Science and Pseudoscience

Total Page:16

File Type:pdf, Size:1020Kb

Science and Pseudoscience 1 Science and Pseudoscience I NTROD UCTION Parapsychology is defin ed by its practitioners as the study of extrasensory perception (ESP) and paranormal powers such as telekines is. ESP includes such all eged psyc hi c ph enomena as telepathy, clairvoya nce, and precog- nition. Shunned for decades by th e sc ientific establishment, parapsychol- ogists received offi cial recognition in 1969 when the Ameri can Assoc iation for the Advancem ent of Science (the AAAS) admitted the Parapsycholog- ical Association as an affili ate member. Many scientists are unhappy with this decision, since they regard parapsychology as a pseudoscience. In 1979, th e renowned phys icist John A. Wheeler wrote a blistering letter to the president of the AAAS urging that th e pa ra psychologists be expelled from the associati on. Wheeler wrote, "We have enough charlatanism in t!.is country today without needing a sci entific organization to prostitute itself to it. The AAAS has to make up its mind whether it is seeking popularity or wheth er it is stri ctl y a sc ientific orga niza ti on.'" The debate about th e nature of sc ience-about its scope, methods, and aims-is as old as sc ience itsel f. But this debate becomes especiall y heated when one group of practitioners accuses another group of practi c- ing pseudoscience. In the twentieth century many individuals, groups, and th eories have been accused of being pseudoscientifi c, including Freud and psyc hoanalysis, as trol ogy, beli evers in the paranormal, Immanuel Velikov- sky and Erich von Daniken (whose best-selling books W orlds in Collision and Chariots of the Gods excited the wrath of Carl Sagan and the scientific establishment), and, mos t recentl y, th e self-styled advoca tes of creation- science. The proponents of as trology, the paranormal, psychoanalys is, and creation-science engage in research, write books, and publish articl es, but th eir work is typically found in popular magazines and bookstores rather than refereed journals and science librari es. They are seldom funded by 1 2 CH. I SCIENCE AND PSEUDOSC IEN CE the National Science Foundation or elected to the National Academy of Sciences. They are outside of the sc ientific establishment and are kept out by those who regard th emselves as real sc ientists. If our only concern were to label certa in people "pseudoscientists," we might simply check where th eir work is published and how their the- ories have been received by th e sc ientific community. But we are con- cerned with the reasons certain doctrines are considered pseudoscientific; it is th ose reasons that interest philosophers of science. Some philosophers have proposed necessary conditions for genuine science. That is, they have offered characteristi cs that any discipline or field of study must possess in order t6 qualify as genuine sc ience. These characteri stics are often called demarcation criteria because they can be used to differentiate science from its counterfeit: if a discipline fail s to meet one of these conditions, then it is judged to be nonsc ientific. In the twentieth century, philosophers of sc ience have often disagreed about demarcation criteria. In this chapter Karl Popper, Thomas Kuhn, Imre Lakatos, and Paul Thagard each defend a different set of necessary conditions for genuine science. Popper's view, that a scientific theory must be open to refutation by making testable predictions, has been very influ- ential, especially among working scientists. Kuhn, Lakatos, and Thagard all reject Popper's claim that falsifiability is the hallmark of genuine sci- ence but disagree about what should replace it. All three address whether a theory or discipline's claim to scientific legitimacy depends on historical considerations, such as how theories have developed over time. The chapter ends with an exchange of views between Michael Ruse and Larry Laudan about the credentials of creation-science. Ruse, a prominent philosopher of biology, served as an ex pert witness in a trial concerning the constitutionality of an Arkansas law requiring public school biology teachers to present creati onism as a viable scientific alternati ve to evolutionary theory. Under Ruse's guidance, the judge in the case drew up a list of five criteri a for ge nuine science and concluded that creation- science fail ed on all fiv e counts. Laudan not only criticizes the items on this list (w hich includes Popper's falsifiabi lity) but also doubts whether there are any demarcation criteri a th at all sc ientific theories must sa tisfy. • Notes