The Effects of Water on Sympathetic Detonation and Dead Pressing of Dynamite and Emulsions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tutt, the Proper Use and Handling of Explosives
THE PROPER USE AND HANDLING OF EXPLOSIVES BY IAN TUTT INSPECTOR OF EXPLOSIVES EXPLOSIVES INSPECTORATE DEPARTMENT OF MINES AND ENERGY The Proper Use and Handling of Explosives 1. Introductions The power released in a typical production blast is beyond the comprehension of most people. Few people understand the magnitude of the forces released at detonation. In a shot in which all goes well, the muffled sound of the explosives releasing their energy and the gentle rise and fall of the ground which contained the explosives does not give a true indication of the violent forces being released. One 25mmx200mm cartridge of explosives releases about 33 million horsepower of energy in .00004 of a second. The combined horsepower of all the equipment on any mine site pales into insignificance when compared to that of a single small cartridge of explosive. The power of a large production blast I would venture to say is beyond the comprehension of all, including myself. The powers unleashed by explosives are only equalled or bettered by Mother Nature yet with each passing day the respect for the very useful commodity has decreased to a point where many individuals and companies pay scant regard to its hazardous nature. Studies carried out in the USA have determined that 70 out of 1000 blasting accidents are fatal. If one reads these statistics quickly this may not seem as being a high strike rate, that is until you compare these statistics with that of other activities which we consider as high risk occupations. Excluding explosives, the statistics for other mining operations in the U.S.A is a fatality for 7 out of every 1000 accidents. -
Variables Associated with the Classification of Ammonium Nitrate – a Literature Review
Variables Associated with the Classification of Ammonium Nitrate – A Literature Review FINAL REPORT BY: Sean Gillis Sreenivasan Ranganathan Fire Protection Research Foundation, Quincy, MA March 2017 © 2017 Fire Protection Research Foundation 1 Batterymarch Park, Quincy, MA 02169-7417, USA Email: [email protected] | Web: nfpa.org/foundation —— Page ii —— FOREWORD Ammonium Nitrate (AN) “is a chemical compound produced in both solid and liquid forms that is commonly used in fertilizers”. The burning rate of technical-grade AN prill falls within the Class 2 oxidizer criteria in Annex G of NFPA 400, 2016. The loss history of AN also indicates potential for unstable reactive hazard properties, uncontrolled decomposition and/or detonation under circumstances that are not fully understood. In the most recent revision of NFPA 400, Hazardous Materials Code, the Technical Committee (TC) classified Ammonium Nitrate as a Class 2 Oxidizer. However recent hazardous material incidents involving AN have resulted in differing views regarding the reactivity of the compound and whether or not it should be considered an unstable reactive in NFPA 400. The different behaviors of AN in different fire situations make it difficult to determine the appropriate safe practices for AN storage and handling. There are also discrepancies between the NFPA and International Fire Code (IFC) classifications of Ammonium Nitrate. As a result there is a need for additional data to assist in the proper classification/treatment of AN. An examination of existing data involving the reactivity of AN will assist the NFPA 400 TC in determining the appropriate classification of Ammonium Nitrate, and perhaps point to a need for future Ammonium Nitrate testing. -
NITROGYLCERIN and ETHYLENE GLYCOL DINITRATE Criteria for a Recommended Standard OCCUPATIONAL EXPOSURE to NITROGLYCERIN and ETHYLENE GLYCOL DINITRATE
