Anura, Rhacophoridae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Predation Upon Mantella Aurantiaca in the Torotorofotsy Wetlands, Central-Eastern Madagascar
Herpetology Notes, volume 2: 95-97 (2009) (published online on 10 July 2009) Predation upon Mantella aurantiaca in the Torotorofotsy wetlands, central-eastern Madagascar Olga Jovanovic1*, Miguel Vences1, Goran Safarek2, Falitiana C.E. Rabemananjara3, Rainer Dolch4 Abstract. Malagasy poisonous frogs of genus Mantella are small, diurnal frogs with skin glands containing alkaloids and characterised by aposematic colouration. Due to their noxiousness and warning colouration, it is thought that they do not have many natural predators. Until now, only one successful and one aborted predation on Mantella frogs were reported. Herein, we account about two successful predations on M. aurantiaca in Torotorofotsy wetland, in central-eastern Madagascar. The first predation was observed by lizard Zoonosaurus sp. and the second predation by a snake probably belonging to Thamnosophis lateralis. Both predators did not seem to mind the taste of the M. aurantiaca and ingested it. Keywords. Amphibia: Mantellidae, poison frogs, Thamnosophis, Zoonosaurus Only little is known about predation on poisonous genus Melanophryniscus of southeastern South America, frogs in general, in particular for those containing in Malagasy poison frogs of the genus Mantella (family skin alkaloids. Until now, there are around 30 reports Mantellidae) of Madagascar, and the myobatrachid published on predation on poisonous frogs, mostly genus Pseudophryne of Australia (Daly, Highet and belonging to the families Bufonidae and Leptodactylidae Myers, 1984; Daly et al., 2002). All of -
Diet Composition and Overlap in a Montane Frog Community in Vietnam
Herpetological Conservation and Biology 13(1):205–215. Submitted: 5 November 2017; Accepted: 19 March 2018; Published 30 April 2018. DIET COMPOSITION AND OVERLAP IN A MONTANE FROG COMMUNITY IN VIETNAM DUONG THI THUY LE1,4, JODI J. L. ROWLEY2,3, DAO THI ANH TRAN1, THINH NGOC VO1, AND HUY DUC HOANG1 1Faculty of Biology and Biotechnology, University of Science, Vietnam National University-HCMC, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam 2Australian Museum Research Institute, Australian Museum,1 William Street, Sydney, New South Wales 2010, Australia 3Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia 4Corresponding author, e-mail: [email protected] Abstract.—Southeast Asia is home to a highly diverse and endemic amphibian fauna under great threat. A significant obstacle to amphibian conservation prioritization in the region is a lack of basic biological information, including the diets of amphibians. We used stomach flushing to obtain data on diet composition, feeding strategies, dietary niche breadth, and overlap of nine species from a montane forest in Langbian Plateau, southern Vietnam: Feihyla palpebralis (Vietnamese Bubble-nest Frog), Hylarana montivaga (Langbian Plateau Frog), Indosylvirana milleti (Dalat Frog), Kurixalus baliogaster (Belly-spotted Frog), Leptobrachium pullum (Vietnam Spadefoot Toad), Limnonectes poilani (Poilane’s Frog), Megophrys major (Anderson’s Spadefoot Toad), Polypedates cf. leucomystax (Common Tree Frog), and Raorchestes gryllus (Langbian bubble-nest Frog). To assess food selectivity of these species, we sampled available prey in their environment. We classified prey items into 31 taxonomic groups. Blattodea was the dominant prey taxon for K. -
(Rhacophoridae, Pseudophilautus) in Sri Lanka
Molecular Phylogenetics and Evolution 132 (2019) 14–24 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Diversification of shrub frogs (Rhacophoridae, Pseudophilautus) in Sri Lanka T – Timing and geographic context ⁎ Madhava Meegaskumburaa,b,1, , Gayani Senevirathnec,1, Kelum Manamendra-Arachchid, ⁎ Rohan Pethiyagodae, James Hankenf, Christopher J. Schneiderg, a College of Forestry, Guangxi Key Lab for Forest Ecology and Conservation, Guangxi University, Nanning 530004, PR China b Department of Molecular Biology & Biotechnology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka c Department of Organismal Biology & Anatomy, University of Chicago, Chicago, IL, USA d Postgraduate Institute