66. Karyoty Pes O F Two Species O F Frogs from Taiwan, Rana Sauteri

Total Page:16

File Type:pdf, Size:1020Kb

66. Karyoty Pes O F Two Species O F Frogs from Taiwan, Rana Sauteri No. 9] Proc. Japan Acad., 58, Ser. B (1982) 279 66. Karyoty pes o f Two Species of Frogs from Taiwan, Rana sauteri Boulenger and Rana latouchii Boulenger By Takeshi SET0,*) Yasuaki UTSUNOMIYA,** and Taeko UTSUNOMIYA** (Communicatedby Sajiro MAKINO,M. J. A., Nov. 12, 1982) The amphibian fauna of the Ryukyu Islands and Taiwan (For- mosa) is quite interesting to ecological, systematic and cytogenetic studies, because of the geographical feature which forms a chain of archipelago fringing the eastern border of the Asiatic continent. Thus the unique distribution of anuran and urodelan species has been known in this region. Chromosome studies of anurans indigenous to the Ryukyu Islands and Taiwan have been carried out by Kuramoto (1972, 1980) , Kura- moto and Teshima (1970), Kuramoto et al. (1973), and Lin and Huang (1979). The chromosomes of the ranids from Taiwan have, however, remained unknown in some species. The present paper deals with a chromosome study of two species of the genus Rana, R. sauteri and R. latouchii, endemic to Taiwan, since the chromosome study has not well been done. Materials and methods. A male of Rana sauteri, endemic to Taiwan and chromosomally untouched, and a female of R. latouchii, distributed in both Taiwan and the People's Republic of China, provided material for this study. The two individuals under study were procured in Chi-Tou, southern district of Nan Tow Hsien, Taiwan. The fully grown frogs were intraperitoneally injected with 0.1 ml of colchicine solution (2 mg/ml; SIGMA) per gram of body weight. Following 48 hr of the treatment, the animals were sacrificed and entire digestive tracts were taken out. Somatic chromosomes were prepared from the gut epithelium by the method of Kezer and Sessions (1979). Chromosomes were stained according to the con- ventional Giemsa technique. The C-band technique (Sumner 1972) was applied in order to identify the individual chromosomes in R. tat ouchii. Observations and remarks. The diploid number of R. sauteri and R. latouchii was determined as 26, common to that of the ma- Department of Biology, Faculty of Education, Shimane University, Matsue, Japan 690. **' Faculty of Applied Biological Science, Hiroshima University, Fukuyama, Japan 720. 280 T. SETO, Y. UTSUNOMIYA, and T. UTSUNOMIYA [Vol. 58(B), Figs. 1-3. Karyotypes of Rana sauteri (1), and Rana latouchii (2); each showing 26 chromosomes. 3 ; C-banding karyotype of Rana latouchii 2. Bar indicates 10 jim. j ority of Rana species (Morescalchi 1973). Karyotype analysis was made with 6 well-spread metaphasic cells in each species. Karyotype of Rana sauteri (Fig. 1) : The karyotype consisted of 13 pairs of somatic chromosomes containing 5 pairs of large-sized elements and 8 pairs of small-sized homologues. The chromosomes of the large group were characterized by metacentric (nos. 1, 4 and No. 9] Karyotypes of Ranids from Taiwan 281 5) and submetacentric structure (nos. 2 and 3) , as demonstrated in other Rana species so far examined. The small chromosome group includes 3 metacentric (nos. 8, 11 and 12) , 3 submetacentric (nos. 7, 9 and 10) , and 2 subtelocentric pairs (nos. 6 and 13) . No. 6 is easily identified by a secondary constriction on the long arm. The morphology of this chromosome group of R. sauteri, especially of nos. 6 and 13, was dissimilar from that of the other Taiwan and Ryukyu ranids reported by Kuramoto (1972) , Kuramoto et al. (1973) , and Lin and Huang (1979). Boulenger (1909) described on the basis of a single reserved speci- men that R. sauteri showed striking resemblance in the external char- acters to R. japonica. However, our observation in a living specimen at the habitat is incompatible with Boulenger's view (1909) . In addi- tion, the present chromosomal findings supported our view on this respect. Karyotypes of R. japonica (Seto 1965) and R. longicrus (Kuramoto et al. 1973) , which are known to be closely related to R. japonica, were dissimilar to that of R. sauteri. With the larval characters such as bearing a sucking disk on the ventral side and abundance of the dental formula (3 :4 + 4/7 :1 + 1), R. sauteri is thought to be an intermediate type of