Evolutionary and Biogeographic Origins of High Tropical Diversity in Old World Frogs (Ranidae)

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary and Biogeographic Origins of High Tropical Diversity in Old World Frogs (Ranidae) ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2009.00610.x EVOLUTIONARY AND BIOGEOGRAPHIC ORIGINS OF HIGH TROPICAL DIVERSITY IN OLD WORLD FROGS (RANIDAE) John J. Wiens,1,2 Jeet Sukumaran,3 R. Alexander Pyron4 and Rafe M. Brown3 1Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794 2E-mail: [email protected] 3Natural History Museum, Biodiversity Research Center, Department of Ecology and Evolutionary Biology, University of Kansas, Dyche Hall, Lawrence, Kansas 66045-7561 4Department of Biology, The Graduate School and University Center, City University of New York, New York, New York 10016 Received May 24, 2008 Accepted November 17, 2008 Differences in species richness between regions are ultimately explained by patterns of speciation, extinction, and biogeographic dispersal. Yet, few studies have considered the role of all three processes in generating the high biodiversity of tropical regions. A recent study of a speciose group of predominately New World frogs (Hylidae) showed that their low diversity in temperate regions was associated with relatively recent colonization of these regions, rather than latitudinal differences in diversification rates (rates of speciation–extinction). Here, we perform parallel analyses on the most species-rich group of Old World frogs (Ranidae; ∼1300 species) to determine if similar processes drive the latitudinal diversity gradient. We estimate a time-calibrated phylogeny for 390 ranid species and use this phylogeny to analyze patterns of biogeography and diversification rates. As in hylids, we find a strong relationship between the timing of colonization of each region and its current diversity, with recent colonization of temperate regions from tropical regions. Diversification rates are similar in tropical and temperate clades, suggesting that neither accelerated tropical speciation rates nor greater temperate extinction rates explain high tropical diversity in this group. Instead, these results show the importance of historical biogeography in explaining high species richness in both the New World and Old World tropics. KEY WORDS: Amphibians, biogeography, phylogeny, speciation, species richness. Why are there more species in tropical regions than in temper- Special Issue of American Naturalist in 2007). For example, the ate regions? This question has perplexed evolutionary biologists latitudinal diversity gradient might arise because of higher rates and ecologists for hundreds of years, and dozens of hypotheses of speciation in the tropics, higher rates of extinction in the tem- have been proposed to answer it (e.g., Pianka 1966; Rosenzweig perate zone, or a tendency for groups that originate in the tropics 1995; Rahbek and Graves 2001; Willig et al. 2003; Mittelbach to disperse only recently and rarely to the temperate zone. et al. 2007). In recent years, there has been growing appreciation Surprisingly few studies have attempted to address the role for the idea that any reasonably complete explanation for the lat- of these processes in creating the latitudinal diversity gradi- itudinal diversity gradient must incorporate the three processes ent. For example, many ecological studies have sought corre- that directly change the number of species within and between lations between species richness and environmental variables regions: speciation, extinction, and biogeographic dispersal (e.g., (e.g., Francis and Currie 2003; Hawkins et al. 2003; Willig et al. Ricklefs 2004; Wiens and Donoghue 2004; Mittelbach et al. 2007; 2003; Buckley and Jetz 2007), without addressing any of these C 2009 The Author(s). Journal compilation C 2009 The Society for the Study of Evolution. 