I. Quoted in Jack W. G rove, In Defence of Science (Toronto: Un ivers ity of To- ronto Press, 1989), 137. See also Martin Gardner, Science: Good, Bad and Bogus (Buffalo, N.Y.: Prometheus Books, 1981), 185-206. The Parapsychological Asso- ciation is still a member of the AAAS . KARL POPPER Science: Conjectures and Refutations Mr. Turnbull had predicted evil consequences, ... and was now doing the best in his power to bring about the verification of his own prophecies. - Anthony Troll ope • I When I received the list of participants in this course and realized that I had been asked to speak to philosophical colleagues' I thought, after some hesita tion and consultation, that you would probably prefer me to speak about those problems which interest me most, and about those develop- ments with which I am most intimately acquainted. I therefore decided to do what I have never done before: to give you a report on my own work in the philosophy of science, since the autumn of 1919 when I first began to grapple with the problem, 'When should a theory be ranked as scientific?' or 'Is there a criterion {or the scientific character or status o{ a theory?' The problem which troubled me at the time was neither, 'When is a theory true?' nor, 'When is a theory acceptable?' My problem was different. I wished to distinguish between science and pseudo-science; knowing very well that science often errs, and that pseudo-science may happen to stum- ble on the truth. I knew, of course, the most widely accepted answer to my problem: FROM Karl Popper, Coniectures and Refutations (London: Routledge and Kegan Paul, 1963 ), 33-39. 0. This essay was or iginall y presented as a lecture at Peterhouse College at Cam- br idge University in the summer of 1953 as part of a course on developments and trends in contemporary British philosophy, organized by the British Council. It was originally published as "Philosophy of Science: A Personal Report:: in British Philosophy in Mid·Century, ed. C. A. Mace, (London: All en and Unwin, 1957). 3 4 C H. I SC I ENC E AND P SEUDOSC I ENCE that science is distinguished fro m pseudo-science-or from 'metaphysics' - by its empirical method, whi ch is essentiall y inductive, proceeding from obse rvation or experiment. But this did not satisfy me. On the contrary, I often formulated my problem as one of distinguishing between a genuinely empirical method and a non-empirical or even a pseudo-empirical method- that is to say, a method which, although it appeals to observati on and experiment, nevertheless does not come up to sc ientific standard s. The latter method may be exempl ifi eq by as tro logy, with its stupendous l1)a ss of empirical evidence based on observation-on horoscopes and on biographies. But as it was not the example of astrology which led me to my prob- lem I should perhaps brieAy desc ri be th e atmosphere in which my prob- lem arose and the exa mples by wh ich it was stimulated. After the coll apse of th e Austrian Empire th ere had been a revolution in Austria: the air was full of revolutionary slogans and ideas, and new and often wi ld theori es. Among the theori es which interested me Einstein's theory of relati vity was no doubt by rar the most important. Three others we re Marx's theory of history, Freud's psycho-a nalysis, and Alfred Adler's so-ca ll ed 'i ndividual psychology'" There was a lot of popul ar nonsense ta lked about these theories, and especiall y about relativity (as still happens eve n today), but I was fortunate in those who introduced me to the study of this theory. We all - the small circl e of students to which 1 belonged-were thrilled with the res ult of Eddington's eclipse observations whi ch in 1919 brought the first important confirmation of Einstein 's th eory of gravitation. It was a great experi ence for us, and one which had a lasting influence on my intellectual devel- opment.t T he three other theori es 1 have mentioned we re also wi dely discussed among students at that ti me. 1 myse lf happened to come into personal contact with Alfred Adler, and even to co-operate with him in his soc ial $ For a fascinating autobiograp hica l account of Popper's yo uthful Airtat ion and painful disenchantment with Marx ism, see "A Crucial Year: Marxism; Science and Pse udoscience," in The Ph ilosophy o( Karl Popper, ed . Pa ul A. Schil pp (La Sali e, III .: Open Court , 1974), 1: 23 - 29. There is also an extended criticism of Freud in Karl R. Popper, Realism and the Aim o( Science (New Yo rk : Routl edge, 1983), 163-74. t Einste in's general th eory of relativity entails that light rays must bend in a grav- itati onal fi eld.