the brown-frog group and the genus Amalops. Further karyological investigations have been needed to prove the above feature. Karyotype of Rana latouchii (Fig. 2) : A brief study on the chromosomes of this species was given by Kuramoto (1980), though more precise knowledge on the chromosomal details has been needed. The chromosome morphology of the large-sized group (nos. 1-5) was quite similar to that of R. sauteri and other common members of the genus Rana. In contrast, the small-sized group (nos. 6-13) was specific in the chromosome morphology ; this group comprised 2 metacentric pairs (nos. 7 and 12) and 6 pairs of submetacentric elements (nos. 6, 8, 9,10,11 and 13). There are no subtelocentric and telocentric element in the karyotype of this form. Nos. 10 and 11 were frequently charac- terized by a secondary constriction on their long arms. The present observation in less-condensed metaphasic chromosomes revealed a considerable dissimilarity to the karyotype presented by Kuramoto (1980) for this species, particularly for the small chromosome group (nos. 6-13). According to Pope (1931) and Utsunomiya (un- published), R. latouchii appeared to be a particular species in the genus Rana by having several external features in both larval and adult individuals. A comparison of karyotypes was made between typical brown frogs occurring in Japan such as R. chensinensis, R. ornativentris (formerly R. t. temporaria and R. t. ornativentris, re- spectively), R. japonica, R. okinavana (Kobayashi 1962: Seto 1965; 282 T. SETO,Y. UTSUNOMIYA,and T. UTSUNOMIYA [Vol. 58(B), Kuramoto 1972) and R. latouchii, and we noted the existence of an obvious karyological dissimilarity in the latter species. C-stained chromosomes were analysed in R. latouchii (Fig. 3). The C-banding patterns of this species revealed the presence of centromeric heterochromatin in all chromosomal pairs. In addition, the long arm of no. 2 and the short arms of nos. 11 and 13 had telomeric heterochromatin. The telomeric and interstitial constitu- tive heterochromatin appeared heterogeneously in each species of Ranidae aside from the main centric heterochromatin (Schmid 1978). The present observation, however, was unable to provide any signifi- cant evidence to discuss the interspecific heterogeneity of the telomeric C-band pattern. Summary. By means of the squash technique of the intestinal epithelium, the karyotypes of Rana sauteri and Rana latouchii from Taiwan are investigated. These two species, like many other mem- bers of the genus Rana, show 26 chromosomes which consist of 5 large-sized pairs and 8 small-sized pairs. The chromosome mor- phology of the large pairs is similar to that of the other common Rana species, leaving the small pairs which show a characteristic feature in respective species. The morphology of 2 small pairs of R. sauteri is different from that of any other Taiwan and Japanese ranids. Based on genotypic and phenotypic evidence we suppose that R, sauteri could be an intermediate type of the brown-frog group and the genus Amalops. The chromosomes of Rana latouchii are also dissimilar to those of typical brown frogs in Japan. Evidence presented here corresponds to the results of the external morphology in both larval and adult individuals of this species. Acknowledgement. The authors are deeply indebted to Pro- fessor Emeritus Dr. Saj iro Makino, M. J. A., for improvement of the manuscript with invaluable advice. References Boulenger, G. A. (1909) : Ann. Mag. Nat. Hist., ser. 8, 4, 493. Kezer, J., and Sessions, S. K. (1979) : Chromosoma (Berl.), 71, 65-80. Kobayashi, M. (1962) : J. Sci. Hiroshima Univ., Ser. B, Div. 1, 20, 157-179. Kuramoto, M. (1972) : Cytologia, 25, 547-559. (1980) : Experientia, 36, 826-827. Kuramoto, M., and Teshima, R. (1970) : Bull. Fukuoka Univ. Educ., III, 20, 99-104. Kuramato, M., Furuya, E., Takegami, M., and Yano, K. (1973) : ibid., 23, 67-78. Lin, F.-Y., and Huang, C.-C. (1979) : Proc. Natl. Sci. Counc. ROC, 3, 429-436. Morescalchi, A. (1973) : Cytotaxonomy and Vertebrate Evolution (ed. Chiarelli, A. B., and Capanna, E.). Academic Press, N. Y., pp. 233-348. Pope, C. H. (1931) : Bull. Am. Mus. Nat. Hist., 61, Art. VIII, 531. Schmid, M. (1978) : Chromosoma (Berl.), 68, 131-148. Seto, T. (1965) : Cytologia, 30, 437-446. Sumner, A. T. (1972) : Exp. Cell Res., 75, 304-306..
