The Head of Xenopus Laevls. by Nellie F

Total Page:16

File Type:pdf, Size:1020Kb

The Head of Xenopus Laevls. by Nellie F The Head of Xenopus laevls. By Nellie F. Paterson, D.Se., Ph.D., Department of Zoology, University of the Witwatersrand, Johannesburg. With Plates 9 to 16. CONTENTS. PAGE INTRODUCTION 161 LATERAL LINE SENSORY ORGANS 163 MUSCULATURE 165 BLOOD-VESSELS ......... 172 THE CHONDROCRANIUM ........ 175 1. Metamorphosis ........ 183 2. Olfactory Eegion 188 3. Nasal Cavities 191 4. Auditory Eegion ........ 193 THE HYOBRANCHIAL SKELETON ....... 196 THE CRANIAL NERVES 198 Ganglion Pro-oticum ........ 199 Nervus Trigeminus ........ 200 1. Ramus Mandibularis 200 2. Ramus Ophthalmicus Profundus 203 NERVUS FACIALIS 209 1. Truncus Supra-orbitalis 210 2. Ramus Hyomandibularis . • - .211 3. Ramus Palatinus ........ 214 NERVI GLOSSOFHARYNGEtTS AND VAGUS . - .216 1. Nervus Glossopharyngeus . • • • .217 2. Nervus Vagus 220 SUMMARY OF COMPOSITION AND DISTRIBUTION OF NERVES . 226 SUMMARY 227 REFERENCES 228 INTRODUCTION. THE Aglossa, comprising only the genera Xenopus, Pipa, Propipa, Hymenochirus, and Pseudohymeno- chirus, are characterized among other things by the absence of a tongue and by a pectoral girdle that exhibits considerable deviation from that of typical Anura Phaneroglossa. NO. 322 M 162 NELLIE F. PATBESON The Aglossa are usually classified as the lowest of the A n u r a, but as Gadow in his account of the Amphibia in the ' Cambridge Natural History' (1909) indicates, their characteristic features are not necessarily primitive ones. A tongue is lacking in the majority of truly aquatic forms, and in the Aglossa the shoulder girdle and other parts of the body are doubtless specialized in response to their particular habits. It is therefore not surprising to find that the Aglossa present some striking morphological similarities with the aquatic Urodela on the one hand, and with certain genera of the Phaneroglossa on the other, but it is very doubtful if these resemblances are of any conse- quence. Probably they are merely accidental or superficial likenesses, as for instance the similarities of skeletal structures indicated in the course of the present study as existing between Xenopus laevis and the Phaneroglossangenera Hemisus, Breviceps, and Probreviceps. The resemblances be- tween Xenopus and such Urodela as Siren and Pro- teus, especially in regard to the arrangement of the nervous system, seem to be more significant, but even this may be due to adaptation to somewhat similar habitats. The anatomical peculiarities of X. laevis Daud., the ' clawed toad' or ' platanna' of Southern Africa, have for many years been favourite subjects of investigation by students of morphology, but despite the valuable contributions that have appeared, there still remain many problematic points. X. laevis abounds in ponds and dams throughout southern and tropical Africa. Eose (1929) in his book 'Veld and Vlei' introduces the reader to a discussion on Xenopus by stating that 'the plathander has an even stronger claim than the springbok to be considered a typically South African animal, for whereas horned antelopes are found in many other countries, clawed toads are found in southern and tropical Africa and in no other part of the world'. The larvae have been described and figured by Bles (1904) and Peter (1930), and are chiefly remarkable for the extreme trans- parency of the tissues. They may also be recognized by the presence of a pair of long trailing' tentacles' (tent, fig. 30 a, PL 16), which disappear at metamorphosis, and by the characteristic HEAD OF XENOPUS 163 attitude they take up in the water; they usually remain more or less stationary with the head directed downwards and with the thin tapering extremity of the tail constantly vibrating and thus enabling them to maintain this position. The present study of X. laevis was begun with the inten- tion of investigating the distribution of the cranial nerves, but as it was necessary to make a somewhat intensive study of other associated cephalic structures and, as certain of these observations have proved of interest, they have been included in the dissertation. For the purpose of this study a series of larvae in progressive stages of development and measuring from 5 mm. to 60 mm. long were sectioned after having been fixed in aqueous Bouin. In order that comparisons between larval and adult conditions might be made possible, and conclusions might be arrived at regarding the changes occurring during the process of meta- morphosis, several transforming specimens as well as some very young frogs were also examined. The latter were sectioned after having been decalcified for several days in 3 per cent, nitric acid as prescribed in the eighth edition of Bolles Lee's 'Vade Meeum', 1921, pp. 252-3. The thickness of all the sections was 10/*, and the stains used were Hansen's haematoxylin and eosin. The preparations were found to be very