Recommended publications
  • Utilitarianism & the Afterlife
    Utilitarianism & the Afterlife The paradox of a pleasant hereafter Betsy McCall The goal of Utilitarianism is to lay out a moral philosophy to provide us a way of living, and a way of making difficult moral choices correctly(Mill, 2001) in circumstances which are uncommon enough that experience has not, or cannot, prepare us for the solution. But in doing so, Utilitarianism must confront the same moral challenges confronted by all moral philosophies, including the consequences of belief in the afterlife(Hasker, 2005). The afterlife has provided a complex moral challenge for many moral philosophical frameworks throughout the ages, from Buddhism to Christianity. Buddhism posits that life is suffering, and that the ultimate goal of living is really to escape living altogether by achieving nirvana, or at least, a better life in the next reincarnation(Becker, 1993). Christianity similarly puts this life into a comparison with another better alternative, in this case, the possibility of an infinitely better afterlife in heaven with god and the angels(Pohle, 1920). In both cases, the philosophical frameworks have been forced to incorporate specific prohibitions against suicide in order to avoid the apparently logical conclusion that death is preferable to life, and we would do well to get ourselves there as quickly as possible. Mill, in arguing for Utilitarianism, does not specifically address this question, perhaps because Mill himself gave the afterlife little personal credence(Wilson, 2009). However, writing to a largely Christian Western audience, like Christianity, and a deep-seated historical affinity for belief in reincarnation(Haraldsson, 2005), Mill and his followers must be prepared to address this potential concern.
    [Show full text]
  • Would ''Direct Realism'' Resolve the Classical Problem of Induction?
    NOU^S 38:2 (2004) 197–232 Would ‘‘Direct Realism’’ Resolve the Classical Problem of Induction? MARC LANGE University of North Carolina at Chapel Hill I Recently, there has been a modest resurgence of interest in the ‘‘Humean’’ problem of induction. For several decades following the recognized failure of Strawsonian ‘‘ordinary-language’’ dissolutions and of Wesley Salmon’s elaboration of Reichenbach’s pragmatic vindication of induction, work on the problem of induction languished. Attention turned instead toward con- firmation theory, as philosophers sensibly tried to understand precisely what it is that a justification of induction should aim to justify. Now, however, in light of Bayesian confirmation theory and other developments in epistemology, several philosophers have begun to reconsider the classical problem of induction. In section 2, I shall review a few of these developments. Though some of them will turn out to be unilluminating, others will profitably suggest that we not meet inductive scepticism by trying to justify some alleged general principle of ampliative reasoning. Accordingly, in section 3, I shall examine how the problem of induction arises in the context of one particular ‘‘inductive leap’’: the confirmation, most famously by Henrietta Leavitt and Harlow Shapley about a century ago, that a period-luminosity relation governs all Cepheid variable stars. This is a good example for the inductive sceptic’s purposes, since it is difficult to see how the sparse background knowledge available at the time could have entitled stellar astronomers to regard their observations as justifying this grand inductive generalization. I shall argue that the observation reports that confirmed the Cepheid period- luminosity law were themselves ‘‘thick’’ with expectations regarding as yet unknown laws of nature.