Recommended publications
  • Local Population Differentiation and Phylogenetic
    Japanese Journal of Herpetology 17(3): 91-97., June 1998 (C)1998 by The HerpetologicalSociety of Japan Local Population Differentiation and Phylogenetic Relationships of Russian Brown Frog, Rana amurensis Inferred by Mitochon- drial Cytochrome b Gene Sequences (Amphibia, Ranidae) TOMOKO TANAKA-UENO, MASAFUMI MATSUI, TAKANORI SATO, SEN TAKENAKA AND OSAMU TAKENAKA Abstract: In order to assess local population differentiation and phylogenetic relation- ships of a Russian brown frog, Rana amurensis, the sequences of 587 base pairs of the mitochondrial cytochrome b genes are compared with seven species of Japanese and one species complex of Taiwanese brown frogs (R. pirica, R. ornativentris, R. dybowskii, R. japonica, R. okinavana, R. tagoi, R. tsushimensis, and the R. sauteri complex). Genetic differentiation between populations of R. amurensis from Sakhalin and the Maritime Territory was found to be minimal. The resultant phylogenetic tree indicates monophyly of brown frogs and earliest divergence of R. amurensis among all the brown frogs studied. For this reason, separation of R. amurensis from the R. japonica group is suggested, but separation of the R. sauteri complex as a distinct ge- nus or subgenus Pseudorana is not supported. Key words: Brown frog; Cytochrome b; Phylogeny; Pseudorana; Rana amurensis; Russia Rana amurensis Boulenger, 1886 occupies a ships of Japanese brown frogs have been report- very wide range, including western Siberia east ed by Nishioka et al. (1992) and Tanaka et al. to Sakhalin, northern and eastern Mongolia, (1996). In the present study, we first investigat- northeastern China and Korea, and regions ed the degree of genetic differentiation between north to bevond the Arctic Circle to 71°N populations of R, amurensis in Sakhalin and (Frost, 1985).
    [Show full text]
  • Zootaxa,Paraphyly of Chinese Amolops (Anura, Ranidae) and Phylogenetic Position of The
    Zootaxa 1531: 49–55 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Paraphyly of Chinese Amolops (Anura, Ranidae) and phylogenetic position of the rare Chinese frog, Amolops tormotus HONG-XIA CAI1, 2, JING CHE2, JUN-FENG PANG2, ER-MI ZHAO1,4& YA-PING ZHANG2, 3,4 1Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China, 610064 2Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, China, 650223 3Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China, 650091 4Corresponding authors. E-mail: [email protected]; [email protected] Abstract In order to evaluate the five species groups of Chinese Amolops based on morphological characteristics, and to clarify the phylogenetic position of the concave-eared torrent frog Amolops tormotus, we investigated the phylogeny of Amolops by maximum parsimony, Bayesian Inference, and maximum likelihood methods using two mitochondrial DNA fragments (12S rRNA, 16S rRNA). Our results supported a sister group relationship of Amolops ricketti and Amolops hainanensis. However, the grouping of Amolops mantzorum and Amolops monticola needs to be resolved with more data. Amolops tormotus was nested in genus Odorrana. Thus, recognition of the A. tormotus group is unwarranted and A. tormotus should be referred to genus Odorrana as O. tormota. This species is the sister group of O. nasica plus O. versabilis. The new classification implies that the genus Wurana is to be considered as junior subjective synonym of Odorrana.