satisfactory for a general study of the various organs and systems in the head, including the cranial nerves. LATERAL LINE SENSORY ORGANS. As Xenopus is one of those interesting Anura in which the lateral line sensory organs persist throughout life, due no doubt to their aquatic existence, a comparison of their arrange- ment in larval and adult stages is of some interest. Escher (1925), who gives a diagram of the organs in the adult, failed to observe them in the larva. It is to be admitted, however, that, owing to the light sprinkling of somewhat star-shaped patches of pigmentation, and more particularly to the remark- able transparency of the head region, the larval sensory organs are rather obscured and are only determined with difficulty. The ventral organs are easily distinguished as white markings 164 NELLIE F. PATERSON on the darkly coloured abdominal region in all larval stages. Even in young tadpoles measuring about 15 mm. in length and in which the hind-limbs have not yet been protruded, the organs of the dorsal and median rows (osl., msl, fig. 30 a, PI. 16) are sharply contrasted with the darker body coloration between the fore- and hind-limb buds. On the dorsal and ventral sur- faces of the head in front of this region the organs are indis- tinguishable macroscopically from the general surface of the body. That they are developed, however, is evident from sections of the anterior part of the body. Certain organs (csl., fig. 30 a, PI. 16) are also obvious in these early stages on the ventral fin anterior to the cloaca, where they at first appear as a lateral row of small rounded dots which show a gradual elongation during subsequent stages of development. In older larvae and in those undergoing metamorphosis these cloacal sensory organs decrease to a few vertically elongate organs on each side of the fin fold, and with the gradual absorption of the tail they come to lie even nearer to the cloacal aperture. Thus in the mature frog they are only observed with difficulty as indistinct ridges on the ventral fold of skin immediately anterior to the cloacal aperture. All the sensory organs become more apparent just before metamorphosis, when the skin is more deeply and more uni- formly pigmented and the whitish organs show up by contrast. It is then evident that the arrangement in the larva is essentially similar to that of the adult, and that both conform in general to the plan drawn up by Escher (1925) for U r o d e 1 e Amphibians. The dorsal, median, and ventral rows of trunk sensory organs are strongly developed, the two former systems extending on to the tail (fig. 30 b, PI. 16). The dorsal row may be continued only for a short distance caudally in some specimens, but the median organs are apparent throughout the length of the tail at the dorsal ends of the myomeres. The cephalic organs are arranged into supra-, infra-, and post- orbital series above, and oral and gular rows below. In addition, as Escher (1925) has indicated in the adult Xenopus, there are hyomandibular organs (hso., fig. 30 b, PI. 16) which are laterally continuous with the median line on the body, an HEAD OF XENOPUS 165 accessory row (ace, fig. 30 b, PL 16) which arches dorsally, and several small round parietal organs (par., fig. 30 b, PI. 16) situated dorsally midway between the supra-orbitals. The chief difference between larval and adult arrangements is found in the orbital grouping. In the larva the supra-orbitals (sorb., fig. 30 b, PI. 16) and post-orbitals (porb., fig. 30 b, PL 16) are quite distinct, but during metamorphosis they gradually approach the eye, so that in the adult they are arranged into a single circumorbital series. Closer inspection reveals that there is some considerable variation in the arrangement and number of organs in the several rows, not only in different specimens but also in the two sides of an individual. In general, however, each series of sensory organs is as a whole sufficiently constant to allow of their relative positions being easily determined. MtTSCULATUBE. Edgeworth (1929, 1935) has reported upon the cephalic muscles of the larva of X. fraseri in the course of his well- known dissertations on the muscles of Vertebrates, and the entire musculature of the adult X. laevis has been studied in detail by Grobbelaar (1924). The present series of prepara- tions of both larval and adult X. laevis have made it possible to draw conclusions regarding the changes undergone by the musculature of the head during metamorphosis. The muscles associated with the chondrocranium up to the time of metamorphosis are essentially similar to those of X. fraseri. The levatores mandibulae anterior and posterior are two rather broad muscles arising dorsally on the palatoquadrate and having their insertions on the dorsal surface of the Meckel's cartilage. The levator mandibulae posterior (lev.post, figs. 7, 8, PL 11) lies ventrally to the levator mandibulae anterior (lev.ant., figs.