of Archaeology, Colombo 07, Sri Lanka e Ichthyology Section, Australian Museum, Sydney, NSW 2010, Australia f Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA g Department of Biology, Boston University, Boston, MA 02215, USA ARTICLE INFO ABSTRACT Keywords: Pseudophilautus comprises an endemic diversification predominantly associated with the wet tropical regions ofSri Ancestral-area reconstruction Lanka that provides an opportunity to examine the effects of geography and historical climate change on diversi- Biogeography fication. Using a time-calibrated multi-gene phylogeny, we analyze the tempo of diversification in thecontextof Ecological opportunity past climate and geography to identify historical drivers of current patterns of diversity and distribution. Molecular Diversification dating suggests that the diversification was seeded by migration across a land-bridge connection from India duringa Molecular dating period of climatic cooling and drying, the Oi-1 glacial maximum around the Eocene-Oligocene boundary. Lineage- Speciation through-time plots suggest a gradual and constant rate of diversification, beginning in the Oligocene and extending through the late Miocene and early Pliocene with a slight burst in the Pleistocene. -
Predation of Feihyla Hansenae (Hansen's Bush Frog) Eggs by A
NATURAL HISTORY NOTE The Herpetological Bulletin 139, 2017: 36-37 Predation of Feihyla hansenae (Hansen’s bush frog) eggs by a nursery web spider SINLAN POO1,2*, FRANCESCA T. ERICKSON3, SARA A. MASON4 & BRADLEY D. NISSEN5 1Memphis Zoo, 2000 Prentiss Place, Memphis, Tennessee 38112, USA 2Sakaerat Environmental Research Station, Wang Nam Khieo, Nakhon Ratchasima 30370, Thailand. 3U.S. Geological Survey Brown Treesnake Project, P.O. Box 8255 MOU-3, Dededo, 96912 Guam. 4Nicholas Institute for Environmental Policy Solutions, Duke University, Durham, North Carolina 27710, USA. 5Watershed Protection Department, City of Austin, 505 Barton Springs Road, Austin, Texas 78704, USA. *Corresponding author Email: [email protected] eihyla hansenae (Cochran, 1927) is an arboreal- breeding frog distributed in Thailand, Cambodia, and FMyanmar (Taylor, 1962; Aowphol et al., 2013). Eggs are laid in a gelatinous hemispherical clutch overhanging ponds and are cared for by female frogs until they hatch (Average egg stage = 5 days). Maternal care, viz. suppling water (Poo & Bickford, 2013) and deterring invertebrate predators (Poo et al., 2016a), is essential to the development and survival of eggs. The primary source of egg mortality is predation (Poo & Bickford, 2013). Known egg predators include ants, katydids, and snakes (Poo & Bickford, 2013; Poo et al., 2016b). In cases of partial clutch predation, threats from egg predators can lead to premature hatching in F. hansenae (Poo & Bickford, 2014), which can negatively affect the fitness and survival of hatchlings in subsequent Figure 1. Predation of F. hansenae egg clutch by N. cf. life stages (Gomez-Mestre & Warkentin, 2007). albocinctus. Here, we report the first observation of F. -
Character Assessment, Genus Level Boundaries, and Phylogenetic Analyses of the Family Rhacophoridae: a Review and Present Day Status
Contemporary Herpetology ISSN 1094-2246 2000 Number 2 7 April 2000 CHARACTER ASSESSMENT, GENUS LEVEL BOUNDARIES, AND PHYLOGENETIC ANALYSES OF THE FAMILY RHACOPHORIDAE: A REVIEW AND PRESENT DAY STATUS Jeffery A. Wilkinson ([email protected]) and Robert C. Drewes ([email protected]) Department of Herpetology, California Academy of Sciences, Golden Gate Park, San Francisco, California 94118 Abstract. The first comprehensive phylogenetic analysis of the family Rhacophoridae was conducted by Liem (1970) scoring 81 species for 36 morphological characters. Channing (1989), in a reanalysis of Liem’s study, produced a phylogenetic hypothesis different from that of Liem. We compared the two studies and produced a third phylogenetic hypothesis based on the same characters. We also present the synapomorphic characters from Liem that define the major clades and each genus within the family. Finally, we summarize intergeneric relationships within the family as hypothesized by other studies, and the family’s current status as it relates to other ranoid families. The