1217 Evolution 63-5: 1217–1231 JOHN J. WIENS ET AL. Hildebrandtia ornata Ptychadeninae Ptychadena subpunctata Ptychadena mascareniensis 96 50 Ptychadena pumilio Ptychadena cooperi 84 Ptychadena porosissima 60 88 Ptychadena aequiplicata 81 Ptychadena bibroni Ptychadena longirostris Ptychadena anchietae 86 Ptychadena oxyrhynchus 66 100 Ptychadena tellinii Phrynobatrachus sandersoni 98 Phrynobatrachus dendrobat Phrynobatrachinae 82 Phrynobatrachus kreffti Phrynobatrachus africanus 94 100 Phrynobatrachus auritus 96 Phrynobatrachus natalensis 100 Phrynobatrachus calcaratus 100 Phrynobatrachus dispar 98 Phrynobatrachus mababiens Conrauinae Conraua crassipes Conraua goliath 100 65 Conraua robusta Petropetidinae Petropedetes martiensseni 60 100 Petropedetes yakusini Petropedetes palmipes 100 100 Petropedetes newtoni 97 Petropedetes cameronensis 82 Petropedetes parkeri Aubria subsigillata Pyxicephalus adspersus Pyxicephalinae 99 Pyxicephalus adspersus 100 100 Pyxicephalus edulis 86 Anhydrophryne rattrayi Tomopterna natalensis Tomopterna tandyi 68 100 99 Tomopterna cryptotis 71 Tomopterna delalandii Natalobatrachus bonebergi 58 98 Arthroleptella bicolor 98 Arthroleptella villiersi Afrana fuscigula 57 96 Afrana angolensis 98 Amietia vertebralis Poyntonia paludicola 88 Cacosternum boettgeri 100 Cacosternum platys Strongylopus grayii 100 Strongylopus bonaespei Micrixalinae 97 Strongylopus fasciatus Micrixalus fuscus 100 Micrixalus kottigharensis Ingerana tenasserimensis 100 Occidozyga borealis 100 Occidozyga baluensis Occidozyga laevis 100 97 Occidozyga lima 58 Occidozyga lima 54 Occidozyga martensii Nannophrys ceylonensis 100 Nannophrys marmorata Euphlyctis hexadactylus 88 61 Euphlyctis cyanophlyctis 100 Euphlyctis ehrenbergii 92 Hoplobatrachus occipitalis Hoplobatrachus crassus 63 Hoplobatrachus rugulosus 100 60 Hoplobatrachus tigerinus 96 Fejervarya cancrivora 96 Fejervarya vittigera Dicroglossinae Fejervarya orissaensis 87 Fejervarya triora Sphaerotheca breviceps Fejervarya brevipalmata 72 100 Fejervarya nilagirica 96 Fejervarya rufescens Fejervarya kirtisinghei 85 Fejervarya limnocharis 100 Fejervarya syhadrensis Paa shini Paa verrucospinosa Paa yei 92 98 Paa exilispinosa 64 Paa jiulongensis Paa spinosa 91 Paa boulengeri 98 Paa robertingeri 96 Paa conaensis Chaparana quadranus Chaparana unculuana 58 Paa liui 99 Paa yunnanensis 100 Paa liebigii Nanorana ventripunctata 81 Nanorana parkeri 92 Nanorana pleskei 58 Paa medogensis 70 Paa maculosa 64 90 Paa arnoldi 100 Paa chayuensis Limnonectes fragilis 56 Limnonectes kuhlii Limnonectes fujianensis 76 100 Limnonectes kuhlii Limnonectes kadarsani Limnonectes laticeps 89 Limnonectes limborgi 56 Limnonectes dabanus 58 86 Limnonectes gyldenstolpei Limnonectes sp Sulawesi 100 Limnonectes grunniens Limnonectes leporinus Limnonectes blythii 100 Limnonectes poilani Limnonectes malesianus 100 68 Limnonectes paramacrodon Limnonectes leytensis Limnonectes acanthi 100 Limnonectes arathooni 96 Limnonectes magnus Limnonectes heinrichi 80 68 Limnonectes modestus 66 Limnonectes woodworthi 86 Limnonectes macrocephalus 98 Limnonectes visayanus Ranixalinae Indirana leptodactyla Indirana sp 88 95 Indirana sp Indirana sp 100 Ingerana baluensis Ceratobrachinae Platymantis dorsalis 100 Platymantis naomiae 100 100 Platymantis hazelae 100 Platymantis montanus 100 Ceratobatrachus guentheri Batrachylodes vertebralis 100 Discodeles guppyi 78 Platymantis weberi Platymantis papuensis Nyctibatrachinae 100 100 Platymantis pelewensis Lankanectes corrugatus Nyctibatrachus aliciae 85 100 Nyctibatrachus major Boophis albilabris 100 Boophis tephraeomystax Mantellinae Boophis xerophilus 100 Aglyptodactylus madagasca 99 100 Laliostoma labrosum Mantella aurantiaca 71 100 Mantella nigricans Spinomantis peraccae 99 Mantidactylus femoralis 76 Mantidactylus ulcerosus 100 Buergeria japonica 78 Buergeria buergeri 98 Buergeria oxycephalus 