CRITERIA FOR A RECOMMENDED STANDARD OCCUPATIONAL EXPOSURE TO NITROGYLCERIN and ETHYLENE GLYCOL DINITRATE criteria for a recommended standard OCCUPATIONAL EXPOSURE TO NITROGLYCERIN and ETHYLENE GLYCOL DINITRATE U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health June 1978 For »ale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 DISCLAIMER Mention of company name or products does not constitute endorsement by the National Institute for Occupational Safety and Health. DHEW (NIOSH) Publication No. 78-167 PREFACE The Occupational Safety and Health Act of 1970 emphasizes the need for standards to protect the health and provide for the safety of workers occupationally exposed to an ever-increasing number of potential hazards. The National Institute for Occupational Safety and Health (NIOSH) evaluates all available research data and criteria and recommends standards for occupational exposure. The Secretary of Labor will weigh these recommendations along with other considerations, such as feasibility and means of implementation, in promulgating regulatory standards. NIOSH will periodically review the recommended standards to ensure continuing protection of workers and will make successive reports as new research and epidemiologic studies are completed and as sampling and analytical methods are developed. The contributions to this document on nitroglycerin (NG) and ethylene glycol dinitrate (EGDN) by NIOSH staff, other Federal agencies or departments, the review consultants, the reviewers selected by the American Industrial Hygiene Association, and by Robert B. O ’Connor, M.D., NIOSH consultant in occupational medicine, are gratefully acknowledged. The views and conclusions expressed in this document, together with the recommendations for a standard, are those of NIOSH. -
Characterisation of 2,4-Dinitroanisole: an Ingredient for Use in Low Sensitivity Melt Cast Formulations
Australian Government Department of Defence Defence Science and Characterisation of 2,4-Dinitroanisole: An Ingredient for use in Low Sensitivity Melt Cast Formulations Phil J. Davies and Arthur Provatas Weapons Systems Division Defence Science and Technology Organisation DSTO-TR-1904 ABSTRACT In recent years TNT has fallen out of favour as an ingredient in melt-castable explosive formulations due to its demonstrated failure to meet sensitivity requirements, and alternatives with suitable chemical and physical properties have been sought. 2,4-Dinitroanisole (DNAN) is a promising alternative that prima facie appears to possess adequate properties and, by virtue of reduced sensitivity, may enable the development of a new class of low sensitivity melt-cast formulations for use in Insensitive Munitions (IM). This paper provides a baseline characterisation of DNAN and includes the determination of the sensitivity and explosive properties of a simple DNAN-based formulation (ARX-4027) analogous to Composition B. Key properties that impact upon the use of DNAN in melt-cast formulations are identified. RELEASE LIMITATION Approved for public release Published by Weapons Systems Division DSTO Defence Science and Technology Organisation PO Box 1500 Edinburgh South Australia 5111 Australia Telephone: (OS) S259 5555 Fax: (OS) S259 6567 © Commonwealth of Australia 2006 AR-013-730 August 2006 APPROVED FOR PUBLIC RELEASE Characterisation of 2,4-Dinitroanisole: An Ingredient for use in Low Sensitivity Melt Cast Formulations Executive Summary Due to perceived toxicity and sensitivity problems associated with some TNT-based melt- cast formulations, TNT has fallen out of favour with western militaries and alternative materials for use in melt-cast formulations have been sought. -
Zehr 10781508.Pdf (2.926Mb)
SYMPATHETIC DETONATIQ IN LONG BORE HOLES Norman R. Zehr ProQuest Number: 10781508 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10781508 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 A thesis submitted to the Faculty and Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science. Signed * Norman R. Zehr Golden, Colorado Date £Tovn«_ 6_____ 1955 App^oyjM L . J-l Parkinson Head, Mining Department Golden, Colorado Date . 1955 ACKNOWLEDGMENTS The author wishes to express his sincere ap preciation to those students of the Colorado School of Mines who assisted in the experimental work, and in particular to thank the following persons: Professor G. T. Bator of the Mining Department of the Colorado School of Mines. Professor E. G. Fisher of the English Department of the Colorado School of Mines, My wife, Irma, who assisted in the preparation of the manuscript. CONTENTS Abstract .... ............ Introduction ................. Location of Experiments . Equipment and Materials , Equipment . ... Materials ........ Basic Concepts .............. -