    [Show full text]
  • Title Phylogenetic Relationships of the Chinese Brown Frogs (Genus Rana)
    Phylogenetic Relationships of the Chinese Brown Frogs Title (Genus Rana) Inferred from Partial Mitochondrial 12S and 16S rRNA Gene Sequences� Che, Jing; Pang, Junfeng; Zhao, Er-mi; Matsui, Masafumi; Author(s) Zhang, Ya-ping Citation Zoological Science (2007), 24(1): 71-80 Issue Date 2007-01 URL http://hdl.handle.net/2433/85329 Right (c) 日本動物学会 / Zoological Society of Japan Type Journal Article Textversion publisher Kyoto University ZOOLOGICAL SCIENCE 24:71–80 (2007) © 2007 Zoological Society of Japan Phylogenetic Relationships of the Chinese Brown Frogs (Genus Rana) Inferred from Partial Mitochondrial 12S and 16S rRNA Gene Sequences Jing Che1,2, Junfeng Pang2, Er-mi Zhao1, Masafumi Matsui3 and Ya-ping Zhang2* 1College of Life Sciences, Sichuan University, Chengdu 610064, China 2Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, China 3Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto 606-8501, Japan Based on partial sequences of the 12S and 16S ribosomal RNA genes, we estimated phylogenetic relationships among brown frogs of the Rana temporaria group from China. From the phylogenetic trees obtained, we propose to include Rana zhengi in the brown frogs. Monophyly of the brown frogs was not unambiguously supported, but four well-supported clades (A, B, C, and D) always emerged, although relationships among them remained unresolved. Clade A contained brown frogs with 24 chromosomes and was split into two distinct subclades (Subclade A-1: R. chensinensis and R. huanrenensis; Subclade A-2: R. dybowskii). Polytomous relationships among populations of R. chensinensis and R. huanrenensis suggested the necessity of further taxonomic assessment.
    [Show full text]
  • Elevational Variation in Reproductive and Life History Traits of Sauter's
    Zoological Studies 42(1): 193-202 (2003) Elevational Variation in Reproductive and Life History Traits of Sauter’s Frog Rana sauteri Boulenger, 1909 in Taiwan Su-Ju Lai1,2, Yeong-Choy Kam3 and Yao-Sung Lin1,* 1Department of Zoology, National Taiwan University, Taipei, Taiwan 106, R.O.C. 2Zoology Division, Taiwan Endemic Species Research Institute, Chichi, Nantou, Taiwan 552, R.O.C. 3Department of Biology, National Changhua University of Education, Changhua, Taiwan 500, R.O.C. (Accepted October 23, 2002) Su-Ju Lai, Yeong-Choy Kam and Yao-Sung Lin (2003) Elevational variation in reproductive and life history traits of Sauter’s frog Rana sauteri Boulenger, 1909 in Taiwan. Zoological Studies 42(1): 193-202. Sauter’s frog, Rana sauteri Boulenger, 1909 in the west-central part of the Central Mountain Range of Taiwan at eleva- tions of 300 to 2360 m showed obvious elevational clines in reproductive and life cycle traits. With an increase in elevation, the breeding season and the periods of calling, aggregation, and egg deposition of mature frogs shifted from fall and winter (Oct. to Dec.) to spring (May), while the breeding period decreased but the larval period increased. Also, adult females at high elevations were larger and produced smaller clutch sizes but larg- er eggs and tadpoles. The temperature experiment showed that low temperatures in winter at high elevations and high temperatures in summer at low elevations are the primary environmental factors that define the breed- ing success of the species. Rana sauteri has experienced long-term selection by environmental factors (e.g., temperature), resulting in populations at high elevations breeding in spring and populations at low elevations breeding in fall and winter to ensure that their tadpoles can grow and complete metamorphosis.