96 57 Buergeria robusta Nyctixalus pictus 100 Nyctixalus spinosus 98 Theloderma asperum 98 Philautus rhododiscus 94 98 Theloderma bicolor 72 Theloderma corticale Philautus ingeri Philautus aurifasciatus Rhacophorinae Philautus petersi Philautus mjobergi 86 68 Philautus acutirostris 100 Philautus surdus 98 Rhacophorus verrucosus 96 Kurixalus eiffingeri 100 Kurixalus idiootocus Philautus charius 96 Philautus griet 96 Philautus signatus 95 Philautus luteolus 100 Philautus neelanethrus 67 Philautus leucorhinus 75 100 Philautus wynaadensis 100 Philautus femoralis 52 Philautus microtympanum 54 Philautus schmarda Philautus gracilipes Chirixalus palpebralis SE Asia Chirixalus vittatus 69 Chirixalus doriae N Asia 100 Chiromantis rufescens 98 Chiromantis xerampelina S Asia Polypedates eques 100 Polypedates fastigo Polypedates otilophus Australasia 96 Polypedates colletti Polypedates cruciger Europe 86 68 Polypedates maculatus 74 Polypedates megacephalus 100 Polypedates leucomystax Africa 100 Polypedates mutus Rhacophorus monticola Madagascar Rhacophorus dulitensis Rhacophorus dennysi N America 91 Rhacophorus moltrechti Rhacophorus arboreus Rhacophorus schlegelii M America Rhacophorus lateralis Rhacophorus pardalis Polypedates pleurostictus S America Rhacophorus angulirostris 98 Rhacophorus gauni ambiguous Rhacophorus calcaneus Raninae 98 Rhacophorus orlovi 88 Rhacophorus malabaricus Rhacophorus nigropalmatus 98 Rhacophorus rhodopus 76 Rhacophorus annamensis 71 Rhacophorus bipunctatus 98 Rhacophorus reinwardtii 100 80 60 40 20 Millions of years ago 1218 EVOLUTION MAY 2009 LATITUDINAL DIVERSITY IN FROGS processes. Even though climatic variation almost certainly plays were not. Specifically, they found that the low species richness of an essential role in generating the latitudinal diversity gradient, hylids in temperate North America, Europe, and Asia was seem- climatic variables do not directly change the number of species ingly explained by their relatively recent dispersal
Recommended publications
  • An Expert-Based Assessment Model for Evaluating Habitat Suitability of Pond-Breeding Amphibians
    sustainability Article An Expert-Based Assessment Model for Evaluating Habitat Suitability of Pond-Breeding Amphibians Shin-Ruoh Juang 1, Szu-Hung Chen 2 and Chen-Fa Wu 1,* 1 Department of Horticulture, National Chung Hsing University, Taichung City 402, Taiwan; [email protected] 2 Department of Ecosystem Science & Management, Texas A&M University, College Station, TX 77843, USA; [email protected] * Correspondence: [email protected]; Tel./Fax: +886-4-2285-9125 Academic Editor: Iain Gordon Received: 8 November 2016; Accepted: 10 February 2017; Published: 16 February 2017 Abstract: Farm ponds are important habitats for amphibians, birds, and other wildlife. In Taiwan, artificial ponds were originally created on farmlands for irrigation purposes and the needs of the domestic water supply. Although pond creation is a typical farming practice, it also provides habitats for pond-breeding amphibians. Thus, it is essential to understand the current status of habitats and their vulnerability regarding urgent conservation needs for target species. Günther’s frog (Hylarana guentheri), a pond-breeding amphibian, has a high sensitivity towards surrounding environmental changes, and can be used as an indicator species to assess habitat suitability. The purpose of this study is to establish a systematic framework to assess the habitat suitability of pond-breeding amphibians by using Günther’s frog as a pilot-study species. First, we collected frog survey data from Chiayi, Taiwan, from winter 2013 to spring 2015, and investigated the present status of the environmental conditions around the ponds. Next, expert questionnaires and the fuzzy Delphi method were applied to establish the hierarchical evaluation criteria regarding the habitat suitability assessment.