    [Show full text]
  • Scientific Communities in the Developing World Scientific Communities in the Developing World
    Scientific Communities in the Developing World Scientific Communities in the Developing World Edited by jacques Caillard V.V. Krishna Roland Waast Sage Publications New Delhiflhousand Oaks/London Copyright @) Jacques Gaillard, V.V. Krishna and Roland Waast, 1997. All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage or retrieval system, without permission in writing from the publisher. First published in 1997 by Sage Publications India Pvt Ltd M-32, Greater Kailash Market I New Delhi 110 048 Sage Publications Inc Sage Publications Ltd 2455 Teller Road 6 Bonhill Street Thousand Oaks, California 91320 London EC2A 4PU Published by Tejeshwar Singh for Sage Publications India Pvt Ltd, phototypeset by Pagewell Photosetters, Pondicherry and printed at Chaman Enterprises, Delhi. Library of Congress Cataloging-in-Publication Data Scientific communities in the developing world I edited by Jacques Gaillard, V.V. Krishna, Roland Waast. p. cm. Includes bibliographical references and index. 1. Science-Developing countries--History. 2. Science-Social aspect- Developing countries--History. I. Gaillard, Jacques, 1951- . 11. Krishna, V.V. 111. Waast, Roland, 1940- . Q127.2.S44 306.4'5'091724--dc20 1996 9617807 ISBN: 81-7036565-1 (India-hb) &8039-9330-7 (US-hb) Sage Production Editor: Sumitra Srinivasan Contents List of Tables List of Figures Preface 1. Introduction: Scientific Communities in the Developing World Jacques Gaillard, V.V. Krishna and Roland Waast Part 1: Scientific Communities in Africa 2. Sisyphus or the Scientific Communities of Algeria Ali El Kenz and Roland Waast 3.
    [Show full text]
  • There Is No Pure Empirical Reasoning
    There Is No Pure Empirical Reasoning 1. Empiricism and the Question of Empirical Reasons Empiricism may be defined as the view there is no a priori justification for any synthetic claim. Critics object that empiricism cannot account for all the kinds of knowledge we seem to possess, such as moral knowledge, metaphysical knowledge, mathematical knowledge, and modal knowledge.1 In some cases, empiricists try to account for these types of knowledge; in other cases, they shrug off the objections, happily concluding, for example, that there is no moral knowledge, or that there is no metaphysical knowledge.2 But empiricism cannot shrug off just any type of knowledge; to be minimally plausible, empiricism must, for example, at least be able to account for paradigm instances of empirical knowledge, including especially scientific knowledge. Empirical knowledge can be divided into three categories: (a) knowledge by direct observation; (b) knowledge that is deductively inferred from observations; and (c) knowledge that is non-deductively inferred from observations, including knowledge arrived at by induction and inference to the best explanation. Category (c) includes all scientific knowledge. This category is of particular import to empiricists, many of whom take scientific knowledge as a sort of paradigm for knowledge in general; indeed, this forms a central source of motivation for empiricism.3 Thus, if there is any kind of knowledge that empiricists need to be able to account for, it is knowledge of type (c). I use the term “empirical reasoning” to refer to the reasoning involved in acquiring this type of knowledge – that is, to any instance of reasoning in which (i) the premises are justified directly by observation, (ii) the reasoning is non- deductive, and (iii) the reasoning provides adequate justification for the conclusion.
    [Show full text]
  • Thomas Kuhn on Paradigms
    Vol. 29, No. 7, July 2020, pp. 1650–1657 DOI 10.1111/poms.13188 ISSN 1059-1478|EISSN 1937-5956|20|2907|1650 © 2020 Production and Operations Management Society Thomas Kuhn on Paradigms Gopesh Anand Department of Business Administration, Gies College of Business, University of Illinois at Urbana-Champaign, 469 Wohlers Hall, 1206 South Sixth Street, Champaign, Illinois 61820, USA, [email protected] Eric C. Larson Department of Business Administration, Gies College of Business, University of Illinois at Urbana-Champaign, 8 Wohlers Hall, 1206 S. Sixth, Champaign, Illinois 61820, USA, [email protected] Joseph T. Mahoney* Department of Business Administration, Gies College of Business, University of Illinois at Urbana-Champaign, 140C Wohlers Hall, 1206 South Sixth Street, Champaign, Illinois 61820, USA, [email protected] his study provides key arguments and contributions of Kuhn (1970) concerning paradigms, paradigm shifts, and sci- T entific revolutions. We provide interpretations of Kuhn’s (1970) key ideas and concepts, especially as they relate to business management research. We conclude by considering the practical implications of paradigms and paradigm shifts for contemporary business management researchers and suggest that ethical rules of conversation are at least as critical for the health of a scientific community as methodological rules (e.g., the rules of logical positivism) derived from the phi- losophy of science. Key words: Paradigms; paradigm shifts; scientific revolutions; normal science History: Received: February 2019; Accepted: March 2020 by Kalyan Singhal, after 3 revisions. The Structure of Scientific Revolutions the rich descriptions of the process of advancing this theory. SSR showed that science primarily advances Thomas S.