Characterisation of Hydrogen Peroxide Based Explosives and Ventilation Modelling to Quantify Re-Entry Times in Underground Development Blasting
Characterisation of hydrogen peroxide based explosives and ventilation modelling to quantify re-entry times in underground development blasting Virginia Bailey BEng (Mining) A thesis submitted for the degree of Master of Philosophy at The University of Queensland in 2017 School of Mining and Mechanical Engineering Abstract Cartridge products have been used in underground applications since the development of dynamites from nitro-glycerine. Their ease of use, in both large and small quantities, make them ideal for use in underground development mining. However, the amount of gases produced by early day cartridge products proved to have safety and operational limitations. Formulation improvements have reduced the risk of premature detonation due to sensitivity, yet the presence of toxic nitrous oxides (NOx) and carbon monoxide (CO) gases still remain as nitrates continue to be used in the formulation. The levels of NOx and CO gases produced have a marked effect on the length of time taken to re-enter underground mines following blasting activities. The non-producing time when the toxic blast gases are clearing from the underground environment is known as re-entry time. Utilising an explosive product which has a nitrate free oxidiser, and/or a carbon free sensitiser has the potential to reduce the production of toxic gases, and therefore decrease the time required for these gases to clear to enable safe entry to the mine for personnel. Reducing non-production time directly leads to an increase in available time for active work per shift, thus contributing to rapid development. The mining industry consistently desires a positive step-change in development practices to enable faster and safer access to underground deposits; and thus achieve ramp-up production much earlier than is currently possible. -
"Explosives," In: Ullmann's Encyclopedia of Industrial Chemistry
Article No : a10_143 Explosives JACQUES BOILEAU, Consultant, Paris, France CLAUDE FAUQUIGNON, ISL Institut Franco-Allemand de Recherches de Saint-Louis, Saint-Louis, France BERNARD HUEBER, Nobel Explosifs, Paris, France HANS H. MEYER, Federation of European Explosives Manufacturers, Brussels, Belgium 1. Introduction........................ 621 3.5. Perforators, Shaped or Hollow Charges . 634 2. Physical Properties and Chemical Reactions 624 4. Primary Explosives .................. 634 2.1. Detonation ......................... 624 5. Secondary Explosives................. 636 2.1.1. Ideal Detonation . ................... 624 5.1. Production ......................... 636 2.1.2. Deflagration and Detonation. .......... 625 5.2. Specific Secondary Explosives .......... 637 2.2. Prediction of Detonation Data .......... 625 5.2.1. Nitrate Esters ....................... 637 2.2.1. Complete Calculation . ............... 625 5.2.2. Aromatic Nitro Compounds . .......... 639 2.2.2. Approximation Methods ............... 625 5.2.3. N-Nitro Derivatives ................... 641 2.3. Nonideal Detonation Waves and Explosives 626 6. High Explosive Mixtures .............. 643 2.3.1. Nonideal Explosive Compositions . ...... 627 6.2. Desensitized Explosives ............... 643 2.3.2. Detonation of Cylindrical Cartridges ...... 627 6.3. TNT Mixtures ...................... 644 2.3.3. Low- and High-Order Detonation Velocity . 628 6.4. Plastic-Bonded Explosives (PBX)........ 644 2.3.4. The Effect of Confinement.............. 628 7. Industrial Explosives ................. 645 2.4. The Buildup of Detonation............. 629 7.1. Dynamites ......................... 645 2.4.1. Combustion – Deflagration – 7.2. Ammonium Nitrate Explosives Detonation Transition (DDT) . .......... 629 (Ammonites) ....................... 646 2.4.2. Shock-to-Detonation Transition (SDT) ..... 629 7.3. Ammonium Nitrate/Fuel Oil Explosives 2.4.3. Shock and Impact Sensitivity . .......... 630 (ANFO/ANC Explosives) .............. 647 2.5. Classification of Explosives ............ 630 7.4. -