Recommended publications
  • Freshwater Fishes
    WESTERN CAPE PROVINCE state oF BIODIVERSITY 2007 TABLE OF CONTENTS Chapter 1 Introduction 2 Chapter 2 Methods 17 Chapter 3 Freshwater fishes 18 Chapter 4 Amphibians 36 Chapter 5 Reptiles 55 Chapter 6 Mammals 75 Chapter 7 Avifauna 89 Chapter 8 Flora & Vegetation 112 Chapter 9 Land and Protected Areas 139 Chapter 10 Status of River Health 159 Cover page photographs by Andrew Turner (CapeNature), Roger Bills (SAIAB) & Wicus Leeuwner. ISBN 978-0-620-39289-1 SCIENTIFIC SERVICES 2 Western Cape Province State of Biodiversity 2007 CHAPTER 1 INTRODUCTION Andrew Turner [email protected] 1 “We live at a historic moment, a time in which the world’s biological diversity is being rapidly destroyed. The present geological period has more species than any other, yet the current rate of extinction of species is greater now than at any time in the past. Ecosystems and communities are being degraded and destroyed, and species are being driven to extinction. The species that persist are losing genetic variation as the number of individuals in populations shrinks, unique populations and subspecies are destroyed, and remaining populations become increasingly isolated from one another. The cause of this loss of biological diversity at all levels is the range of human activity that alters and destroys natural habitats to suit human needs.” (Primack, 2002). CapeNature launched its State of Biodiversity Programme (SoBP) to assess and monitor the state of biodiversity in the Western Cape in 1999. This programme delivered its first report in 2002 and these reports are updated every five years. The current report (2007) reports on the changes to the state of vertebrate biodiversity and land under conservation usage.
    [Show full text]
  • (Pyxicephalidae: Nothophryne) for Northern Mozambique Inselbergs
    African Journal of Herpetology ISSN: 2156-4574 (Print) 2153-3660 (Online) Journal homepage: http://www.tandfonline.com/loi/ther20 New species of Mongrel Frogs (Pyxicephalidae: Nothophryne) for northern Mozambique inselbergs Werner Conradie, Gabriela B. Bittencourt-Silva, Harith M. Farooq, Simon P. Loader, Michele Menegon & Krystal A. Tolley To cite this article: Werner Conradie, Gabriela B. Bittencourt-Silva, Harith M. Farooq, Simon P. Loader, Michele Menegon & Krystal A. Tolley (2018): New species of Mongrel Frogs (Pyxicephalidae: Nothophryne) for northern Mozambique inselbergs, African Journal of Herpetology, DOI: 10.1080/21564574.2017.1376714 To link to this article: https://doi.org/10.1080/21564574.2017.1376714 View supplementary material Published online: 22 Feb 2018. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ther20 AFRICAN JOURNAL OF HERPETOLOGY, 2018 https://doi.org/10.1080/21564574.2017.1376714 New species of Mongrel Frogs (Pyxicephalidae: Nothophryne) for northern Mozambique inselbergs Werner Conradie a,b, Gabriela B. Bittencourt-Silva c, Harith M. Farooq d,e,f, Simon P. Loader g, Michele Menegon h and Krystal A. Tolley i,j aPort Elizabeth Museum (Bayworld), Marine Drive, Humewood 6013, South Africa; bSchool of Natural Resource Management, George Campus, Nelson Mandela University, George 6530, South Africa; cDepartment of Environmental Sciences, University of Basel, Basel
    [Show full text]
  • Misgund Orchards
    MISGUND ORCHARDS ENVIRONMENTAL AUDIT 2014 Grey Rhebok Pelea capreolus Prepared for Mr Wayne Baldie By Language of the Wilderness Foundation Trust In March 2002 a baseline environmental audit was completed by Conservation Management Services. This foundational document has served its purpose. The two (2) recommendations have been addressed namely; a ‘black wattle control plan’ in conjunction with Working for Water Alien Eradication Programme and a survey of the fish within the rivers was also addressed. Furthermore updated species lists have resulted (based on observations and studies undertaken within the region). The results of these efforts have highlighted the significance of the farm Misgund Orchards and the surrounds, within the context of very special and important biodiversity. Misgund Orchards prides itself with a long history of fruit farming excellence, and has strived to ensure a healthy balance between agricultural priorities and our environment. Misgund Orchards recognises the need for a more holistic and co-operative regional approach towards our environment and needs to adapt and design a more sustainable approach. The context of Misgund Orchards is significant, straddling the protected areas Formosa Forest Reserve (Niekerksberg) and the Baviaanskloof Mega Reserve. A formidable mountain wilderness with World Heritage Status and a Global Biodiversity Hotspot (See Map 1 overleaf). Rhombic egg eater Dasypeltis scabra MISGUND ORCHARDS Langkloof Catchment MAP 1 The regional context of Misgund Orchards becomes very apparent, where the obvious strategic opportunity exists towards creating a bridge of corridors linking the two mountain ranges Tsitsikamma and Kouga (south to north). The environmental significance of this cannot be overstated – essentially creating a protected area from the ocean into the desert of the Klein-karoo, a traverse of 8 biomes, a veritable ‘garden of Eden’.