    [Show full text]
  • Thinking About the Ultimate Argument for Realism∗
    Thinking About the Ultimate Argument for Realism∗ Stathis Psillos Department of Philosophy and History of Science University of Athens Panepistimioupolis (University Campus) Athens 15771 Greece [email protected] 1. Introduction Alan Musgrave has been one of the most passionate defenders of scientific realism. Most of his papers in this area are, by now, classics. The title of my paper alludes to Musgrave’s piece “The Ultimate Argument for Realism”, though the expression is Bas van Fraassen’s (1980, 39), and the argument is Hilary Putnam’s (1975, 73): realism “is the only philosophy of science that does not make the success of science a miracle”. Hence, the code-name ‘no-miracles’ argument (henceforth, NMA). In fact, NMA has quite a history and a variety of formulations. I have documented all this in my (1999, chapter 4). But, no matter how exactly the argument is formulated, its thrust is that the success of scientific theories lends credence to the following two theses: a) that scientific theories should be interpreted realistically and b) that, so interpreted, these theories are approximately true. The original authors of the argument, however, did not put an extra stress on novel predictions, which, as Musgrave (1988) makes plain, is the litmus test for the ability of any approach to science to explain the success of science. Here is why reference to novel predictions is crucial. Realistically understood, theories entail too many novel claims, most of them about unobservables (e.g., that ∗ I want to dedicate this paper to Alan Musgrave. His exceptional combination of clear-headed and profound philosophical thinking has been a model for me.
    [Show full text]
  • Urban Myths Mythical Cryptids
    Ziptales Advanced Library Worksheet 2 Urban Myths Mythical Cryptids ‘What is a myth? It is a story that pretends to be real, but is in fact unbelievable. Like many urban myths it has been passed around (usually by word of mouth), acquiring variations and embellishments as it goes. It is a close cousin of the tall tale. There are mythical stories about almost any aspect of life’. What do we get when urban myths meet the animal kingdom? We find a branch of pseudoscience called cryptozoology. Cryptozoology refers to the study of and search for creatures whose existence has not been proven. These creatures (or crytpids as they are known) appear in myths and legends or alleged sightings. Some examples include: sea serpents, phantom cats, unicorns, bunyips, giant anacondas, yowies and thunderbirds. Some have even been given actual names you may have heard of – do Yeti, Owlman, Mothman, Cyclops, Bigfoot and the Loch Ness Monster sound familiar? Task 1: Choose one of the cryptids from the list above (or perhaps one that you may already know of) and write an informative text identifying the following aspects of this mythical creature: ◊ Description ◊ Features ◊ Location ◊ First Sighting ◊ Subsequent Sightings ◊ Interesting Facts (e.g. how is it used in popular culture? Has it been featured in written or visual texts?) Task 2: Cryptozoologists claim there have been cases where species now accepted by the scientific community were initially considered urban myths. Can you locate any examples of creatures whose existence has now been proven but formerly thought to be cryptids? Extension Activities: • Cryptozoology is called a ‘pseudoscience’ because it relies solely on anecdotes and reported sightings rather than actual evidence.