DO NOT CIRCUWTE ~ I (L)
LA-6711-MS Informal Report Special Distribution =. Issued: February 1977 4- / .. -<. —.-. : Ca ● “> Hazard Classification Test of Mixed-Load 30-mm GAU-8 Ammunition I by Bonfire Cookoff and Sympathetic Detonation Testing by J. C. Elder M. 1. Tillery H. J. Ettinger r 1 DO NOT CIRCUWTE ~ —r I I PERMANENT RETENTION REQUIREDBY CONTRACT : L — ..- 10s(l) adar scientific la b-r ‘ w 1“ of the University of Califc,’t.. LOS AL AMOS, NEW ME XIC~ q7’Q~ J- II An Affirmative Action/Equal Oppo I P“-”-”~ uNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION CONTRACT W.7405-ENG. 36 This work was supported by the US Air Force Armament Laboratory (AFATL), Eglin AFB, Florida, under the US Energy Research and Development Administration Reimbursable Project R441. -. ,3: F.%::,Y:*:S”G:C::::;,:EZ: nor IIK ltnitrd S1. !rII Knems %se. r.h ●nd l)Iw-I. mat Ad. ml.i.t..ti. m.nor . of Ih.lt ernpl.wx.s. nor .m. OR,., .. lrwtw.. .ubmntr..lor.. w tht.lr ,m,lowes. rn.ka am, w.rr..l*. .. P.... or implitd . ..meb .nv Icc.1 li.h81i@b or mmn. tihilsls. r.r th. .-U-C*. convleten”.. or umefulm-. of ..,. I. f.rm.t,,,..,.pp. r.tu., pmdw. or prm-a. dlwlacd. or WV.*W th.1 II* usc w..M no! in fti. m DAMA owned riaht.. HAZARD CLASSIFICATION TEST OF MIXED-LOAD 30-mm GAU-8 AMMUNITION BY BONFIRE COOKOFF AND SYMPATHETIC DETONATION TESTING by J. C. Elder, M. I. TMery, and H. J. Ettinger Industrial Hygiene Group Health “Division Los Alamos Scientific Laboratory University of California Los Alamos, New Mexico 87545 ABSTRACT A hazard classification test of mixed-load (high explosive and armor- - l_ piercing) 30-mm GAU-8 ammu&ion was performed in October, 1976, for the ecJJ U.S. -
Engineering Geology Field Manual
Chapter 19 BLAST DESIGN Introduction This chapter is an introduction to blasting techniques based primarily on the Explosives and Blasting Procedures Manual (Dick et al., 1987) and the Blaster’s Handbook (E.I. du Pont de Nemours & Co., Inc., 1978). Blast design is not a precise science. Because of widely varying properties of rock, geologic structure, and explo- sives, design of a blasting program requires field testing. Tradeoffs frequently must be made when designing the best blast for a given geologic situation. This chapter provides the fundamental concepts of blast design. These concepts are useful as a first approximation for blast design and also in troubleshooting the cause of a bad blast. Field testing is the best tool to refine individual blast designs. Throughout the blast design process, two overriding prin- ciples must be kept in mind: (1) Explosives function best when there is a free face approximately parallel to the explosive column at the time of detonation. (2) There must be adequate space for the broken rock to move and expand. Excessive confinement of explosives is the leading cause of poor blasting results such as backbreak, ground vibrations, airblast, unbroken toe, flyrock, and poor fragmentation. Properties and Geology of the Rock Mass The rock mass properties are the single most critical variable affecting the design and results of a blast. The FIELD MANUAL rock properties are very qualitative and cannot be suffi- ciently quantified numerically when applied to blast design. Rock properties often vary greatly from one end of a construction job to another. Explosive selection, blast design, and delay pattern must consider the specific rock mass being blasted. -
EOD (Explosive Ordnance Disposal) Terminology Ammunition A
