Emerging Memory Technologies: Trends, Challenges, and Modeling Methods ⇑ A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Universal Memory
BRIEFING No.4 ICT UNIVERSAL MEMORY Memory is an integral part of information processing devices and is needed for short‐term stor‐ age such as when computer programs are being executed or text documents are processed. Currently, three main types of memory exist: SRAM offers very high speed at a high cost, DRAM is average in terms of speed and cost, and Flash memory is a low cost, low speed solution for applications that need to retain the data even when power is disconnected. A group of emerg‐ ing memory devices called universal memory aim to combine all these features in a single de‐ vice.1 Developments in universal memory devices may eventually lead to the introduction of novel October 2010 October memory architectures that offer increased performance, enable smaller mobile devices, and offer novel features in traditional products such as cars or domestic appliances. Nanotechnol‐ ogy is an integral part of emerging memory research as it is becoming increasingly difficult to enhance the performance of current devices by scaling the technology further. It is unlikely that a single technology will emerge as the universal memory technology; however, the develop‐ ments in this sector will enhance the energy efficiency and performance of memory devices. Currently, the Integrated Circuit (IC) market is dominated by US and Asia based companies. Uni‐ versal memory and nanotechnology based solutions could provide an opportunity for Europe to gain ground in the sector. Background volatility. Its disadvantage compared to SRAM and DRAM is speed. None of the existing memory technologies provide all of the required properties. -
Nanotechnology ? Nram (Nano Random Access
International Journal Of Engineering Research and Technology (IJERT) IFET-2014 Conference Proceedings INTERFACE ECE T14 INTRACT – INNOVATE - INSPIRE NANOTECHNOLOGY – NRAM (NANO RANDOM ACCESS MEMORY) RANJITHA. T, SANDHYA. R GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE 13. containing elements, nanotubes, are so small, NRAM technology will Abstract— NRAM (Nano Random Access Memory), is one of achieve very high memory densities: at least 10-100 times our current the important applications of nanotechnology. This paper has best. NRAM will operate electromechanically rather than just been prepared to cull out answers for the following crucial electrically, setting it apart from other memory technologies as a questions: nonvolatile form of memory, meaning data will be retained even What is NRAM? when the power is turned off. The creators of the technology claim it What is the need of it? has the advantages of all the best memory technologies with none of How can it be made possible? the disadvantages, setting it up to be the universal medium for What is the principle and technology involved in NRAM? memory in the future. What are the advantages and features of NRAM? The world is longing for all the things it can use within its TECHNOLOGY palm. As a result nanotechnology is taking its head in the world. Nantero's technology is based on a well-known effect in carbon Much of the electronic gadgets are reduced in size and increased nanotubes where crossed nanotubes on a flat surface can either be in efficiency by the nanotechnology. The memory storage devices touching or slightly separated in the vertical direction (normal to the are somewhat large in size due to the materials used for their substrate) due to Van der Waal's interactions. -
Nanotechnology Trends in Nonvolatile Memory Devices
IBM Research Nanotechnology Trends in Nonvolatile Memory Devices Gian-Luca Bona [email protected] IBM Research, Almaden Research Center © 2008 IBM Corporation IBM Research The Elusive Universal Memory © 2008 IBM Corporation IBM Research Incumbent Semiconductor Memories SRAM Cost NOR FLASH DRAM NAND FLASH Attributes for universal memories: –Highest performance –Lowest active and standby power –Unlimited Read/Write endurance –Non-Volatility –Compatible to existing technologies –Continuously scalable –Lowest cost per bit Performance © 2008 IBM Corporation IBM Research Incumbent Semiconductor Memories SRAM Cost NOR FLASH DRAM NAND FLASH m+1 SLm SLm-1 WLn-1 WLn WLn+1 A new class of universal storage device : – a fast solid-state, nonvolatile RAM – enables compact, robust storage systems with solid state reliability and significantly improved cost- performance Performance © 2008 IBM Corporation IBM Research Non-volatile, universal semiconductor memory SL m+1 SL m SL m-1 WL n-1 WL n WL n+1 Everyone is looking for a dense (cheap) crosspoint memory. It is relatively easy to identify materials that show bistable hysteretic behavior (easily distinguishable, stable on/off states). IBM © 2006 IBM Corporation IBM Research The Memory Landscape © 2008 IBM Corporation IBM Research IBM Research Histogram of Memory Papers Papers presented at Symposium on VLSI Technology and IEDM; Ref.: G. Burr et al., IBM Journal of R&D, Vol.52, No.4/5, July 2008 © 2008 IBM Corporation IBM Research IBM Research Emerging Memory Technologies Memory technology remains an -