    [Show full text]
  • The Role of Social Context in the Production of Scientific Knowledge
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Supervised Undergraduate Student Research Chancellor’s Honors Program Projects and Creative Work 5-2015 The Role of Social Context in the Production of Scientific Knowledge Kristen Lynn Beard [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj Part of the Philosophy of Science Commons Recommended Citation Beard, Kristen Lynn, "The Role of Social Context in the Production of Scientific nowledgeK " (2015). Chancellor’s Honors Program Projects. https://trace.tennessee.edu/utk_chanhonoproj/1852 This Dissertation/Thesis is brought to you for free and open access by the Supervised Undergraduate Student Research and Creative Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chancellor’s Honors Program Projects by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. The Role of Social Context in the Production of Scientific Knowledge Kristen Lynn Beard The University of Tennessee, Knoxville Chancellor’s Honors Program Department of Philosophy Undergraduate Thesis Submitted December 8, 2014 Thesis Advisor: Dr. Nora Berenstain Beard 1 Model 1: The Influence of Social Context on the Scientific Method Beard 2 Introduction: Scientific Knowledge as Both Social and Rational A person may believe that a certain theory is true and explain that he does so, for instance, because it is the best explanation he has of the facts or because it gives him the most satisfying world picture. This does not make him irrational, but I take it to be part of empiricism to disdain such reasons.
    [Show full text]
  • The Demarcation Problem
    Part I The Demarcation Problem 25 Chapter 1 Popper’s Falsifiability Criterion 1.1 Popper’s Falsifiability Popper’s Problem : To distinguish between science and pseudo-science (astronomy vs astrology) - Important distinction: truth is not the issue – some theories are sci- entific and false, and some may be unscientific but true. - Traditional but unsatisfactory answers: empirical method - Popper’s targets: Marx, Freud, Adler Popper’s thesis : Falsifiability – the theory contains claims which could be proved to be false. Characteristics of Pseudo-Science : unfalsifiable - Any phenomenon can be interpreted in terms of the pseudo-scientific theory “Whatever happened always confirmed it” (5) - Example: man drowning vs saving a child Characteristics of Science : falsifiability - A scientific theory is always takes risks concerning the empirical ob- servations. It contains the possibility of being falsified. There is con- firmation only when there is failure to refute. 27 28 CHAPTER 1. POPPER’S FALSIFIABILITY CRITERION “The theory is incompatible with certain possible results of observation” (6) - Example: Einstein 1919 1.2 Kuhn’s criticism of Popper Kuhn’s Criticism of Popper : Popper’s falsifiability criterion fails to char- acterize science as it is actually practiced. His criticism at best applies to revolutionary periods of the history of science. Another criterion must be given for normal science. Kuhn’s argument : - Kuhn’s distinction between normal science and revolutionary science - A lesson from the history of science: most science is normal science. Accordingly, philosophy of science should focus on normal science. And any satisfactory demarcation criterion must apply to normal science. - Popper’s falsifiability criterion at best only applies to revolutionary science, not to normal science.
    [Show full text]
  • Philosophy of Science Reading List
    Philosophy of Science Area Comprehensive Exam Reading List Revised September 2011 Exam Format: Students will have four hours to write answers to four questions, chosen from a list of approximately 20-30 questions organized according to topic: I. General Philosophy of Science II. History of Philosophy of Science III. Special Topics a. Philosophy of Physics b. Philosophy of Biology c. Philosophy of Mind / Cognitive Science d. Logic and Foundations of Mathematics Students are required to answer a total of three questions from sections I and II (at least one from each section), and one question from section III. For each section, we have provided a list of core readings—mostly journal articles and book chapters—that are representative of the material with which we expect you to be familiar. Many of these readings will already be familiar to you from your coursework and other reading. Use this as a guide to filling in areas in which you are less well- prepared. Please note, however, that these readings do not constitute necessary or sufficient background to pass the comp. The Philosophy of Science area committee assumes that anyone who plans to write this exam has a good general background in the area acquired through previous coursework and independent reading. Some anthologies There are several good anthologies of Philosophy of Science that will be useful for further background (many of the articles listed below are anthologized; references included in the list below). Richard Boyd, Philip Gasper, and J.D. Trout, eds., The Philosophy of Science (MIT Press, 991). Martin Curd and J.