    [Show full text]
  • TNP SOK 2011 Internet
    GARDEN ROUTE NATIONAL PARK : THE TSITSIKAMMA SANP ARKS SECTION STATE OF KNOWLEDGE Contributors: N. Hanekom 1, R.M. Randall 1, D. Bower, A. Riley 2 and N. Kruger 1 1 SANParks Scientific Services, Garden Route (Rondevlei Office), PO Box 176, Sedgefield, 6573 2 Knysna National Lakes Area, P.O. Box 314, Knysna, 6570 Most recent update: 10 May 2012 Disclaimer This report has been produced by SANParks to summarise information available on a specific conservation area. Production of the report, in either hard copy or electronic format, does not signify that: the referenced information necessarily reflect the views and policies of SANParks; the referenced information is either correct or accurate; SANParks retains copies of the referenced documents; SANParks will provide second parties with copies of the referenced documents. This standpoint has the premise that (i) reproduction of copywrited material is illegal, (ii) copying of unpublished reports and data produced by an external scientist without the author’s permission is unethical, and (iii) dissemination of unreviewed data or draft documentation is potentially misleading and hence illogical. This report should be cited as: Hanekom N., Randall R.M., Bower, D., Riley, A. & Kruger, N. 2012. Garden Route National Park: The Tsitsikamma Section – State of Knowledge. South African National Parks. TABLE OF CONTENTS 1. INTRODUCTION ...............................................................................................................2 2. ACCOUNT OF AREA........................................................................................................2
    [Show full text]
  • Using Spatially Explicit Call Data of Anhydrophryne Ngongoniensis to Guide Conservation Actions
    Using spatially explicit call data of Anhydrophryne ngongoniensis to guide conservation actions M Trenor orcid.org/0000-0002-0682-2262 Dissertation submitted in fulfilment of the requirements for the Masters degree in Zoology at the North-West University Supervisor: Prof C Weldon Co-supervisor: Dr J Tarrant Graduation May 2018 25747339 Abstract It’s been barely 25 years since the Mistbelt Chirping Frog (Anhydrophryne ngongoniensis) was discovered. This secretive amphibian occurs only in the so-called mistbelt grasslands and montane forest patches of south-central KwaZulu-Natal, South Africa and is restricted to an area of occupancy of just 12 square kilometers. This species’ habitat is severely fragmented due to afforestation and agriculture and only two of the remaining populations are formally protected. The species occurs mostly on fragmented grassland patches on forestry land, and any conservation strategies should include the management practices for the landowners. Updated density estimates and insight into habitat utilization are needed to proceed with conservation strategy for the species. Like many other frogs, this species is cryptic in its behaviour, making mark-recapture surveys prohibitively challenging. Audio transects have been used previously, but are dependent on surveyor’s’ experience, hindering standardization. Using automated recorders, in a spatially explicit array with GPS synchronization, one can confidently estimate the density of calling males and reveal the estimated locations of calling males, thus providing insight into their occupancy. We surveyed nine historic sites and detected the species at five of the sites in either isolated grassland patches or indigenous Afromontane forest. We successfully employed the spatially explicit catch recapture (SECR) method at three of the sites using Wildlife Acoustics™ Song Meters with extended microphones in an array.