    [Show full text]
  • Anura, Rhacophoridae)
    Zoologica Scripta Patterns of reproductive-mode evolution in Old World tree frogs (Anura, Rhacophoridae) MADHAVA MEEGASKUMBURA,GAYANI SENEVIRATHNE,S.D.BIJU,SONALI GARG,SUYAMA MEEGASKUMBURA,ROHAN PETHIYAGODA,JAMES HANKEN &CHRISTOPHER J. SCHNEIDER Submitted: 3 December 2014 Meegaskumbura, M., Senevirathne, G., Biju, S. D., Garg, S., Meegaskumbura, S., Pethiya- Accepted: 7 May 2015 goda, R., Hanken, J., Schneider, C. J. (2015). Patterns of reproductive-mode evolution in doi:10.1111/zsc.12121 Old World tree frogs (Anura, Rhacophoridae). —Zoologica Scripta, 00, 000–000. The Old World tree frogs (Anura: Rhacophoridae), with 387 species, display a remarkable diversity of reproductive modes – aquatic breeding, terrestrial gel nesting, terrestrial foam nesting and terrestrial direct development. The evolution of these modes has until now remained poorly studied in the context of recent phylogenies for the clade. Here, we use newly obtained DNA sequences from three nuclear and two mitochondrial gene fragments, together with previously published sequence data, to generate a well-resolved phylogeny from which we determine major patterns of reproductive-mode evolution. We show that basal rhacophorids have fully aquatic eggs and larvae. Bayesian ancestral-state reconstruc- tions suggest that terrestrial gel-encapsulated eggs, with early stages of larval development completed within the egg outside of water, are an intermediate stage in the evolution of ter- restrial direct development and foam nesting. The ancestral forms of almost all currently recognized genera (except the fully aquatic basal forms) have a high likelihood of being ter- restrial gel nesters. Direct development and foam nesting each appear to have evolved at least twice within Rhacophoridae, suggesting that reproductive modes are labile and may arise multiple times independently.
    [Show full text]
  • A New Species of Amolops from Thailand (Amphibia, Anura, Ranidae)
    ZOOLOGICAL SCIENCE 23: 727–732 (2006) 2006 Zoological Society of Japan A New Species of Amolops from Thailand (Amphibia, Anura, Ranidae) Masafumi Matsui1* and Jarujin Nabhitabhata2 1Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan 2National Science Museum, Technopolis, Klong 5, Klongluang District, Pathun thani 12120, Thailand We describe a new species of torrent-dwelling ranid frog of the genus Amolops from western to peninsular Thailand. Amolops panhai, new species, differs from its congeners by the combination of: small body, males 31–34 mm, females 48–58 mm in snout-vent length; head narrower than long; tympanum distinct; vomerine teeth in short, oblique patches; first finger subequal to second; disc of first finger smaller than that of second, with circummarginal groove; no wide fringe of skin on third finger; toes fully webbed; outer metatarsal tubercle present; supratympanic fold present; dor- solateral fold indistinct; axillary gland present; horny spines on back, side of head and body, and chest absent; large tubercles on side of anus absent; glandular fold on ventral surface of tarsus absent; nuptial pad and paired gular pouches present in male; white band along the upper jaw extending to shoulder absent; larval dental formula 7(4-7)/3(1). This new species is the second anu- ran discovered which has a disjunct distribution around the Isthmus of Kra. Key words: Amolops, new species, Southeast Asia, tadpole, taxonomy, zoogeography Ranong), which we describe below as a new species. INTRODUCTION Oriental ranid frogs related to Amolops Cope, 1865 MATERIALS AND METHODS (sensu lato) are characterized by their peculiar larvae, which A field survey was conducted in western and peninsular Thai- inhabit mountain torrents using an abdominal, suctorial disk land between December 1995 and January 1997.