family Rhacophoridae is comprised of over 200 species of Asian and African tree frogs that have been categorized into 10 genera and two subfamilies (Buergerinae and Rhacophorinae; Duellman, 1993). Buergerinae is a monotypic category that accommodates the relatively small genus Buergeria. The remaining genera, Aglyptodactylus, Boophis, Chirixalus, Chiromantis, Nyctixalus, Philautus, Polyp edates, Rhacophorus, and Theloderma, comprise Rhacophorinae (Channing, 1989). The family is part of the neobatrachian clade Ranoidea, which also includes the families Ranidae, Hyperoliidae, Dendrobatidae, Arthroleptidae, the genus Hemisus, and possibly the family Microhylidae. The Ranoidea clade is distinguished from other neobatrachians by the synapomorphic characters of completely fused epicoracoid cartilages, the medial end of the coracoid being wider than the lateral end, and the insertion of the semitendinosus tendon being dorsal to the m. -
Bioseries12-Amphibians-Taita-English
0c m 12 Symbol key 3456 habitat pond puddle river stream 78 underground day / night day 9101112131415161718 night altitude high low vegetation types shamba forest plantation prelim pages ENGLISH.indd ii 2009/10/22 02:03:47 PM SANBI Biodiversity Series Amphibians of the Taita Hills by G.J. Measey, P.K. Malonza and V. Muchai 2009 prelim pages ENGLISH.indd Sec1:i 2009/10/27 07:51:49 AM SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 September 2004 through the signing into force of the National Environmental Management: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include responsibilities relating to the full diversity of South Africa’s fauna and ora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, workshops, symposia and other activities initiated by or executed in partnership with SANBI. Technical editor: Gerrit Germishuizen Design & layout: Elizma Fouché Cover design: Elizma Fouché How to cite this publication MEASEY, G.J., MALONZA, P.K. & MUCHAI, V. 2009. Amphibians of the Taita Hills / Am bia wa milima ya Taita. SANBI Biodiversity Series 12. South African National Biodiversity Institute, Pretoria. -
A CONCISE REPORT on BIODIVERSITY LOSS DUE to 2018 FLOOD in KERALA (Impact Assessment Conducted by Kerala State Biodiversity Board)
1 A CONCISE REPORT ON BIODIVERSITY LOSS DUE TO 2018 FLOOD IN KERALA (Impact assessment conducted by Kerala State Biodiversity Board) Editors Dr. S.C. Joshi IFS (Rtd.), Dr. V. Balakrishnan, Dr. N. Preetha Editorial Board Dr. K. Satheeshkumar Sri. K.V. Govindan Dr. K.T. Chandramohanan Dr. T.S. Swapna Sri. A.K. Dharni IFS © Kerala State Biodiversity Board 2020 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, tramsmitted in any form or by any means graphics, electronic, mechanical or otherwise, without the prior writted permission of the publisher. Published By Member Secretary Kerala State Biodiversity Board ISBN: 978-81-934231-3-4 Design and Layout Dr. Baijulal B A CONCISE REPORT ON BIODIVERSITY LOSS DUE TO 2018 FLOOD IN KERALA (Impact assessment conducted by Kerala State Biodiversity Board) EdItorS Dr. S.C. Joshi IFS (Rtd.) Dr. V. Balakrishnan Dr. N. Preetha Kerala State Biodiversity Board No.30 (3)/Press/CMO/2020. 06th January, 2020. MESSAGE The Kerala State Biodiversity Board in association with the Biodiversity Management Committees - which exist in all Panchayats, Municipalities and Corporations in the State - had conducted a rapid Impact Assessment of floods and landslides on the State’s biodiversity, following the natural disaster of 2018. This assessment has laid the foundation for a recovery and ecosystem based rejuvenation process at the local level. Subsequently, as a follow up, Universities and R&D institutions have conducted 28 studies on areas requiring attention, with an emphasis on riverine rejuvenation. I am happy to note that a compilation of the key outcomes are being published. -
Maritime Southeast Asia and Oceania Regional Focus