    [Show full text]
  • Extinction of Threatened Vertebrates Will Lead to Idiosyncratic Changes in Functional Diversity Across the World ✉ Aurele Toussaint 1 , Sébastien Brosse 2, C
    ARTICLE https://doi.org/10.1038/s41467-021-25293-0 OPEN Extinction of threatened vertebrates will lead to idiosyncratic changes in functional diversity across the world ✉ Aurele Toussaint 1 , Sébastien Brosse 2, C. Guillermo Bueno1, Meelis Pärtel 1, Riin Tamme 1 & Carlos P. Carmona 1 1234567890():,; Although species with larger body size and slow pace of life have a higher risk of extinction at a global scale, it is unclear whether this global trend will be consistent across biogeographic realms. Here we measure the functional diversity of terrestrial and freshwater vertebrates in the six terrestrial biogeographic realms and predict their future changes through scenarios mimicking a gradient of extinction risk of threatened species. We show vastly different effects of extinctions on functional diversity between taxonomic groups and realms, ranging from almost no decline to deep functional losses. The Indo-Malay and Palearctic realms are par- ticularly inclined to experience a drastic loss of functional diversity reaching 29 and 31%, respectively. Birds, mammals, and reptiles regionally display a consistent functional diversity loss, while the projected losses of amphibians and freshwater fishes differ across realms. More efficient global conservation policies should consider marked regional losses of func- tional diversity across the world. 1 Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia. 2 Université Paul Sabatier, CNRS, IRD, UMR5174 EDB (Laboratoire Évolution et ✉ Diversité Biologique), Toulouse, France. email: [email protected] NATURE COMMUNICATIONS | (2021) 12:5162 | https://doi.org/10.1038/s41467-021-25293-0 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25293-0 he loss of global biodiversity is accelerating throughout the with different key aspects of their ecology and their life-history Tworld1 triggering the sixth mass extinction crisis2.
    [Show full text]
  • 3Systematics and Diversity of Extant Amphibians
    Systematics and Diversity of 3 Extant Amphibians he three extant lissamphibian lineages (hereafter amples of classic systematics papers. We present widely referred to by the more common term amphibians) used common names of groups in addition to scientifi c Tare descendants of a common ancestor that lived names, noting also that herpetologists colloquially refer during (or soon after) the Late Carboniferous. Since the to most clades by their scientifi c name (e.g., ranids, am- three lineages diverged, each has evolved unique fea- bystomatids, typhlonectids). tures that defi ne the group; however, salamanders, frogs, A total of 7,303 species of amphibians are recognized and caecelians also share many traits that are evidence and new species—primarily tropical frogs and salaman- of their common ancestry. Two of the most defi nitive of ders—continue to be described. Frogs are far more di- these traits are: verse than salamanders and caecelians combined; more than 6,400 (~88%) of extant amphibian species are frogs, 1. Nearly all amphibians have complex life histories. almost 25% of which have been described in the past Most species undergo metamorphosis from an 15 years. Salamanders comprise more than 660 species, aquatic larva to a terrestrial adult, and even spe- and there are 200 species of caecilians. Amphibian diver- cies that lay terrestrial eggs require moist nest sity is not evenly distributed within families. For example, sites to prevent desiccation. Thus, regardless of more than 65% of extant salamanders are in the family the habitat of the adult, all species of amphibians Plethodontidae, and more than 50% of all frogs are in just are fundamentally tied to water.