    [Show full text]
  • Two New Species of the Genus Limnonectes from Myanmar (Amphibia, Anura, Dicroglossidae)
    diversity Article Bioacoustics Reveal Hidden Diversity in Frogs: Two New Species of the Genus Limnonectes from Myanmar (Amphibia, Anura, Dicroglossidae) Gunther Köhler 1 , Britta Zwitzers 1, Ni Lar Than 2, Deepak Kumar Gupta 3, Axel Janke 3,4, Steffen U. Pauls 1,3,5 and Panupong Thammachoti 6,* 1 Senckenberg Forschungsinstitut und Naturmuseum, Senckenberganlage 25, 60325 Frankfurt a.M., Germany; [email protected] (G.K.); [email protected] (B.Z.); [email protected] (S.U.P.) 2 Zoology Department, East Yangon University, Thanlyin 11291, Yangon, Myanmar; [email protected] 3 LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt a.M., Germany; [email protected] (D.K.G.); [email protected] (A.J.) 4 Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Straße 14-16, 60325 Frankfurt a.M., Germany 5 Institute of Insect Biotechnology, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany 6 Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand * Correspondence: [email protected] urn:lsid:zoobank.org:pub:4C463126-CD59-4935-96E3-11AF4131144C urn:lsid:zoobank.org:act:5EA582A8-39DB-4259-A8D9-4C8FADAC5E9A urn:lsid:zoobank.org:act:412732A4-47E3-4032-8FF0-7518BA232F9F Citation: Köhler, G.; Zwitzers, B.; Than, N.L.; Gupta, D.K.; Janke, A.; Abstract: Striking geographic variation in male advertisement calls was observed in frogs formerly Pauls, S.U.; Thammachoti, P. referred to as Limnonectes doriae and L. limborgi, respectively. Subsequent analyses of mtDNA and Bioacoustics Reveal Hidden Diversity external morphological data brought supporting evidence for the recognition of these populations as in Frogs: Two New Species of the distinct species.
    [Show full text]
  • Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca
    Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Lamoreux, J. F., McKnight, M. W., and R. Cabrera Hernandez (2015). Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca. Gland, Switzerland: IUCN. xxiv + 320pp. ISBN: 978-2-8317-1717-3 DOI: 10.2305/IUCN.CH.2015.SSC-OP.53.en Cover photographs: Totontepec landscape; new Plectrohyla species, Ixalotriton niger, Concepción Pápalo, Thorius minutissimus, Craugastor pozo (panels, left to right) Back cover photograph: Collecting in Chamula, Chiapas Photo credits: The cover photographs were taken by the authors under grant agreements with the two main project funders: NGS and CEPF.
    [Show full text]
  • Western Ghats & Sri Lanka Biodiversity Hotspot
    Ecosystem Profile WESTERN GHATS & SRI LANKA BIODIVERSITY HOTSPOT WESTERN GHATS REGION FINAL VERSION MAY 2007 Prepared by: Kamal S. Bawa, Arundhati Das and Jagdish Krishnaswamy (Ashoka Trust for Research in Ecology & the Environment - ATREE) K. Ullas Karanth, N. Samba Kumar and Madhu Rao (Wildlife Conservation Society) in collaboration with: Praveen Bhargav, Wildlife First K.N. Ganeshaiah, University of Agricultural Sciences Srinivas V., Foundation for Ecological Research, Advocacy and Learning incorporating contributions from: Narayani Barve, ATREE Sham Davande, ATREE Balanchandra Hegde, Sahyadri Wildlife and Forest Conservation Trust N.M. Ishwar, Wildlife Institute of India Zafar-ul Islam, Indian Bird Conservation Network Niren Jain, Kudremukh Wildlife Foundation Jayant Kulkarni, Envirosearch S. Lele, Centre for Interdisciplinary Studies in Environment & Development M.D. Madhusudan, Nature Conservation Foundation Nandita Mahadev, University of Agricultural Sciences Kiran M.C., ATREE Prachi Mehta, Envirosearch Divya Mudappa, Nature Conservation Foundation Seema Purshothaman, ATREE Roopali Raghavan, ATREE T. R. Shankar Raman, Nature Conservation Foundation Sharmishta Sarkar, ATREE Mohammed Irfan Ullah, ATREE and with the technical support of: Conservation International-Center for Applied Biodiversity Science Assisted by the following experts and contributors: Rauf Ali Gladwin Joseph Uma Shaanker Rene Borges R. Kannan B. Siddharthan Jake Brunner Ajith Kumar C.S. Silori ii Milind Bunyan M.S.R. Murthy Mewa Singh Ravi Chellam Venkat Narayana H. Sudarshan B.A. Daniel T.S. Nayar R. Sukumar Ranjit Daniels Rohan Pethiyagoda R. Vasudeva Soubadra Devy Narendra Prasad K. Vasudevan P. Dharma Rajan M.K. Prasad Muthu Velautham P.S. Easa Asad Rahmani Arun Venkatraman Madhav Gadgil S.N. Rai Siddharth Yadav T. Ganesh Pratim Roy Santosh George P.S.