    [Show full text]
  • (Amphibia: Ranidae) on Sumatra, Indonesia
    Phylogenetic systematics, diversity, and biogeography of the frogs with gastromyzophorous tadpoles (Amphibia: Ranidae) on Sumatra, Indonesia Dissertation zur Erlangung des Doktorgrades Fachbereich Biologie An der Fakultät für Mathematik, Informatik und Naturwissenschaften der Universität Hamburg Vorgelegt von Umilaela Arifin Hamburg, 2018 Tag der Disputation: 25 January 2019 Folgende Gutachter empfehlen die Annahme der Dissertation: 1. Prof. Dr. Alexander Haas 2. Prof. Dr. Bernhard Hausdorf “To reach the same destination, some people might only need one step but some other people might need two, three, a hundred, or a thousand steps. Never give up! Some are successful because they work harder than other people, not because they are smart.” –dti- Preface Preface It is such a relief to have finally finished writing this dissertation entitled “Phylogenetic systematics, diversity, and biogeography of the frogs with gastromyzophorous tadpoles (Amphibia: Ranidae) on Sumatra, Indonesia”. Thank to Allah, who has always embraced me in any situation, especially during my doctoral studies. The work I have done over the past five years is dedicated not only to myself, but also to all the people, who came into my life for various reasons. Also, this thesis is my small contribution to Indonesia (the “Ibu Pertiwi”) and its fascinating biodiversity. I hope to continue actively contributing to the field of herpetology in the future, simply because it is my greatest passion! During my childhood, especially through my high school years, it never crossed my mind that I would end up becoming a scientist. Coming from an ordinary Indonesian family and living in a small town made my parents worry about the education their children would need, in order to have a better life in the future.
    [Show full text]
  • Intraspecific Relationships of Populations of the Brown Frog Rana Sauteri (Ranidae) on Taiwan, Inferred from Mitochondrial Cytochrome B Sequences
    ZOOLOGICAL SCIENCE 26: 608–616 (2009) ¤ 2009 Zoological Society of Japan Intraspecific Relationships of Populations of the Brown Frog Rana sauteri (Ranidae) on Taiwan, Inferred from Mitochondrial Cytochrome b Sequences Nian-Hong Jang-Liaw1* and Tsung-Han Lee2 1Department of Zoology, National Museum of Natural Science, 1st Kuang-Chien Rd., Taichung 40453, Taiwan 2Department of Life Sciences, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan We studied the phylogenetic relationships among populations of Rana sauteri using partial sequences of the mitochondrial cytochrome b gene from 244 samples from 29 localities in Taiwan. We detected 77 haplotypes among these sequences. The phylogenetic trees contained five distinct lineages: the northern (NL), eastern (EL), southern hill (SHL), northern mountain (NML), and south- ern mountain (SML) lineages, defined by geographical distribution. The lineage phylogeny did not support the two-species hypothesis inferred from larval morphology. To describe the possible col- onization history of R. sauteri in Taiwan, we propose hypotheses of within-island differentiation and a multiple-invasion model. Using a molecular clock, we estimated the order of divergence times between lineages in order to test the migration hypothesis. The multiple-invasion model was well supported by the phylogeny and a nested clade network. Key words: Rana sauteri, mtDNA, cytochrome b, phylogeography, Taiwan include Guangxi Province, China (Tian and Jian, 1986; Zhao INTRODUCTION and Adler, 1993). Unfortunately, no specimens of R. sauteri Taiwan is a subtropical island located between 21°53’N from China were located for examination. Smith (1921) and 25°37’N, with mountains up to 3952 m high.