    [Show full text]
  • BOA5.1-2 Frog Biology, Taxonomy and Biodiversity
    The Biology of Amphibians Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) Phyllomedusidae: Agalychnis annae 5.1-2: Frog Biology, Taxonomy & Biodiversity Part 2, Neobatrachia Hylidae: Dendropsophus ebraccatus CLassification of Order: Anura † Triadobatrachus Ascaphidae Leiopelmatidae Bombinatoridae Alytidae (Discoglossidae) Pipidae Rhynophrynidae Scaphiopopidae Pelodytidae Megophryidae Pelobatidae Heleophrynidae Nasikabatrachidae Sooglossidae Calyptocephalellidae Myobatrachidae Alsodidae Batrachylidae Bufonidae Ceratophryidae Cycloramphidae Hemiphractidae Hylodidae Leptodactylidae Odontophrynidae Rhinodermatidae Telmatobiidae Allophrynidae Centrolenidae Hylidae Dendrobatidae Brachycephalidae Ceuthomantidae Craugastoridae Eleutherodactylidae Strabomantidae Arthroleptidae Hyperoliidae Breviceptidae Hemisotidae Microhylidae Ceratobatrachidae Conrauidae Micrixalidae Nyctibatrachidae Petropedetidae Phrynobatrachidae Ptychadenidae Ranidae Ranixalidae Dicroglossidae Pyxicephalidae Rhacophoridae Mantellidae A B † 3 † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus 2 Anura Sub Orders Super Families (including Apoda Urodela Prosalirus †) 1 Archaeobatrachia A Hyloidea 2 Mesobatrachia B Ranoidea 1 Anura Salientia 3 Neobatrachia Batrachia Lissamphibia *Gerobatrachus may be the sister taxon Salientia Temnospondyls
    [Show full text]
  • Mgr. Jiří Brůna
    Přírodovědecká fakulta Masarykovy univerzity Ústav botaniky a zoologie Kotlářská 2 Brno CZ - 61137 MORFOLOGIE A MYOLOGIE POUŠTNÍCH FOREM ŽAB RODU BREVICEPS (ANURA, BREVICIPITIDAE) S OHLEDEM NA JEJICH FYLOGENETICKÉ VZTAHY RIGORÓZNÍ PRÁCE Mgr. Jiří Brůna BRNO 2007 Prohlašuji, že jsem uvedenou práci vypracoval samostatně, jen s použitím citované literatury. ........................................ V Brně dne 15.5. 2007 Jiří Brůna BRŮNA J. 2007. External morphology and myology of the desert forms of Breviceps (Anura, Brevicipitidae) with comments to their phylogenetic relationship. Rigorous thesis. Masaryk University, Brno: 82 pp. Anotace: The phylogenetic relationships of brevicipitid frogs are poorly understood. The first morphology phylogeny for genus Breviceps is presented, including representatives of 8 species (n= 84), and 1 hemisotid genus Hemisus (n=4) as outgroup. The total of 25 morphological characters (synapomorphies) were analysed using Maximum parsimony method - Paup 4.010b. Analysis of the data are consistent with the paraphyly of the Breviceps and forms two sister clades within the genus. Well supported is a monophyly of the clade B. namaquensis and B. macrops grouped with B. rosei as a sister taxon. This group forms a sister clade to the B. gibbosus, B. fuscus and B. verrucosus monophyletic group. Other two species B. adspersus and B. montanus forms a sister clade to this second group. Morphometric study (diameter of the eye) is also described. Breviceps namaquensis and B. macrops possess the biggest eye diameter of the genus and also their six morphological adaptations are presented in this study. Keywords: Anura, Brevicipitidae, Breviceps, morphology, myology, phylogeny, adaptations Touto cestou bych chtěl poděkovat prof. Channingovi (University of the Western Cape, JAR) za poskytnutí zázemí, materiálu a laboratorní techniky včetně cenných rad v průběhu dlouhodobých stáží v Jihoafrické republice (2002-2005).
    [Show full text]
  • PROGRAM the 11Th International Congress of Vertebrate Morphology
    PROGRAM The 11th International Congress of Vertebrate Morphology 29 June – 3 July 2016 Bethesda North Marriott Hotel & Conference Center Washington, DC CONTENTS Welcome to ICVM 11 ........................ 5 Note from The Anatomical Record........... 7 Administration ............................. 9 Previous Locations of ICVM ................. 10 General Information ........................ .11 Sponsors .................................. 14 Program at-a-Glance ....................... 16 Exhibitor Listing............................ 18 Program ................................... 19 Wednesday 29th June, 2016 ................... .19 Thursday 30th June, 2016 ..................... 22 Friday 1st July, 2016 ........................... 34 Saturday 2nd July, 2016 ....................... 44 Sunday 3rd July, 2016 ......................... 52 Hotel Floor Plan ................... Back Cover Program 3 Journal of Experimental Biology (JEB)(JEB) isis atat thethe forefrontforefront ofof comparaticomparativeve physiolophysiologygy and integrative biolobiology.gy. We publish papers on the form and function of living ororganismsganisms at all levels of biological organisation and cover a didiverseverse array of elds,fields, including: • Biochemical physiology •I• Invertebratenvertebrate and vertebrate physiology • Biomechanics • Neurobiology and neuroethology • Cardiovascular physiology • Respiratory physiology • Ecological and evolutionary physiology • Sensory physiology Article types include ReseaResearchrch Articles, Methods & TeTechniques,chniques, ShoShortrt
