Thesis Body-No Codes-Final
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stream Frogs, Mannophryne Trinitatis (Dendrobatidae): an Example of Anti-Predator Behaviour
HERPETOLOGICAL JOURNAL, Vol. 11, pp. 91-100 (2001) SELECTION OF TAD POLE DEPOSITION SITES BY MALE TRINIDADIAN STREAM FROGS, MANNOPHRYNE TRINITATIS (DENDROBATIDAE): AN EXAMPLE OF ANTI-PREDATOR BEHAVIOUR J. R. DOWNIE, S. R. LIVINGSTONE AND J. R. CORMACK Division of Environmental and Evolutionary Biology, Institute of Biomedical & Life Sciences, University of Glasgow, Scotland, UK Trinidad's only dendrobatid frog, Mannophryne (=Colostethus) trinitatis, lives by the small streams draining the slopes of the Northern Range mountains and at Tamana Hill in the Central Range. Adults are often very abundant, but tadpoles are found patchily in the streams. In the absence of two potential predators - the fish Rivulus hartii and shrimps of the genus Macrobrachium - tadpoles are abundant in pools. Where the predators are present, tadpoles are uncommon or absent. Tadpoles may also be found in small, isolated bodies of water at some distance from streams. Males carrying tadpoles retained them for 3-4 days, in the absence of suitable pools. When presented with a choice of pools, males preferred to deposit their tadpoles in pools lacking predators. There were differences in behaviour between males fromthe northern and southern slopes of the Northern Range. For example, north coast males deposited tadpoles in pools containing other conspecific tadpoles in preference to empty pools, whereas males from southern slopes made the opposite choice. When presented only with pools containing predators (i.e. shrimps or fish), north coast males shed their tadpoles in damp leaf litter rather than in the pools, while males from the southern slopes deposited tadpoles in pools with shrimps - predators uncommon in the southern slopes streams. -
W7192e19.Pdf
click for previous page 952 Shrimps and Prawns Sicyoniidae SICYONIIDAE Rock shrimps iagnostic characters: Body generally Drobust, with shell very hard, of “stony” grooves appearance; abdomen often with deep grooves and numerous tubercles. Rostrum well developed and extending beyond eyes, always bearing more than 3 upper teeth (in- cluding those on carapace); base of eyestalk with styliform projection on inner surface, but without tubercle on inner border. Both upper and lower antennular flagella of similar length, attached to tip of antennular peduncle. 1 Carapace lacks both postorbital and postantennal spines, cervical groove in- distinct or absent. Exopod present only on first maxilliped. All 5 pairs of legs well devel- 2 oped, fourth leg bearing a single well-devel- 3rd and 4th pleopods 4 single-branched oped arthrobranch (hidden beneath 3 carapace). In males, endopod of second pair 5 of pleopods (abdominal appendages) with appendix masculina only. Third and fourth pleopods single-branched. Telson generally armed with a pair of fixed lateral spines. Colour: body colour varies from dark brown to reddish; often with distinct spots or colour markings on carapace and/or abdomen - such colour markings are specific and very useful in distinguishing the species. Habitat, biology, and fisheries: All members of this family are marine and can be found from shallow to deep waters (to depths of more than 400 m). They are all benthic and occur on both soft and hard bottoms. Their sizes are generally small, about 2 to 8 cm, but some species can reach a body length over 15 cm. The sexes are easily distinguished by the presence of a large copulatory organ (petasma) on the first pair of pleopods of males, while the females have the posterior thoracic sternites modified into a large sperm receptacle process (thelycum) which holds the spermatophores or sperm sacs (usually whitish or yellowish in colour) after mating. -
Local Population Differentiation and Phylogenetic