    [Show full text]
  • The Herpetological Journal
    Volume 15, Number 2 April 2005 ISSN 0268-0130 THE HERPETOLOGICAL JOURNAL Published by the Indexed in BRITISH HERPETOLOGICAL SOCIETY Current Contents The Herpetological Journal is published quarterly by the British Herpetological Society and is issued free to members. Articles are listed in Current Awareness in Biological Sciences, Current Contents, Science Citation Index and Zoological Record. Applications to purchase copies and/or for details of membership should be made to the Hon. Secretary, British Herpetological Society, The Zoological Society of London, Regent's Park, London NWI 4RY, UK. Instructions to authors are printed inside the back cover. All contributions should be addressed to the Scientific Editor (address below). Scientific Editor: Wolfgang Wiister, School of Biological Sciences, University of Wales, Bangor, Gwynedd, LL57 2UW, UK. E-mail: [email protected] Associate Scientific Editors: J. W. Arntzen (Leiden), R. Brown (Liverpool) Managing Editor: Richard A. Griffiths, The Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, Kent CT2 7NS, UK. E-mail: [email protected] Associate Managing Editors: M. Dos Santos, J. McKay, M. Lock Editorial Board: Donald Broadley (Zimbabwe) John Cooper (Uganda) John Davenport (Cork) Andrew Gardner (Abu Dhabi) Tim Halliday (Milton Keynes) Michael Klemens (New York) Colin McCarthy (London) Andrew Milner (London) Richard Tinsley (Bristol) Copyright It is a fundamental condition that submitted manuscripts have not been published and will not be simultaneously submitted or published elsewhere. By submitting a manu­ script, the authors agree that the copyright for their article is transferred to the publisher if and when the article is accepted for publication.
    [Show full text]
  • Thesis Body-No Codes-Final
    The plasticity of life histories during larval development and metamorphosis, using amphibians as study organisms. Patrick Thomas Walsh Presented for the degree of Doctor of Philosophy Division of Environmental and Evolutionary Biology Institute of Biomedical and Life Sciences University of Glasgow December 2007 ©Patrick Thomas Walsh 2007 Candidate’s declaration I declare that the work presented in this study is entirely my own unless otherwise stated and that it is of my own composition. No part of this thesis has been submitted for any other degree. Patrick Thomas Walsh December 2007 Acknowledgements Acknowledgements First, and foremost, I would like to thank, equally but for very different reasons, both of my supervisors, Professors Roger Downie and Pat Monaghan. I would like to thank Roger for his ‘open-door’ policy that has allowed many frank and helpful discussions about the contents of this thesis. Additionally, for allowing me the opportunity to greatly expand my CV by being given the option to help with the supervision of honours’ students and as much demonstrating as I could find time for. I would like to thank Pat for a great deal of patience and attention to detail, providing a perfect contrast to my frantic writing style and usually questionable grammatical knowledge. The excellent feedback received by her throughout my PhD has taught me to think more critically and write more concisely. I also need to thank Pat for the open invitation to her house to sample her pond for tadpoles throughout the year, and for often delivering the tadpoles directly to the department. I am hugely indebted to the Carnegie Trust for the Universities of Scotland for providing me with the funding for this studentship and the two small project grants, Universities UK for covering the extortionate over-seas fees, and the Glasgow Natural History Society for grants to purchase equipment.