    [Show full text]
  • Maritime Southeast Asia and Oceania Regional Focus
    November 2011 Vol. 99 www.amphibians.orgFrogLogNews from the herpetological community Regional Focus Maritime Southeast Asia and Oceania INSIDE News from the ASG Regional Updates Global Focus Recent Publications General Announcements And More..... Spotted Treefrog Nyctixalus pictus. Photo: Leong Tzi Ming New The 2012 Sabin Members’ Award for Amphibian Conservation is now Bulletin open for nomination Board FrogLog Vol. 99 | November 2011 | 1 Follow the ASG on facebook www.facebook.com/amphibiansdotor2 | FrogLog Vol. 99| November 2011 g $PSKLELDQ$UN FDOHQGDUVDUHQRZDYDLODEOH 7KHWZHOYHVSHFWDFXODUZLQQLQJSKRWRVIURP $PSKLELDQ$UN¶VLQWHUQDWLRQDODPSKLELDQ SKRWRJUDSK\FRPSHWLWLRQKDYHEHHQLQFOXGHGLQ $PSKLELDQ$UN¶VEHDXWLIXOZDOOFDOHQGDU7KH FDOHQGDUVDUHQRZDYDLODEOHIRUVDOHDQGSURFHHGV DPSKLELDQDUN IURPVDOHVZLOOJRWRZDUGVVDYLQJWKUHDWHQHG :DOOFDOHQGDU DPSKLELDQVSHFLHV 3ULFLQJIRUFDOHQGDUVYDULHVGHSHQGLQJRQ WKHQXPEHURIFDOHQGDUVRUGHUHG±WKHPRUH \RXRUGHUWKHPRUH\RXVDYH2UGHUVRI FDOHQGDUVDUHSULFHGDW86HDFKRUGHUV RIEHWZHHQFDOHQGDUVGURSWKHSULFHWR 86HDFKDQGRUGHUVRIDUHSULFHGDW MXVW86HDFK 7KHVHSULFHVGRQRWLQFOXGH VKLSSLQJ $VZHOODVRUGHULQJFDOHQGDUVIRU\RXUVHOIIULHQGV DQGIDPLO\ZK\QRWSXUFKDVHVRPHFDOHQGDUV IRUUHVDOHWKURXJK\RXU UHWDLORXWOHWVRUIRUJLIWV IRUVWDIIVSRQVRUVRUIRU IXQGUDLVLQJHYHQWV" 2UGHU\RXUFDOHQGDUVIURPRXUZHEVLWH ZZZDPSKLELDQDUNRUJFDOHQGDURUGHUIRUP 5HPHPEHU±DVZHOODVKDYLQJDVSHFWDFXODUFDOHQGDU WRNHHSWUDFNRIDOO\RXULPSRUWDQWGDWHV\RX¶OODOVREH GLUHFWO\KHOSLQJWRVDYHDPSKLELDQVDVDOOSUR¿WVZLOOEH XVHGWRVXSSRUWDPSKLELDQFRQVHUYDWLRQSURMHFWV ZZZDPSKLELDQDUNRUJ FrogLog Vol. 99 | November
    [Show full text]
  • Is Dicroglossidae Anderson, 1871 (Amphibia, Anura) an Available Nomen?
    Zootaxa 3838 (5): 590–594 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3838.5.8 http://zoobank.org/urn:lsid:zoobank.org:pub:87DD8AF3-CB72-4EBD-9AA9-5B1E2439ABFE Is Dicroglossidae Anderson, 1871 (Amphibia, Anura) an available nomen? ANNEMARIE OHLER1 & ALAIN DUBOIS Muséum National d'Histoire Naturelle, Département Systématique et Evolution, UMR7205 ISYEB, CP 30, 25 rue Cuvier, 75005 Paris 1Corresponding autho. E-mail: [email protected] Abbreviations used: BMNH, Natural History Museum, London; SVL, snout–vent length; ZMB, Zoologisch Museum, Berlin. Anderson (1871a: 38) mentioned the family nomen DICROGLOSSIDAE, without any comment, in a list of specimens of the collections of the Indian Museum of Calcutta (now the Zoological Survey of India). He referred to this family a single species, Xenophrys monticola, a nomen given by Günther (1864) to a species of MEGOPHRYIDAE from Darjeeling and Khasi Hills (India) which has a complex nomenclatural history (Dubois 1989, 1992; Deuti et al. submitted). Dubois (1987: 57), considering that the nomen DICROGLOSSIDAE had been based on the generic nomen Dicroglossus Günther, 1860, applied it to a family group taxon, the tribe DICROGLOSSINI, for which he proposed a diagnosis. The genus Dicroglossus had been erected by Günther (1860), 11 years before Anderson’s (1871a) paper, for the unique species Dicroglossus adolfi. Boulenger (1882: 17) stated that this specific nomen was a subjective junior synonym of Rana cyanophlyctis Schneider, 1799, and therefore Dicroglossus a subjective junior synonym of Rana Linnaeus, 1758 (Boulenger, 1882: 7).