Japanese Journal of Herpetology 17(3): 91-97., June 1998 (C)1998 by The HerpetologicalSociety of Japan Local Population Differentiation and Phylogenetic Relationships of Russian Brown Frog, Rana amurensis Inferred by Mitochon- drial Cytochrome b Gene Sequences (Amphibia, Ranidae) TOMOKO TANAKA-UENO, MASAFUMI MATSUI, TAKANORI SATO, SEN TAKENAKA AND OSAMU TAKENAKA Abstract: In order to assess local population differentiation and phylogenetic relation- ships of a Russian brown frog, Rana amurensis, the sequences of 587 base pairs of the mitochondrial cytochrome b genes are compared with seven species of Japanese and one species complex of Taiwanese brown frogs (R. pirica, R. ornativentris, R. dybowskii, R. japonica, R. okinavana, R. tagoi, R. tsushimensis, and the R. sauteri complex). Genetic differentiation between populations of R. amurensis from Sakhalin and the Maritime Territory was found to be minimal. The resultant phylogenetic tree indicates monophyly of brown frogs and earliest divergence of R. amurensis among all the brown frogs studied. For this reason, separation of R. amurensis from the R. japonica group is suggested, but separation of the R. sauteri complex as a distinct ge- nus or subgenus Pseudorana is not supported. Key words: Brown frog; Cytochrome b; Phylogeny; Pseudorana; Rana amurensis; Russia Rana amurensis Boulenger, 1886 occupies a ships of Japanese brown frogs have been report- very wide range, including western Siberia east ed by Nishioka et al. (1992) and Tanaka et al. to Sakhalin, northern and eastern Mongolia, (1996). In the present study, we first investigat- northeastern China and Korea, and regions ed the degree of genetic differentiation between north to bevond the Arctic Circle to 71°N populations of R, amurensis in Sakhalin and (Frost, 1985). -
Zootaxa,Paraphyly of Chinese Amolops (Anura, Ranidae) and Phylogenetic Position of The
Zootaxa 1531: 49–55 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Paraphyly of Chinese Amolops (Anura, Ranidae) and phylogenetic position of the rare Chinese frog, Amolops tormotus HONG-XIA CAI1, 2, JING CHE2, JUN-FENG PANG2, ER-MI ZHAO1,4& YA-PING ZHANG2, 3,4 1Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China, 610064 2Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, China, 650223 3Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China, 650091 4Corresponding authors. E-mail: [email protected]; [email protected] Abstract In order to evaluate the five species groups of Chinese Amolops based on morphological characteristics, and to clarify the phylogenetic position of the concave-eared torrent frog Amolops tormotus, we investigated the phylogeny of Amolops by maximum parsimony, Bayesian Inference, and maximum likelihood methods using two mitochondrial DNA fragments (12S rRNA, 16S rRNA). Our results supported a sister group relationship of Amolops ricketti and Amolops hainanensis. However, the grouping of Amolops mantzorum and Amolops monticola needs to be resolved with more data. Amolops tormotus was nested in genus Odorrana. Thus, recognition of the A. tormotus group is unwarranted and A. tormotus should be referred to genus Odorrana as O. tormota. This species is the sister group of O. nasica plus O. versabilis. The new classification implies that the genus Wurana is to be considered as junior subjective synonym of Odorrana. -
Title Phylogenetic Relationships of the Chinese Brown Frogs (Genus Rana)
Phylogenetic Relationships of the Chinese Brown Frogs Title (Genus Rana) Inferred from Partial Mitochondrial 12S and 16S rRNA Gene Sequences� Che, Jing; Pang, Junfeng; Zhao, Er-mi; Matsui, Masafumi; Author(s) Zhang, Ya-ping Citation Zoological Science (2007), 24(1): 71-80 Issue Date 2007-01 URL http://hdl.handle.net/2433/85329 Right (c) 日本動物学会 / Zoological Society of Japan Type Journal Article Textversion publisher Kyoto University ZOOLOGICAL SCIENCE 24:71–80 (2007) © 2007 Zoological Society of Japan Phylogenetic Relationships of the Chinese Brown Frogs (Genus Rana) Inferred from Partial Mitochondrial 12S and 16S rRNA Gene Sequences Jing Che1,2, Junfeng Pang2, Er-mi Zhao1, Masafumi Matsui3 and Ya-ping Zhang2* 1College of Life Sciences, Sichuan University, Chengdu 610064, China 2Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, China 3Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto 606-8501, Japan Based on partial sequences of the 12S and 16S ribosomal RNA genes, we estimated phylogenetic relationships among brown frogs of the Rana temporaria group from China. From the phylogenetic trees obtained, we propose to include Rana zhengi in the brown frogs. Monophyly of the brown frogs was not unambiguously supported, but four well-supported clades (A, B, C, and D) always emerged, although relationships among them remained unresolved. Clade A contained brown frogs with 24 chromosomes and was split into two distinct subclades (Subclade A-1: R. chensinensis and R. huanrenensis; Subclade A-2: R. dybowskii). Polytomous relationships among populations of R. chensinensis and R. huanrenensis suggested the necessity of further taxonomic assessment. -