    [Show full text]
  • Some Aspects of the Anatomy of Anura (Amphibia)-A Review*
    SOME ASPECTS OF THE ANATOMY OF ANURA (AMPHIBIA)-A REVIEW* BY L. S. RAMASWAMI (From the Department of Zoology, University of Mysore, Central College, Bangalore) Received July 15, 1939 (Communicated by Prof. A. Subba Rau, D.so., F.R.M.s.) CONTENTS PAGE I. Introduction .. .. .. .. 42 II. Literature Selected .. .. .. .. .. 45 III. Review :- (a) Narial Region .. •. .. .. .. 45 (b) Prechoanal Sac .. •. .. .. .. 47 (c) Septomaxilla .. .. .. .. .. 48 (d) Eminentia Olfactoria .. .. .. .. 49 (e) Sphenethmoid .. .. .. .. .. 50 (f) Subethmoidal Cartilage .. .. .. .. 50 (g) Maxillae .. .. .. .. .. 51 (h) Prevomer .. .. .. .. .. 52 (i) Palatine Bone .. .. .. .. .. 56 (j) The Nasal, Frontoparietal, Squamosal, Pterygoid, Quadratojugal and Parasphenoid Bones .. .. 58 IV. The Middle Far Region .. .. .. .. 60 V. The Pterygoquadrate and its Attachments, and the Arteria Carotis Interna .. .. .. .. .. 63 VI. Bursa Angularis Oris (Fuchs) or the Mundwinkeldruse .. 65 VII. The Lower Jaw .. .. .. .. .. 66 VIII. The Hyolaryngeal Apparatus of Microhylidee and Pelobatidae 66 IX. The Vertebral Column .. .. •. .. .. 68 X. Summary and Conclusions .. .. .. .. 71 XI. Acknowledgement .. .. .. .. .. 76 XII. Bibliography .. .. .. .. .. 77 XIII. Errata List .. .. .. .. .. 80 * Based on the published papers of the author and accepted for the Doctor of Science Degree of the University of Madras, March 1938. 41 B3 F 42 L. S. Ramaswami I. Introduction AT the outset, it must be pointed out that under the title of anatomical studies of Indian and some extrapeninsular Anura, I have examined the cranium and larynx by the method of sections and also by gross study, and the morphological features of the vertebral column of some Indian anuran species by the latter method. It may be remarked here, that the study of cranial morphology by the method of sections revived at the incentive, given by Dr.
    [Show full text]
  • Protecting the Unique and Threatened Frogs of the Western Cape, South
    October 2020 AMPHIBIAN SURVIVAL ALLIANCE NEWTSLETTER Got a story you want to share? Drop Candace an email today! [email protected] Stories from our partners around the world © Endangered Wildlife Trust Wildlife © Endangered Protecting the unique and threatened frogs of the Western Cape, South Africa By Jeanne Tarrant, Endangered very limited ranges in the Western tion and habitat management inter- Wildlife Trust Cape province of South Africa. Here ventions would have particularly sig- is where the highest concentrations nificant conservation benefits. These In July 2020, with the support of of threatened amphibians can be species are the Critically Endangered ASA’s small grant through Global found in the country. Rough Moss Frog (Arthroleptella Wildlife Conservation, the Endan- rugosa) and Micro Frog (Microba- gered Wildlife Trust (EWT) com- Based on a prioritization exercise trachella capensis); and the Data menced a new project focused on we conducted in 2018, we identified Deficient Moonlight Mountain Toad- some of the most threatened and three species in the Western Cape let (Capensibufo selenophos) (IUCN, endemic frogs species restricted to for which targeted habitat protec- 2017). The population trend of each of these species is decreasing, species also represent umbrella spe- tares – one site (in Kleinrivierberg, or unknown, and as such research cies for other threatened frogs, such comprising 780 hectares) is already is needed on their distributions, as the Endangered Cape Platanna committed to proclamation and this population sizes, life histories, and (Xenopus gilli), and Western Leop- site is under review. threats. While the distributions of ard Toad (Sclerophrys pantherina). these species may not be extensive, As such, the fundamental goal of Formalizing protection of these they represent important habitat securing habitat for these species is incredibly beautiful landscapes will types, often themselves threatened, critical.
    [Show full text]