Process Variation Aware DRAM (Dynamic Random Access Memory) Design Using Block-Based Adaptive Body Biasing Algorithm
CORE Metadata, citation and similar papers at core.ac.uk Provided by DigitalCommons@USU Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 12-2012 Process Variation Aware DRAM (Dynamic Random Access Memory) Design Using Block-Based Adaptive Body Biasing Algorithm Satyajit Desai Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Computer Engineering Commons Recommended Citation Desai, Satyajit, "Process Variation Aware DRAM (Dynamic Random Access Memory) Design Using Block- Based Adaptive Body Biasing Algorithm" (2012). All Graduate Theses and Dissertations. 1419. https://digitalcommons.usu.edu/etd/1419 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. PROCESS VARIATION AWARE DRAM (DYNAMIC RANDOM ACCESS MEMORY) DESIGN USING BLOCK-BASED ADAPTIVE BODY BIASING ALGORITHM by Satyajit Desai A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Computer Engineering Approved: Dr. Sanghamitra Roy Dr. Koushik Chakraborty Major Professor Committee Member Dr. Reyhan Bhaktur Dr. Mark R. McLellan Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2012 ii Copyright c Satyajit Desai 2012 All Rights Reserved iii Abstract Process Variation Aware DRAM (Dynamic Random Access Memory) Design Using Block-Based Adaptive Body Biasing Algorithm by Satyajit Desai, Master of Science Utah State University, 2012 Major Professor: Dr. -
MRAM (Magnetoresistive Random Access Memory)
MRAM (MagnetoResistive Random Access Memory) By : Dhruv Dani 200601163 Shitij Kumar 200601084 Team - N Flow of Presentation Current Memory Technologies Riddles Introduction Principle, Structure and Working Working Modes Schematic Overview MRAM v/s Other Memory Elements Applications in Embedded Systems Case Studies Supported Microcontrollers and Companies Constraints References Current Memory Technologies Volatile When the power is switched off the information is lost. Restarting: programs and data need to be reloaded resulting in increase of idle time. Non -Volatile Can retain stored information permanently Stores information that does not require frequent changing. Read/Write/Erase cycles consume a lot of time. Commonly Known Memories Volatile – Static RAM (SRAM), Dynamic RAM (DRAM) Non –Volatile – Flash, EEPROM Riddle - 1 A car component manufacturing company ‘X’ has to built Air Bag systems for a range of cars. The requisites of building such a system are that it has to interact with the various sensors which detect and record passenger weight and are employed in other safety devices on the vehicle which perform various crucial tasks like detecting the impact of the possible collision. Such a real time system requires the memory to be susceptible to continuous reads, writes and overwrites in each clocked interval. As an embedded engineer for this company X which kind of memory would you use to implement such a system? Riddle - 2 The Defense Research and Development Organization of a nation ‘C’ has to build a system which can be employed by them for their military and aerospace applications. These systems at present require constant power supply to maintain various kinds databases consisting of confidential information. -
Architecting Racetrack Memory Preshift Through Pattern-Based Prediction Mechanisms
Architecting Racetrack Memory preshift through pattern-based prediction mechanisms Abstract— Racetrack Memories (RM) are a promising metalic racetrack, providing higher package density, lower spintronic technology able to provide multi-bit storage in a single energy and more robust data stability [5]. As seen in Fig. 1, each cell (tape-like) through a ferromagnetic nanowire with multiple RM cell is able to store multiple data bits in a single wire domains. This technology offers superior density, non-volatility programming domains to a certain direction (DWM) or by the and low static power compared to CMOS memories. These absence or presence of a skyrmion (SK-RM). Applying a current features have attracted great interest in the adoption of RM as a through the wire ends, domains or skyrmions can be shifted replacement of RAM technology, from Main memory (DRAM) to left/right at a constant velocity. With such a tape-like operation, maybe on-chip cache hierarchy (SRAM). One of the main every domain can be aligned with a read/write port, drawbacks of this technology is the serialized access to the bits implemented through a Magnetic Tunnel Junction (MTJ). The stored in each domain, resulting in unpredictable access time. An bit-cell structure required for shifting and read/write is shown in appropriate header management policy can potentially reduce the number of shift operations required to access the correct position. Fig. 1.down. Read/write operations are performed precharging Simple policies such as leaving read/write head on the last domain bitlines (BL and BLB) to the appropriate values and turning on accessed (or on the next) provide enough improvement in the the access transistors (TRW1 and TRW2). -
Racetrack Memory Based Logic Design for In‑Memory Computing