    [Show full text]
  • Title Systematic Studies of Two Japanese Brown Frogs
    Systematic studies of two Japanese brown frogs( Title Dissertation_全文 ) Author(s) Eto, Koshiro Citation Kyoto University (京都大学) Issue Date 2014-03-24 URL http://dx.doi.org/10.14989/doctor.k18358 Right 許諾条件により本文は2015-03-23に公開 Type Thesis or Dissertation Textversion ETD Kyoto University Systematic studies of two Japanese brown frogs Koshiro ETO 2013 A calling male of Tago’s brown frog, Rana tagoi (above) and an amplectant pair of Stream brown frog, R. sakuraii (below). CONTENTS Page Contents Chapter 1 Introduction 1 Chapter 2 Highly Complex Mitochondrial DNA Genealogy in an 4 Endemic Japanese Subterranean Breeding Brown Frog Rana tagoi (Amphibia, Anura, Ranidae) Chapter 3 Discordance between Mitochondrial DNA Genealogy and 27 Nuclear DNA Genetic Structure in the Two Morphotypes of Rana tagoi tagoi in the Kinki Region, Japan Chapter 4 Cytonuclear Discordance and Historical Demography of Two 42 Brown Frogs Rana tagoi and R. sakuraii Chapter 5 General Discussion 75 Summary 79 Acknowledgements 80 References 81 Appendix 91 i CHAPTER 1 Introduction As is well known, Mayr et al . (1953) recognized three levels (alpha, beta, and gamma) in the study of taxonomy, although they are mutually correlated and are not clear-cut. For Japanese amphibians, the alpha-level taxonomic studies started in the middle of 19 th century (Temminck & Schlegel 1838), and through the later studies by authors like Stejneger (1907), Okada (1930), and Nakamura & Ueno (1963), basic species classification was established by the 1960s. Then the introduction of modern methodologies like molecular analyses enabled studies of relationships among species, i.e., beta taxonomy (Matsui 2000). Studies using allozymic techniques started over 30 years ago, and resulted in many findings related to taxonomy (e.g., Matsui & Miyazaki 1984; Matsui 1987, 1994; Matsui et al.
    [Show full text]
  • (DEA) Rofondies
    UNIVERSITE D’ANTANANARIVO FACULTE DES SCIENCES DEPARTEMENT DE BIOLOGIE ANIMALE DEPARTEMENT DE BIOLOGIE ANIMALE Latimeria chalumnae MEMOIRE POUR L’OBTENTION DU Diplôme d ’Etudes Approfondies (D.E.A.) Formation Doctorale : Sciences de la vie Option : Biologie, Ecologie et Conservation Animales ETUDE PHENOLOGIQUE D’ Anodonthyla montana Angel, 1925 et de Mantidactylus madecassus (Millot & Guibé, 1950) , AMPHIBIENS ENDEMIQUES DU HAUT MASSIF D’ANDRINGITRA Présenté par : Madame FALIARISOA Edwige Devant le JURY composé de : Président : Mada me Noromalala RASOAMAMPIONONA RAMINOSOA (Professeur) Rapporteur : Monsieu r. Achille Philipe RASELIMANANA (Maître de Conférences) Examinateur(s) : - Mada me Marie Jeanne RAHERILALAO (Maître de Conférences) - Mada me Jeanne RASAMY RAZANABOLANA (Maître de Conférences) Soutenu publiquement le : 29 avril 2011 UNIVERSITE D’ANTANANARIVO FACULTE DES SCIENCES DEPARTEMENT DE BIOLOGIE ANIMALE DEPARTEMENT DE BIOLOGIE ANIMALE Latimeria chalumnae MEMOIRE POUR L’OBTENTION DU Diplôme d ’Etudes Approfondies (D.E.A.) Formation Doctorale : Sciences de la vie Option : Biologie, Ecologie et Conservation Animales ETUDE PHENOLOGIQUE D’ Anodonthyla montana Angel, 1925 et de Mantidactylus madecassus (Millot & Guibé, 1950) , AMPHIBIENS ENDEMIQUES DU HAUT MASSIF D’ANDRINGITRA Présenté par : Madame FALIARISOA Edwige Devant le JURY composé de : Président : Mada me Noromalala RASOAMAMPIONONA RAMINOSOA (Professeur) Rapporteur : Monsieu r. Achille Philipe RASELIMANANA (Maître de Conférences) Examinateur(s) : - Mada me Marie Jeanne RAHERILALAO
    [Show full text]