    [Show full text]
  • Using Spatially Explicit Call Data of Anhydrophryne Ngongoniensis to Guide Conservation Actions
    Using spatially explicit call data of Anhydrophryne ngongoniensis to guide conservation actions M Trenor orcid.org/0000-0002-0682-2262 Dissertation submitted in fulfilment of the requirements for the Masters degree in Zoology at the North-West University Supervisor: Prof C Weldon Co-supervisor: Dr J Tarrant Graduation May 2018 25747339 Abstract It’s been barely 25 years since the Mistbelt Chirping Frog (Anhydrophryne ngongoniensis) was discovered. This secretive amphibian occurs only in the so-called mistbelt grasslands and montane forest patches of south-central KwaZulu-Natal, South Africa and is restricted to an area of occupancy of just 12 square kilometers. This species’ habitat is severely fragmented due to afforestation and agriculture and only two of the remaining populations are formally protected. The species occurs mostly on fragmented grassland patches on forestry land, and any conservation strategies should include the management practices for the landowners. Updated density estimates and insight into habitat utilization are needed to proceed with conservation strategy for the species. Like many other frogs, this species is cryptic in its behaviour, making mark-recapture surveys prohibitively challenging. Audio transects have been used previously, but are dependent on surveyor’s’ experience, hindering standardization. Using automated recorders, in a spatially explicit array with GPS synchronization, one can confidently estimate the density of calling males and reveal the estimated locations of calling males, thus providing insight into their occupancy. We surveyed nine historic sites and detected the species at five of the sites in either isolated grassland patches or indigenous Afromontane forest. We successfully employed the spatially explicit catch recapture (SECR) method at three of the sites using Wildlife Acoustics™ Song Meters with extended microphones in an array.
    [Show full text]
  • The Head of Xenopus Laevls. by Nellie F
    The Head of Xenopus laevls. By Nellie F. Paterson, D.Se., Ph.D., Department of Zoology, University of the Witwatersrand, Johannesburg. With Plates 9 to 16. CONTENTS. PAGE INTRODUCTION 161 LATERAL LINE SENSORY ORGANS 163 MUSCULATURE 165 BLOOD-VESSELS ......... 172 THE CHONDROCRANIUM ........ 175 1. Metamorphosis ........ 183 2. Olfactory Eegion 188 3. Nasal Cavities 191 4. Auditory Eegion ........ 193 THE HYOBRANCHIAL SKELETON ....... 196 THE CRANIAL NERVES 198 Ganglion Pro-oticum ........ 199 Nervus Trigeminus ........ 200 1. Ramus Mandibularis 200 2. Ramus Ophthalmicus Profundus 203 NERVUS FACIALIS 209 1. Truncus Supra-orbitalis 210 2. Ramus Hyomandibularis . • - .211 3. Ramus Palatinus ........ 214 NERVI GLOSSOFHARYNGEtTS AND VAGUS . - .216 1. Nervus Glossopharyngeus . • • • .217 2. Nervus Vagus 220 SUMMARY OF COMPOSITION AND DISTRIBUTION OF NERVES . 226 SUMMARY 227 REFERENCES 228 INTRODUCTION. THE Aglossa, comprising only the genera Xenopus, Pipa, Propipa, Hymenochirus, and Pseudohymeno- chirus, are characterized among other things by the absence of a tongue and by a pectoral girdle that exhibits considerable deviation from that of typical Anura Phaneroglossa. NO. 322 M 162 NELLIE F. PATBESON The Aglossa are usually classified as the lowest of the A n u r a, but as Gadow in his account of the Amphibia in the ' Cambridge Natural History' (1909) indicates, their characteristic features are not necessarily primitive ones. A tongue is lacking in the majority of truly aquatic forms, and in the Aglossa the shoulder girdle and other parts of the body are doubtless specialized in response to their particular habits. It is therefore not surprising to find that the Aglossa present some striking morphological similarities with the aquatic Urodela on the one hand, and with certain genera of the Phaneroglossa on the other, but it is very doubtful if these resemblances are of any conse- quence.