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Racetrack memory based logic design for in‑memory computing Luo, Tao 2018 Luo, T. (2018). Racetrack memory based logic design for in‑memory computing. Doctoral thesis, Nanyang Technological University, Singapore. http://hdl.handle.net/10356/73359 https://doi.org/10.32657/10356/73359 Downloaded on 27 Sep 2021 05:57:42 SGT RACETRACK MEMORY BASED LOGIC DESIGN FOR IN-MEMORY COMPUTING School of Computer Science and Engineering A thesis submitted to the Nanyang Technological University in partial fulfilment of the requirement for the degree of Doctor of Philosophy LUO TAO August 2017 Abstract In-memory computing has been demonstrated to be an efficient computing in- frastructure in the big data era for many applications such as graph processing and encryption. The area and power overhead of CMOS technology based mem- ory design is growing rapidly because of the increasing data capacity and leak- age power along with the shrinking technology node. Thus, a newly introduced emerging memory technology, racetrack memory, is proposed to increase the data capacity and power efficiency of modern memory systems. As the design require- ments of the conventional logic are different from that of the emerging memory based logic for in-memory computing, the conventional well-developed CMOS technology based logic designs are less relevant to the emerging memory based in-memory computing. Therefore, novel logic designs for racetrack memory are required. Traditional logic design with separate chips is focusing on high speed, which causes large area and power consumption. -
DRAM and Storage-Class Memory (SCM) Overview
Page 1 of 7 DRAM and Storage-Class Memory (SCM) Overview Introduction/Motivation Looking forward, volatile and non-volatile memory will play a much greater role in future infrastructure solutions. Figure 1 illustrates a typical processor with its DDR DRAM memory modules (e.g. DIMMs) connected to it. Notice that the integrated memory controller within the processor supports the DDR DRAM bus protocol and only DDR DRAM devices, or those that operate like DDR DRAM, are supported. The tight coupling of computing resources (CPUs, GPUs, FPGAs, etc.) with memory resources pose challenges to memory’s expanding importance. These challenges include: Memory capacity requirements are increasing, driven by in-memory workloads, server virtualization, etc. Compute capacity of CPUs are increasing, requiring more memory controllers and channels per socket Fewer high speed DIMMs per channel require more memory controllers and channels to maintain capacity Design/support lifecycles for compute and memory resources are tightly coupled making each dependent on the other Memory capacity is dependent on the number of CPUs, yielding over-provisioned compute for many workloads Gen-Z is a new data access technology that can significantly enhance memory solutions built with existing or emerging memory technologies. The following sections are designed to unveil the features and capabilities of the Gen-Z architecture by first describing the foundational features and building on these to illustrate the next generation components and system solutions that are made possible by Gen-Z technology. Note: many components require byte-addressable memory (e.g. CPU, SoC, GPUs, FPGAs, gateways, etc.), but, in this document, the term “processor” will be used to generically describe these roles. -
Data in the Fast Lanes of Racetrack Memory
INFOTECH Data in the Fast Lanes of RACETRACK MEMORY A device that slides magnetic bits back and forth along nanowire “racetracks” could pack data in a three-dimensional microchip and may replace nearly all forms of conventional data storage By Stuart S. P. Parkin he world today is very different from that when the computer powers down—or crashes. of just a decade ago, thanks to our ability A few computers use nonvolatile chips, which T to readily access enormous quantities of retain data when the power is off, as a solid-state information. Tools that we take for granted— drive in place of an HDD. The now ubiquitous social networks, Internet search engines, online smart cell phones and other handheld devices maps with point-to-point directions, and online also use nonvolatile memory, but there is a trade- libraries of songs, movies, books and photo- off between cost and performance. The cheapest KEY CONCEPTS graphs—were unavailable just a few years ago. nonvolatile memory is a kind called flash memo- ■ A radical new design for We owe the arrival of this information age to the ry, which, among other uses, is the basis of the computer data storage rapid development of remarkable technologies little flash drives that some people have hanging called racetrack memory in high-speed communications, data processing from their key rings. Flash memory, however, is (RM) moves magnetic and—perhaps most important of all but least ap- slow and unreliable in comparison with other bits along nanoscopic preciated—digital data storage. memory chips. Each time the high-voltage pulse “racetracks.” Each type of data storage has its Achilles’ heel, (the “flash” of the name) writes a memory cell, ■ RM would be nonvola- however, which is why computers use several the cell is damaged; it becomes unusable after tile—retaining its data types for different purposes. -