EOD (Explosive Ordnance Disposal) Terminology Ammunition A complete device charged with explosives, propellants, pyrotechnics, initiating composition, or nuclear, biological or chemical material for use in military operations, including demolitions. [AAP-6] Note: In common usage, ‘munitions’ (plural) can be military weapons, ammunition and equipment. Anti-Personnel Mines A mine designed to be exploded by the presence, proximity or contact of a person and that will incapacitate, injure or kill one or more persons. Note: Mines designed to be detonated by the presence, proximity or contact of a vehicle as opposed to a person that are equipped with anti-handling devices, are not considered APM as a result of being so equipped. [APMBC] Alternative Disposal Techniques Explosive engineering techniques developed to facilitate Conventional Munition Disposal (CMD) without necessarily resorting to high order detonation in the first instance. Battle Area Clearance Battle Area Clearance (BAC) is the systematic and controlled clearance of hazardous areas where the hazards are known not to include mines Blind Explosive ordnance which has been primed, fuzed, armed, initiated or otherwise prepared for action, and which has been dropped, fired, launched, projected, or placed in such a manner as to constitute a hazard to personnel or material and remains unexploded either by malfunction or design, or for any other cause. Booby Trap An explosive, or non-explosive device, deliberately hidden with the intent of causing casualties when an apparently harmless object is disturbed or a normally safe act is performed. Brissance The shattering effect shown by a detonating explosive to an adjacent non-explosive material. Burning The propagation of an exothermic reaction through an explosive material. -
Explosives and Blasting Procedures Manual
Information Circular 8925 Explosives and Blasting Procedures Manual By Richard A. Dick, Larry R. Fletcher, and Dennis V. D'Andrea US Department of Interior Office of Surface Mining Reclamation and Enforcement Kenneth K. Eltschlager Mining/Blasting Engineer 3 Parkway Center Pittsburgh, PA 15220 Phone 412.937.2169 Fax 412.937.3012 [email protected] UNITED STATES DEPARTMENT OF THE INTERIOR James G. Watt, Secretary BUREAU OF MINES Robert C. Horton, Director As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water re• sources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major re· sponsibility for American Indian reservation communities and for people who live in Island Territories under U.S. administration. This publication has been cataloged as follows: Dick, Richard A Explosives and blasting procedures manual, (Bureau of Mines Information circular ; 8925) Supt. of Docs. no.: I 28.27:8925. 1. Blasting-Handbooks, manuals, etc, 2. Explosives-Haodbooks, manuals, etc, I. Fletcher, Larry R. II. D'Andrea, Dennis V. Ill, Title, IV. Series: Information circular (United States, Bureau of Mines) ; 8925, TN295,U4 [TN279] 622s [622'.23] 82·600353 For sale by the Superintendent of Documents, U.S. -
Insensitive Munitions Technology Development
PROBLEMS OF MECHATRONICS ARMAMENT , AVIATION , SAFETY ENGINEERING ISSN 2081-5891 5, 4 (18), 2014, 7-20 Insensitive Munitions Technology Development Ernest L. BAKER *, Anthony R. Di STASIO US Army ARDEC, Picatinny Arsenal, NJ 07806-5000 USA *corresponding author, e-mail: [email protected] Manuscript received September 5, 2014. Final manuscript received February 5, 2015 DOI: 10.5604/20815891.1138359 Abstract. The concept of Insensitive Munitions, or IM, is not new; the U.S. Department of Defense (DoD) has been working to improve the safety of munitions since their inception. The first NATO standard on IM, STANAG 4439: Policy for Introduction and Assessment of IM, was published for ratification in 1995 and was ratified in 1998. U.S. Congress passed the „Insensitive Munitions law” in 2001 that specifically requires „The Secretary of Defense [to] ensure, to the extent practicable, that insensitive munitions under deployment or procurement are safe throughout development and fielding when subject to unplanned stimuli”. These unplanned stimuli take the form of rapid or slow heating events, such as a fuel fire on a vehicle or aircraft, or an adjacent fire in a vehicle or storage magazine; impact by fragment or bullets due to shrapnel from nearby explosions or small arms fire from combat or terrorist events; sympathetic reaction due to the detonation of adjacent munitions; and shaped charge jet attack from rocket- propelled grenade or similar weapons used by enemy and friendly forces. In 2007, U.S. DoD focused its efforts on developing joint solutions through a centrally managed IM technology program: the Joint IM Technology Program (JIMTP).