    [Show full text]
  • Sri Lanka AARK Amphibian Conservation Planning Tool Master
    Amphibian Ark species prioritization workshop Page 1 Species in the In Situ Conservation Role 22 species Species for which mitigation of threats in the wild may still bring about their successful conservation. Species Threat Mitigation Protected Comments Habitat Nannophrys marmorata Threats are reversible in time frame Yes Record of 21 dead specimens in one location (Knuckles, Pitawala Pathana). Record of another local extinction (3 years ago) owing to Forestry Department habitat modifications (Mohomad Bahir knows the record site - [email protected]) but apparently has been recorded recently (wet season). Easy to reverse the threat (return the rocks back and protect the the microhabitat). In situ work is possible to reverse the threats. Tadpoles with semi- terrestrial behaviour; living on wet rock films (only a few species have this adaptation). There is a tourism development that use the frog as an attraction but it's not dependant on the frog. Educational potential: uniqueness of the tadpoles, Knuckles area should be using the species as a flagship to protect them and the habitat. Adenomus kandianus Threats are reversible in time frame Yes Mendis Wickramasinghe ([email protected]) presented the re-discovery of the species. Paper in process. One location in a protected habitat. 60 individuals in an area of 100 m2. No indications of threats except the limited factor of small single population. Considerations to suggest to protect the area for long-term conservation. The 60 individuals were recorded after several days of survey. Educational potential: rediscovery of extinct frog. Microhyla karunaratnei Threats are reversible in time frame Yes Disagreement between possibility of reversing the threats in time.
    [Show full text]
  • Download Download
    HAMADRYAD Vol. 27. No. 2. August, 2003 Date of issue: 31 August, 2003 ISSN 0972-205X CONTENTS T. -M. LEONG,L.L.GRISMER &MUMPUNI. Preliminary checklists of the herpetofauna of the Anambas and Natuna Islands (South China Sea) ..................................................165–174 T.-M. LEONG & C-F. LIM. The tadpole of Rana miopus Boulenger, 1918 from Peninsular Malaysia ...............175–178 N. D. RATHNAYAKE,N.D.HERATH,K.K.HEWAMATHES &S.JAYALATH. The thermal behaviour, diurnal activity pattern and body temperature of Varanus salvator in central Sri Lanka .........................179–184 B. TRIPATHY,B.PANDAV &R.C.PANIGRAHY. Hatching success and orientation in Lepidochelys olivacea (Eschscholtz, 1829) at Rushikulya Rookery, Orissa, India ......................................185–192 L. QUYET &T.ZIEGLER. First record of the Chinese crocodile lizard from outside of China: report on a population of Shinisaurus crocodilurus Ahl, 1930 from north-eastern Vietnam ..................193–199 O. S. G. PAUWELS,V.MAMONEKENE,P.DUMONT,W.R.BRANCH,M.BURGER &S.LAVOUÉ. Diet records for Crocodylus cataphractus (Reptilia: Crocodylidae) at Lake Divangui, Ogooué-Maritime Province, south-western Gabon......................................................200–204 A. M. BAUER. On the status of the name Oligodon taeniolatus (Jerdon, 1853) and its long-ignored senior synonym and secondary homonym, Oligodon taeniolatus (Daudin, 1803) ........................205–213 W. P. MCCORD,O.S.G.PAUWELS,R.BOUR,F.CHÉROT,J.IVERSON,P.C.H.PRITCHARD,K.THIRAKHUPT, W. KITIMASAK &T.BUNDHITWONGRUT. Chitra burmanica sensu Jaruthanin, 2002 (Testudines: Trionychidae): an unavailable name ............................................................214–216 V. GIRI,A.M.BAUER &N.CHATURVEDI. Notes on the distribution, natural history and variation of Hemidactylus giganteus Stoliczka, 1871 ................................................217–221 V. WALLACH.
    [Show full text]