November 2011 Vol. 99 www.amphibians.orgFrogLogNews from the herpetological community Regional Focus Maritime Southeast Asia and Oceania INSIDE News from the ASG Regional Updates Global Focus Recent Publications General Announcements And More..... Spotted Treefrog Nyctixalus pictus. Photo: Leong Tzi Ming New The 2012 Sabin Members’ Award for Amphibian Conservation is now Bulletin open for nomination Board FrogLog Vol. 99 | November 2011 | 1 Follow the ASG on facebook www.facebook.com/amphibiansdotor2 | FrogLog Vol. 99| November 2011 g $PSKLELDQ$UN FDOHQGDUVDUHQRZDYDLODEOH 7KHWZHOYHVSHFWDFXODUZLQQLQJSKRWRVIURP $PSKLELDQ$UN¶VLQWHUQDWLRQDODPSKLELDQ SKRWRJUDSK\FRPSHWLWLRQKDYHEHHQLQFOXGHGLQ $PSKLELDQ$UN¶VEHDXWLIXOZDOOFDOHQGDU7KH FDOHQGDUVDUHQRZDYDLODEOHIRUVDOHDQGSURFHHGV DPSKLELDQDUN IURPVDOHVZLOOJRWRZDUGVVDYLQJWKUHDWHQHG :DOOFDOHQGDU DPSKLELDQVSHFLHV 3ULFLQJIRUFDOHQGDUVYDULHVGHSHQGLQJRQ WKHQXPEHURIFDOHQGDUVRUGHUHG±WKHPRUH \RXRUGHUWKHPRUH\RXVDYH2UGHUVRI FDOHQGDUVDUHSULFHGDW86HDFKRUGHUV RIEHWZHHQFDOHQGDUVGURSWKHSULFHWR 86HDFKDQGRUGHUVRIDUHSULFHGDW MXVW86HDFK 7KHVHSULFHVGRQRWLQFOXGH VKLSSLQJ $VZHOODVRUGHULQJFDOHQGDUVIRU\RXUVHOIIULHQGV DQGIDPLO\ZK\QRWSXUFKDVHVRPHFDOHQGDUV IRUUHVDOHWKURXJK\RXU UHWDLORXWOHWVRUIRUJLIWV IRUVWDIIVSRQVRUVRUIRU IXQGUDLVLQJHYHQWV" 2UGHU\RXUFDOHQGDUVIURPRXUZHEVLWH ZZZDPSKLELDQDUNRUJFDOHQGDURUGHUIRUP 5HPHPEHU±DVZHOODVKDYLQJDVSHFWDFXODUFDOHQGDU WRNHHSWUDFNRIDOO\RXULPSRUWDQWGDWHV\RX¶OODOVREH GLUHFWO\KHOSLQJWRVDYHDPSKLELDQVDVDOOSUR¿WVZLOOEH XVHGWRVXSSRUWDPSKLELDQFRQVHUYDWLRQSURMHFWV ZZZDPSKLELDQDUNRUJ FrogLog Vol. 99 | November -
Is Dicroglossidae Anderson, 1871 (Amphibia, Anura) an Available Nomen?
Zootaxa 3838 (5): 590–594 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3838.5.8 http://zoobank.org/urn:lsid:zoobank.org:pub:87DD8AF3-CB72-4EBD-9AA9-5B1E2439ABFE Is Dicroglossidae Anderson, 1871 (Amphibia, Anura) an available nomen? ANNEMARIE OHLER1 & ALAIN DUBOIS Muséum National d'Histoire Naturelle, Département Systématique et Evolution, UMR7205 ISYEB, CP 30, 25 rue Cuvier, 75005 Paris 1Corresponding autho. E-mail: [email protected] Abbreviations used: BMNH, Natural History Museum, London; SVL, snout–vent length; ZMB, Zoologisch Museum, Berlin. Anderson (1871a: 38) mentioned the family nomen DICROGLOSSIDAE, without any comment, in a list of specimens of the collections of the Indian Museum of Calcutta (now the Zoological Survey of India). He referred to this family a single species, Xenophrys monticola, a nomen given by Günther (1864) to a species of MEGOPHRYIDAE from Darjeeling and Khasi Hills (India) which has a complex nomenclatural history (Dubois 1989, 1992; Deuti et al. submitted). Dubois (1987: 57), considering that the nomen DICROGLOSSIDAE had been based on the generic nomen Dicroglossus Günther, 1860, applied it to a family group taxon, the tribe DICROGLOSSINI, for which he proposed a diagnosis. The genus Dicroglossus had been erected by Günther (1860), 11 years before Anderson’s (1871a) paper, for the unique species Dicroglossus adolfi. Boulenger (1882: 17) stated that this specific nomen was a subjective junior synonym of Rana cyanophlyctis Schneider, 1799, and therefore Dicroglossus a subjective junior synonym of Rana Linnaeus, 1758 (Boulenger, 1882: 7). -
Fung Shui Woods Animals Have Been Collected, Verified, and Stored Preliminarily on 漁農自然護理署風水林的植物調查 2 Spreadsheets
Issue No. 8 March 2005 Guest Editorial Contents To better understand our biological assets and to facilitate the page formulation of the new nature conservation policy and measures, Guest Editorial 1 we have initiated the ecological survey programme in 2002 with a view to establishing a more comprehensive territory-wide ecological Feature Articles: database for Hong Kong in phases by 2005. AFCD Survey of So far, over 35,000 records of about 1,500 species of plants and Local Fung Shui Woods animals have been collected, verified, and stored preliminarily on 漁農自然護理署風水林的植物調查 2 spreadsheets. We have also established a web, the HK Biodiversity Online (www.hkbiodiversity.net), to make part of the baseline Endemic Species Highlights information available to the public for education purpose. - Romer’s Tree Frog 5 Our findings so far confirm that Hong Kong has a rich Working Group Column: biodiversity. We have found a number of species which are new to Short-tailed Shearwater, Hong Kong or even new to science and there are many species its first record in Hong Kong 9 awaiting our discovery/rediscovery. House Crows (Corvus splendens) Our surveys also enrich our knowledge on the distribution of - Notes on their Population and our animals and plants. Findings suggest that our protected areas Control in Hong Kong 10 are protecting a very significant portion of our biodiversity. For the species groups surveyed and analyzed, over 95% of the terrestrial Distribution of Seagrasses and freshwater representatives which are regularly seen in Hong in Hong Kong 12 Kong have representative population(s) inside our protected areas. -