Anura: Aromobatidae)
bioRxiv preprint doi: https://doi.org/10.1101/771287; this version posted September 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Sexual dichromatism in the neotropical genus Mannophryne (Anura: Aromobatidae) 2 Mark S. Greener1*, Emily Hutton2, Christopher J. Pollock3, Annabeth Wilson2, Chun Yin Lam2, Mohsen 3 Nokhbatolfoghahai 2, Michael J. Jowers4, and J. Roger Downie2 4 1Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent 5 University, B-9820 Merelbeke, Belgium. 6 2 School of Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK. 7 3 School of Biology, Faculty of Biological sciences, University of Leeds, Leeds LS2 9JT, UK. 8 4 CIBIO/InBIO (Centro de Investigacao em Biodiversidade e Recursos Genticos), Universide do Porto , 9 Vairao 4485-661, Portugal. 10 *[email protected] 11 ABSTRACT 12 Recent reviews on sexual dichromatism in frogs included Mannophryne trinitatis as the only example 13 they could find of dynamic dichromatism (males turn black when calling) within the family 14 Aromobatidae and found no example of ontogenetic dichromatism in this group. We demonstrate 15 ontogenetic dichromatism in M. trinitatis by rearing post-metamorphic froglets to near maturity: the 16 throats of all individuals started as grey coloured; at around seven weeks, the throat became pale 17 yellow in some, and more strongly yellow as development proceeded; the throats of adults are grey 18 in males and variably bright yellow in females, backed by a dark collar. -
WSR Vol 6 for 508 Pdf.Indd
Coastal and Estuarine Hazardous Waste Site Reports Editors J. Gardiner1, B. Azzato2, M. Jacobi1 1NOAA/OR&R/Coastal Protection and Restoration Division 2Azzato Communications Authors M. Hilgart, S. Duncan, S. Pollock Ridolfi Engineers Inc. NOAA National Oceanic and Atmospheric Administration NOS NOAA’s Ocean Service OR&R Office of Response and Restoration CPRD Coastal Protection and Restoration Division 7600 Sand Point Way NE Seattle, Washington 98115 September 30, 2004 Coastal and Estuarine Hazardous Waste Site Reports Reviewers K. Finkelstein1, M. Geddes2, M. Gielazyn1, R. Gouguet1, R. Mehran1 1NOAA/OR&R/Coastal Protection and Restoration Division 2Genwest Systems Graphics K. Galimanis 4 Point Design NOAA National Oceanic and Atmospheric Administration NOS NOAA’s Ocean Service OR&R Office of Response and Restoration CPRD Coastal Protection and Restoration Division 7600 Sand Point Way NE Seattle, Washington 98115 September 30, 2004 PLEASE CITE AS: J. Gardiner, B. Azzato and M. Jacobi, editors. 2004. Coastal and Estuarine Hazardous Waste Site Reports, September 30, 2004. Seattle: Coastal Protection and Restoration Division, Office of Response and Restoration, National Oceanic and Atmospheric Administration. 130 pp. v Contents Acronyms and abbreviations vii Introduction ix EPA Region 1 Callahan Mining Corp 1 Brooksville (Cape Rosier), Maine EPA Region 2 Diamond Head Oil Refinery Div. 11 Kearny, New Jersey MacKenzie Chemical Works 21 Central Islip, New York Pesticide Warehouse III 31 Manatí, Puerto Rico EPA Region 4 Davis Timber Company 41 Hattiesburg, -
Universidad De Costa Rica Facultad De Ciencias Escuela De Biologia
UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS ESCUELA DE BIOLOGIA Optando por el grado académico de Licenciatura en Biología con énfasis en Recursos Acuáticos Morfometría y reproducción de tres especies langostinos de la vertiente del Pacífico de Costa Rica: Macrobrachium panamense, M. americanum y M. tenellum (Decapoda: Palaemonidae). Yurlandy Gutiérrez Jara Cédula 1-1057-0627 Carné: 985134 Miembros del comité Dr. Ingo Wehrtmann (Director de Tesis) M.Sc. Gerardo Umaña (Lector) M.Sc. Monika Springer (Lectora) MIEMBROS DEL COMITÉ REVISOR Firma: __________________________ Dr. Ingo Wehrtmann Director de Tesis Firma: __________________________ M.Sc. Gerardo Umaña Lector Firma: __________________________ M.Sc. Monika Springer Lectora Firma: __________________________ Dra. Virginia Solís Alvarado Presidenta del tribunal Firma: __________________________ Dr. Paul Hanson Revisor Externo Firma: __________________________ Biol. Yurlandy Gutiérrez Jara Postulante II Este trabajo esta dedicado con todo mi amor: a mi esposo Rólier Lara y mi hermoso hijo Matias Lara Gutiérrez A mi madre Virginia Jara Mis hermanas: Montserrath, Daniela y a mi sobrina Sophi Y con mucho cariño a mi hermana mayor Layin que desde el cielo siempre me cuida y guía TQM. III AGRADECIMIENTOS Agradezco a los profesores: Ingo por su ayuda y guía en el desarrollo de mi tesis. A Monika por sus valiosas sugerencias y a Don Gerardo por su colaboración, apoyo y formación en trabajo de campo. Además a todas las secres de Biología por su apoyo. A Jeffrey Sibaja por su guía en la utilización del programa estadístico, para la elaboración de pruebas. A la empresa Rainbow por su aporte económico en la logística del trabajo de campo, compra de equipo y viáticos utilizados. -
Elevational Variation in Reproductive and Life History Traits of Sauter's
Zoological Studies 42(1): 193-202 (2003) Elevational Variation in Reproductive and Life History Traits of Sauter’s Frog Rana sauteri Boulenger, 1909 in Taiwan Su-Ju Lai1,2, Yeong-Choy Kam3 and Yao-Sung Lin1,* 1Department of Zoology, National Taiwan University, Taipei, Taiwan 106, R.O.C. 2Zoology Division, Taiwan Endemic Species Research Institute, Chichi, Nantou, Taiwan 552, R.O.C. 3Department of Biology, National Changhua University of Education, Changhua, Taiwan 500, R.O.C. (Accepted October 23, 2002) Su-Ju Lai, Yeong-Choy Kam and Yao-Sung Lin (2003) Elevational variation in reproductive and life history traits of Sauter’s frog Rana sauteri Boulenger, 1909 in Taiwan. Zoological Studies 42(1): 193-202. Sauter’s frog, Rana sauteri Boulenger, 1909 in the west-central part of the Central Mountain Range of Taiwan at eleva- tions of 300 to 2360 m showed obvious elevational clines in reproductive and life cycle traits. With an increase in elevation, the breeding season and the periods of calling, aggregation, and egg deposition of mature frogs shifted from fall and winter (Oct. to Dec.) to spring (May), while the breeding period decreased but the larval period increased. Also, adult females at high elevations were larger and produced smaller clutch sizes but larg- er eggs and tadpoles. The temperature experiment showed that low temperatures in winter at high elevations and high temperatures in summer at low elevations are the primary environmental factors that define the breed- ing success of the species. Rana sauteri has experienced long-term selection by environmental factors (e.g., temperature), resulting in populations at high elevations breeding in spring and populations at low elevations breeding in fall and winter to ensure that their tadpoles can grow and complete metamorphosis. -
Puerto Rico Comprehensive Wildlife Conservation Strategy 2005
Comprehensive Wildlife Conservation Strategy Puerto Rico PUERTO RICO COMPREHENSIVE WILDLIFE CONSERVATION STRATEGY 2005 Miguel A. García José A. Cruz-Burgos Eduardo Ventosa-Febles Ricardo López-Ortiz ii Comprehensive Wildlife Conservation Strategy Puerto Rico ACKNOWLEDGMENTS Financial support for the completion of this initiative was provided to the Puerto Rico Department of Natural and Environmental Resources (DNER) by U.S. Fish and Wildlife Service (USFWS) Federal Assistance Office. Special thanks to Mr. Michael L. Piccirilli, Ms. Nicole Jiménez-Cooper, Ms. Emily Jo Williams, and Ms. Christine Willis from the USFWS, Region 4, for their support through the preparation of this document. Thanks to the colleagues that participated in the Comprehensive Wildlife Conservation Strategy (CWCS) Steering Committee: Mr. Ramón F. Martínez, Mr. José Berríos, Mrs. Aida Rosario, Mr. José Chabert, and Dr. Craig Lilyestrom for their collaboration in different aspects of this strategy. Other colleagues from DNER also contributed significantly to complete this document within the limited time schedule: Ms. María Camacho, Mr. Ramón L. Rivera, Ms. Griselle Rodríguez Ferrer, Mr. Alberto Puente, Mr. José Sustache, Ms. María M. Santiago, Mrs. María de Lourdes Olmeda, Mr. Gustavo Olivieri, Mrs. Vanessa Gautier, Ms. Hana Y. López-Torres, Mrs. Carmen Cardona, and Mr. Iván Llerandi-Román. Also, special thanks to Mr. Juan Luis Martínez from the University of Puerto Rico, for designing the cover of this document. A number of collaborators participated in earlier revisions of this CWCS: Mr. Fernando Nuñez-García, Mr. José Berríos, Dr. Craig Lilyestrom, Mr. Miguel Figuerola and Mr. Leopoldo Miranda. A special recognition goes to the authors and collaborators of the supporting documents, particularly, Regulation No. -