  • Phylogenetic Relationships of a Chinese Frog, Rana Zhengi Zhao, 1999 Inferred from Mitochondrial Cytochrome B Gene Sequences (Amphibia, Ranidae)
    Current Herpetology 20 (2): 77-84, December 2001 (C) 2001 by The Herpetological Society of Japan Phylogenetic Relationships of a Chinese Frog, Rana zhengi Zhao, 1999 Inferred from Mitochondrial Cytochrome b Gene Sequences (Amphibia, Ranidae) MASAFUMI MATSUI,1* TOMOKO TANAKA-UENO,1 AND ZHENG-FA GAO2 1 Graduate School of Human and Environmental Studies , Kyoto University, Sakyo-ku, Kyoto 606-8501, JAPAN 2 Middle School of Depending on Chemical Industrial Company of Sichuan , Qingbaijiang Qu, Chengdu 610300, Sichuan, CHINA Abstract: In order to assess phylogenetic relationships of a Chinese frog, Rana zhengi Zhao, 1999, the sequences of 587 base pairs of the mitochon- drial cytochrome b gene are compared with six species of Japanese (R. pirica, R. ornativentris, R. japonica, R. okinavana, R. tagoi, and R. tsushimensis), one species of Taiwanese (R. sauteri), one species of Russian (R. amurensis), and two species of European brown frogs (R. temporaria and R. dalmatina). The resultant phylogenetic tree suggests monophyly of R. zhengi and these brown frogs, and the earliest divergence of R. zhengi among all the ingroup species examined. Monophyly of R. zhengi and R. sauteri was rejected. For this reason, placement of R. zhengi within the brown frogs of the R. tempo- raria group requires further study, and separation of R. zhengi and R. sauteri as a distinct genus or subgenus Pseudorana is not supported. Key words: Brown frog; Cytochrome b; Phylogeny; Pseudorana; Rana zhengi; R. sauteri; China been proven to include cryptic species INTRODUCTION (Chou and Lin, 1997) and is considered to Rana zhengi was described from Zhang- form a species complex (Tanaka-Ueno et cun Village, Hongya Co., Sichuan Prov- al., 1998a).
    [Show full text]
  • Rana: Ranidae): Results of a Phylogenetic Analysis
    动 物 学 研 究 2010,Aug. 31(4): 353−360 CN 53-1040/Q ISSN 0254-5853 Zoological Research DOI:10.3724/SP.J.1141.2010.04353 Validity and Systematic Position of Rana altaica (Rana: Ranidae): Results of a Phylogenetic Analysis YANG Jun-Xiao1, 2, ZHOU Wei-Wei2, RAO Ding-Qi2, POYARKOV A Nikolay3, 4, KUZMIN Sergius L5, CHE Jing2 ,* (1. Center for Chinese Endemic Herp-breeding and Conservation Research and Liaoning Key Laboratory of Evolution and Biodiversity, Shenyang Normal University, Shenyang 110034, China; 2. State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China; 3. Department of Vertebrate Zoology, Biological faculty, Lomonosov Moscow State University, Leninskiye Gory, Moscow, GSP-1, 119991, Russia; 4. National Museum of Natural History—Naturalis, P. O. Box 9517, 2300 RA Leiden, the Netherlands; 5. A.N. Severtzov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Prospect, 119071 Moscow, Russia) Abstract: In order to evaluate the phylogenetic position and validity of Rana altaica, we investigated the phylogeny of brown frogs in Eurasia by Bayesian Inference and Maximum Parsimony analyses of a fragment from the mitochondrial DNA gene Cytochrome b. Both analyses resolved R. altaica as nesting deeply within R. arvalis. Most samples of the nominal R. altaica from the Altai region and specimens from Central Siberia shared a haplotype with R. arvalis based on the network analysis. The matrilineal relationships suggested that R. altaica should be considered as a junior synonym of R. arvalis. Furthermore, our study suggested that the species group division of Chinese brown frogs should be re-evaluated within a phylogenetic context.
    [Show full text]