Vertebrate Fauna of Morankanda-Mukalana Secondary Forest Patch in Sri Lanka: a Checklist Reported from 2004-2008 Survey
RUHUNA JOURNAL OF SCIENCE Vol 6: 21- 41, June 2015 ISSN: 1800-279X Faculty of Science University of Ruhuna Vertebrate fauna of Morankanda-Mukalana secondary forest patch in Sri Lanka: A checklist reported from 2004-2008 survey Hareschandra Bandula Jayaneththi Young Zoologists’ Association of Sri Lanka, National Zoological Gardens, Sri Lanka Correspondence: [email protected] Received: 26th February 2015, Revised: 29th June 2015, Accepted: 30th June 2015 Abstract. Morankanda-Mukalana is a fragmented forest patch which is located in the Galle district, Southern wet zone of Sri Lanka. Biogeography of the Morankanda is noteworthy because it is located in the middle of the transition area of forest reserves or proposed forest reserves, which includes Beraliya Mukalana. This basic field survey was carried out upon the request made by Morakanda Estate management to define vertebrate checklist in the related area with the aim of starting analogue forestry as a future practice. During the study, a total of nine freshwater fish species were recorded (including four endemics), together with 14 species of amphibians (8 endemics), 43 reptile species (20 tetrapods and 23 serpentoids incl. 16 endemics), and 26 mammals (3 endemics). Avifauna comprised of 112 species (9 migrants) with 12 endemic birds (including proposed endemics). The high vertebrate faunal diversity revealed in this study paved the way for the estate management to change their plantation practice by maintaining partially analogue forestry following conservation practices which will positively affect to improve the status of wild fauna. Keywords. Agro-ecosystem, analogue forestry, endemic fauna, rain forests, vertebrate checklist. 1 Introduction Sri Lanka is an island off the southern tip of India, and is a biodiversity hotspot. -
A New Small Montane Species of Philautus (Amphibia: Anura: Rhacophoridae) from Gunung Kinabalu, Sabah, Malaysia (Borneo)
SALAMANDRA 52(2) 77–90 30 June 2016 NewISSN Philautus 0036–3375 from Borneo A new small montane species of Philautus (Amphibia: Anura: Rhacophoridae) from Gunung Kinabalu, Sabah, Malaysia (Borneo) J. Maximilian Dehling1, Masafumi Matsui2 & Paul Yambun Imbun3 1) Institut für Integrierte Naturwissenschaften, Abteilung Biologie, Universität Koblenz-Landau, Universitätsstraße 1, 56070 Koblenz, Germany 2) Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto 606–8501, Japan 3) Sabah Parks, P.O. Box 10626, 88806 Kota Kinabalu, Sabah, Malaysia Corresponding author: J. Maximilian Dehling, e-mail: [email protected] Manuscript received: 6 September 2015 Accepted: 17 November 2015 by Alexander Kupfer Abstract. Three populations of small montane bush frogs previously assigned to Philautus mjobergi were compared us- ing morphological, bioacoustic, and genetic (mitochondrial 16S rRNA sequence) data. The comparison revealed that the population from Gunung Kinabalu in Sabah, Malaysia, represents a distinct species that is described herein. Although the new species differs fromP. mjobergi in few morphological characters, most notably the acuminate snout, it is distinguished from this species and all other Bornean congeners by a unique advertisement call and large genetic differences. The popu- lation from Gunung Mulu assigned to P. mjobergi differs from the topotypic population from Gunung Murud in its adver- tisement call and 16S rRNA sequence and probably represents another, undescribed species. Key words. DNA barcoding, advertisement call, Philautus mjobergi, Gunung Mulu, Sarawak, frog. Introduction Smith 1931, Inger 1966 [as P. aurifasciatus], Dring 1987, Malkmus 1989, Inger & Stuebing 1992, Malkmus 1994, Bush frogs of the genus Philautus are represented by 19 Malkmus & Riede 1996, Inger et al.