The Herpetological Bulletin
THE HERPETOLOGICAL BULLETIN The Herpetological Bulletin is produced quarterly and publishes, in English, a range of articles concerned with herpetology. These include society news, full-length papers, new methodologies, natural history notes, book reviews, letters from readers and other items of general herpetological interest. Emphasis is placed on natural history, conservation, captive breeding and husbandry, veterinary and behavioural aspects. Articles reporting the results of experimental research, descriptions of new taxa, or taxonomic revisions should be submitted to The Herpetological Journal (see inside back cover for Editor’s address). Guidelines for Contributing Authors: 1. See the BHS website for a free download of the Bulletin showing Bulletin style. A template is available from the BHS website www.thebhs.org or on request from the Editor. 2. Contributions should be submitted by email or as text files on CD or DVD in Windows® format using standard word- processing software. 3. Articles should be arranged in the following general order: Title Name(s) of authors(s) Address(es) of author(s) (please indicate corresponding author) Abstract (required for all full research articles - should not exceed 10% of total word length) Text acknowledgements References Appendices Footnotes should not be included. 4. Text contributions should be plain formatted with no additional spaces or tabs. It is requested that the References section is formatted following the Bulletin house style (refer to this issue as a guide to style and format). Particular attention should be given to the format of citations within the text and to references. 5. High resolution scanned images (TIFF or JPEG files) are the preferred format for illustrations, although good quality slides, colour and monochrome prints are also acceptable. -
Embryonic Development of the Palaemonid Prawn Macrobrachium Idella Idella (Hilgendorf, 1898) G
lopmen ve ta e l B D Dinakaran et al., Cell Dev Biol 2013, 2:1 io & l l o DOI: 10.4172/2168-9296.1000111 l g e y C Cell & Developmental Biology ISSN: 2168-9296 Research Article Open Access Embryonic Development of the Palaemonid Prawn Macrobrachium idella idella (Hilgendorf, 1898) G. K. Dinakaran, P. Soundarapandian* and D. Varadharajan Faculty of Marine Sciences, Centre of Advanced Study in Marine Biology, Annamalai University, India Abstract After mating, the eggs were deposited, or oviposited, on setae of the pleopods of the female. The newly oviposited eggs were containing all the necessary material for synthetic processes associated with embryogenesis and morphogenesis and all the compounds required for oxidative metabolism and energy production. The fertilized eggs were opaque, greenish, round or oval in shape. The diameter of the egg was approximately 0.45 mm. As the development progresses, the greenish colour changed into light green, brownish-yellow and finally to dull whitish in colour about to hatch. The incubation periods varied from 12-14 days. The process of embryonic development includes nuclear division, cleavage (blastomeres), segmentation, formation of optic vesicle, eye pigment development and larva formation. At third minute after mating the sperm fused with the egg membrane and subsequently the male pronucleus entered the egg’s cytoplasm. The first and second nuclear divisions were completed without any corresponding division of the cell. Third division begun at 8 h and eight nuclei were formed after 9 h. Subsequent divisions of sixteen and thirty two nuclei stage took place at about 1 to 1.30 h interval and segmentation was completed at 18-20h.