclid: The Creation of Mathematics (Springer, New York, 1999) C.N. Srinivasa Ayyangar, The History of Ancient Indian Mathematics (World Press Private Ltd., Calcutta, 1967) A.K. Bag, Mathematics in Ancient and Medieval India (Chaukhambha Orientalia, Varanasi, 1979) W.W.R.
    [Show full text]
  • Profiles and Prospects*
    Indian Journal of History of Science, 47.3 (2012) 473-512 MATHEMATICS AND MATHEMATICAL RESEARCHES IN INDIA DURING FIFTH TO TWENTIETH CENTURIES — PROFILES AND PROSPECTS* A K BAG** (Received 1 September 2012) The Birth Centenary Celebration of Professor M. C. Chaki (1912- 2007), former First Asutosh Birth Centenary Professor of Higher Mathematics and a noted figure in the community of modern geometers, took place recently on 21 July 2012 in Kolkata. The year 2012 is also the 125th Birth Anniversary Year of great mathematical prodigy, Srinivas Ramanujan (1887-1920), and the Government of India has declared 2012 as the Year of Mathematics. To mark the occasion, Dr. A. K. Bag, FASc., one of the students of Professor Chaki was invited to deliver the Key Note Address. The present document made the basis of his address. Key words: Algebra, Analysis, Binomial expansion, Calculus, Differential equation, Fluid and solid mechanics, Function, ISI, Kerala Mathematics, Kut..taka, Mathemtical Modeling, Mathematical Societies - Calcutta, Madras and Allahabad, Numbers, Probability and Statistics, TIFR, Universities of Calcutta, Madras and Bombay, Vargaprakr.ti. India has been having a long tradition of mathematics. The contributions of Vedic and Jain mathematics are equally interesting. However, our discussion starts from 5th century onwards, so the important features of Indian mathematics are presented here in phases to make it simple. 500-1200 The period: 500-1200 is extremely interesting in the sense that this is known as the Golden (Siddha–ntic) period of Indian mathematics. It begins * The Key Note Address was delivered at the Indian Association for Cultivation of Science (Central Hall of IACS, Kolkata) organized on behalf of the M.C.
    [Show full text]
  • VI Indian Mathematics
    VI Indian Mathematics A large and ancient civilization grew in the Indus River Valley in Pakistan beginning at least by 7,000 B.C.E. One of the older and larger sites is at Mehrgarh. The remains of this site are on the Kachi Plain near the Bolan pass in Baluchistan, Pakistan. The earliest people inhabiting Mehrgarh were semi-nomadic, farmed wheat, barley and kept sheep, goats and cattle. There was no use of pottery in the early era, from 7,000 to 5500 B.C.E. The structures were simple mud buildings with four rooms. The burials of males included more material goods in this time. From 5500 to 3500 B.C.E. there was use of pottery and more elaborate female burials. Stone and copper drills were used to create beads, and the remains of two men have dental holes drilled in their teeth. Mehrgarh was abandoned between 2600 and 2000 B.C.E., when the Harrappan civilization grew nearer to the Indus River. From 2300 to 1750 B.C.E. there was an advanced and large civilization in the Indus and Ghaggar-Hakra River Valleys in Pakistan. The Ghaggar-Hakra River system is largely dried up, now. Many sites have been excavated over a large area stretching from the foothills of the Himalayas to the Arabian sea. The most famous cities are Mohenjo-Daro and Harrappa. These were both planned cities which were larger than any cities of the time in Mesopotamia or Egypt. We have thousands of stone and pottery objects with the as yet undeciphered script of these people on them.
    [Show full text]
  • Vedas and the Development of Arithmetic and Algebra
    Journal of Mathematics and Statistics 6 (4): 468-480, 2010 ISSN 1549-3644 © 2010 Science Publications Vedas and the Development of Arithmetic and Algebra Gurudeo Anand Tularam Mathematics and Statistics, Faculty of Science, Environment, Engineering and Technology (ENV), Griffith University Abstract: Problem statement: Algebra developed in three stages: rhetorical or prose algebra, syncopated or abbreviated algebra and symbolic algebra-known as “school algebra”. School algebra developed rather early in India and the literature now suggests that the first civilization to develop symbolic algebra was the Vedic Indians. Approach: Philosophical ideas of the time influenced the development of the decimal system and arithmetic and that in turn led to algebra. Indeed, symbolic algebraic ideas are deep rooted in Vedic philosophy. The Vedic arithmetic and mathematics were of a high level at an early period and the Hindus used algebraic ideas to generate formulas simplifying calculations. Results: In the main, they developed formulas to understand the physical world satisfying the needs of religion (apara and para vidya). While geometrical focus, logic and proof type are features of Greek mathematics, “boldness of conception, abstraction, symbolism” are essentially in Indian mathematics. From such a history study, a number of implications can be drawn regarding the learning of algebra. Real life, imaginative and creative problems that encourage risk should be the focus in student learning; allowing students freely move between numbers, magnitudes and symbols rather than taking separate static or unchanging view. A move from concrete to pictorial to symbolic modes was present in ancient learning. Real life practical needs motivated the progress to symbolic algebra.
    [Show full text]