A Survey of Circuit Innovations in Ferroelectric Random-Access Memories
A Survey of Circuit Innovations in Ferroelectric Random-Access Memories Ali Sheikholeslami, MEMBER, IEEE, AND P. Glenn Gulak, SENIOR MEMBER, IEEE This paper surveys circuit innovations in ferroelectric memo- and low power consumption and the emergence of new ries at three circuit levels: memory cell, sensing, and architecture. applications such as contactless smart cards and digital A ferroelectric memory cell consists of at least one ferroelectric ca- cameras. pacitor, where binary data are stored, and one or two transistors that either allow access to the capacitor or amplify its content for Table 1 compares ferroelectric memories with elec- a read operation. Once a cell is accessed for a read operation, its trically erasable and programmable read-only memories data are presented in the form of an analog signal to a sense ampli- (EEPROM’s) and Flash memories, two types of floating-gate fier, where it is compared against a reference voltage to determine memories, in terms of density, read-access time, write-access its logic level. time, and the energy consumed in a 32-bit read/write. En- The circuit techniques used to generate the reference voltage must be robust to semiconductor processing variations across the chip joying a mature process technology, EEPROM’s and Flash and the device imperfections of ferroelectric capacitors. We review memories [1], [2] are superior to ferroelectric memories in six methods of generating a reference voltage, two being presented terms of density. Also, they require less power compared to for the first time in this paper. These methods are discussed and ferroelectric memories for read operations, a factor that will evaluated in terms of their accuracy, area overhead, and sensing keep them popular in applications that demand numerous complexity. -
Evaluation of Ferroelectric Materials for Memory Applications
Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1990-06 Evaluation of ferroelectric materials for memory applications Josefson, Carl Elof Monterey, California: Naval Postgraduate School http://hdl.handle.net/10945/27767 NAVAL POSTGRADUATE SCHOOL Monterey, California k ?' AT)'0p D T I C I I ELECTE1 '- ' TH SI EVALUATION OF FERROELECTRIC MATERIALS FOR MEMORY APPLICATIONS by Carl Elof Josefson June 1990 Thesis Advisor: R. Panholzer Approved for public release; distribution is unlimited. 91 2 28 056 SECURITY CLASSIFICATION OF THIS PAGE RPRDOUETA I Form Approved REPORT DOCUMENTATION PAGE No. 0704-0188 la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS Unclassified 2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT Approved for public release; 2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution is unlimited. 4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) 6a. NAME OF PERFORMING ORGANIZATION C.j. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION (If appicable) Naval Postgraduate School 9 Naval Postgraduate School 6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) Monterey, CA 93943-5000 Monterey, CA 93943-5000 Ba. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION I (If applicable) 8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO. 11. TITLE (Include Security Classification) Evaluation of Ferroelectric Materials for Memory Applications 12. PERSONAL AUTHOR(S) Carl E. Josefson 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (YearMonthDay) 15. PAGE COUNT Master's Thesis FROM TO 1990 June I 97 16. -
Semiconductor Memory
Semiconductor Memory Seong-Ook Jung 2011. 4. 1. [email protected] VLSI SYSTEM LAB, YONSEI University School of Electrical & Electronic Engineering Contents 1. Current Memory 2. Future of NAND Flash 3. Universal memory 1. PRAM 2. STT-MRAM 2 YONSEI Univ. School of EEE Current Memory Memory Hierarchy by Samsung electronics 4 YONSEI Univ. School of EEE Volatile vs. Non-Volatile Volatile memory DRAM: fast speed, high density Main memory SRAM: very fast speed, very low density Cache memory Non-volatile memory NOR: very slow speed, low density Program memory Flash: very slow speed, very high density Storage memory 5 YONSEI Univ. School of EEE Charge Based vs. Resistance Based Charge based device (Current memory) DRAM SRAM Flash Resistance base memory (Future memory Universal memory) PRAM RRAM 6 YONSEI Univ. School of EEE SRAM Cache hierarchy in Lynnfield L1 ; 32KB (1core) L2 ; 256KB (1core) L3 ; 8MB (shared) Intel processor ; Lynnfield Layout of Lynnfield SRAM cell 7 YONSEI Univ. School of EEE DRAM SAMSUNG DDR3 4GB DRAM DRAM cell 8 YONSEI Univ. School of EEE DRAM Cell 9 YONSEI Univ. School of EEE Flash Memory Samsung 256GB SSD Flash memory cell Samsung 32GB USB memory 10 YONSEI Univ. School of EEE Comparison by Korea Institute of Science & Technology Information (KISTI) 11 YONSEI Univ. School of EEE DRAM and SRAM Trend Improve performance and capacity of DRAM and SRAM Technology scaling Design technique Function and role of DRAM and SRAM are not changed. SRAM ; cache memory in processor DRAM ; main memory unit in system NGM XDR DRAM diff? DDR4 DDR3 DRDRAM Bandwidth DDR2 DDR SDRAM 1996 2000 2004 2008 2012 Year by Intel Technology Journal 12 YONSEI Univ.