    [Show full text]
  • Donna E. West Myrdene Anderson Editors Before and Beyond Consciousness
    Studies in Applied Philosophy, Epistemology and Rational Ethics Donna E. West Myrdene Anderson Editors Consensus on Peirce’s Concept of Habit Before and Beyond Consciousness Studies in Applied Philosophy, Epistemology and Rational Ethics Volume 31 Series editor Lorenzo Magnani, University of Pavia, Pavia, Italy e-mail: [email protected] Editorial Board Atocha Aliseda Universidad Nacional Autónoma de México (UNAM), Coyoacan, Mexico Giuseppe Longo Centre Cavaillès, CNRS—Ecole Normale Supérieure, Paris, France Chris Sinha Lund University, Lund, Sweden Paul Thagard Waterloo University, Waterloo, ON, Canada John Woods University of British Columbia, Vancouver, BC, Canada About this Series Studies in Applied Philosophy, Epistemology and Rational Ethics (SAPERE) publishes new developments and advances in all the fields of philosophy, epistemology, and ethics, bringing them together with a cluster of scientific disciplines and technological outcomes: from computer science to life sciences, from economics, law, and education to engineering, logic, and mathematics, from medicine to physics, human sciences, and politics. It aims at covering all the challenging philosophical and ethical themes of contemporary society, making them appropriately applicable to contemporary theoretical, methodological, and practical problems, impasses, controversies, and conflicts. The series includes monographs, lecture notes, selected contributions from specialized conferences and workshops as well as selected Ph.D. theses. Advisory Board A. Abe, Chiba, Japan A. Pereira, São Paulo, Brazil H. Andersen, Copenhagen, Denmark L.M. Pereira, Caparica, Portugal O. Bueno, Coral Gables, USA A.-V. Pietarinen, Helsinki, Finland S. Chandrasekharan, Mumbai, India D. Portides, Nicosia, Cyprus M. Dascal, Tel Aviv, Israel D. Provijn, Ghent, Belgium G.D. Crnkovic, Västerås, Sweden J. Queiroz, Juiz de Fora, Brazil M.
    [Show full text]
  • Abduction, Reason, and Science Abduction, Reason, and Science Processes of Discovery and Explanation
    Abduction, Reason, and Science Abduction, Reason, and Science Processes of Discovery and Explanation Lorenzo Magnani University of Pavia Pavia, Italy, and Georgia Institute of Technology Atlanta, Georgia Springer Science+Business Media, LLC Library of Congress Cataloging-in-Publication Data Magnani, Lorenzo Abduction, reason, and ,cience: processes of discovcry and explanation/Lorenzo Magnani. p. cm. IncIudes bibliographical references and index. ISBN 978-1-4613-4637-1 ISBN 978-1-4419-8562-0 (eBook) DOI 10.1007/978-1-4419-8562-0 1. Science-Philosophy. 2. Abduction (Logic). 3. Discoveries in science. I. Tirle. Q175.32.A24 M34 2001 501-dc21 00-052061 Front cover: Descartes's explanation of the rainbow (from his Meteora, 1656). ISBN 978-1-4613-4637-1 © 2001 Springer Science+Business Media New York Originally published by Kluwer Academic / Plenum Publishers, New York in 2001 Softcover reprint of the hardcover 1st edition 1990 http://www.wkap.nl/ 1098765432 A c.I.P. record for this book is available from the Library of Congress. AII rights reserved No par! of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without wrilten permis sion from the Publisher To my daughter Giovanna Science does not rest upon solid bedrock. The bold structure of its theories rises, as it were, above a swamp. It is like a building erected on piles. The piles are driven down from above into the swamp, but not down to any natural or "given" base; and if we stop driving the piles deeper, it is not because we have reached firm ground.
    [Show full text]