Variables Associated with the Classification of Ammonium Nitrate – a Literature Review

Total Page:16

File Type:pdf, Size:1020Kb

Variables Associated with the Classification of Ammonium Nitrate – a Literature Review Variables Associated with the Classification of Ammonium Nitrate – A Literature Review FINAL REPORT BY: Sean Gillis Sreenivasan Ranganathan Fire Protection Research Foundation, Quincy, MA March 2017 © 2017 Fire Protection Research Foundation 1 Batterymarch Park, Quincy, MA 02169-7417, USA Email: [email protected] | Web: nfpa.org/foundation —— Page ii —— FOREWORD Ammonium Nitrate (AN) “is a chemical compound produced in both solid and liquid forms that is commonly used in fertilizers”. The burning rate of technical-grade AN prill falls within the Class 2 oxidizer criteria in Annex G of NFPA 400, 2016. The loss history of AN also indicates potential for unstable reactive hazard properties, uncontrolled decomposition and/or detonation under circumstances that are not fully understood. In the most recent revision of NFPA 400, Hazardous Materials Code, the Technical Committee (TC) classified Ammonium Nitrate as a Class 2 Oxidizer. However recent hazardous material incidents involving AN have resulted in differing views regarding the reactivity of the compound and whether or not it should be considered an unstable reactive in NFPA 400. The different behaviors of AN in different fire situations make it difficult to determine the appropriate safe practices for AN storage and handling. There are also discrepancies between the NFPA and International Fire Code (IFC) classifications of Ammonium Nitrate. As a result there is a need for additional data to assist in the proper classification/treatment of AN. An examination of existing data involving the reactivity of AN will assist the NFPA 400 TC in determining the appropriate classification of Ammonium Nitrate, and perhaps point to a need for future Ammonium Nitrate testing. The purpose of this project is to summarize the available information on the different forms of Ammonium Nitrate and how they are classified. This will be accomplished through a two-step literature review: summarizing the available information on AN classification from chemistry and code-based documentation, and identifying the variables which led to AN instability from existing test data and results. The Fire Protection Research Foundation expresses gratitude to the report authors Sean Gillis and Sreenivasan Ranganathan, who are with Fire Protection Research Foundation located in Quincy, MA. The Research Foundation appreciates the guidance provided by the Project Technical Panelists, and all others that contributed to this research effort. Thanks are also expressed to the National Fire Protection Association (NFPA) for providing the project funding through the NFPA Annual Research Fund. The content, opinions and conclusions contained in this report are solely those of the authors and do not necessarily represent the views of the Fire Protection Research Foundation, NFPA, Technical Panel or Sponsors. The Foundation makes no guaranty or warranty as to the accuracy or completeness of any information published herein. All explanatory material from the NFPA 400 Hazardous Materials Code are copyrighted by the National Fire Protection Association, 2016, © 2016 NFPA, all rights reserved. Certain defined terms included in this report are excerpted from the 2015 International Fire Code, Copyright © 2015 International Code Council, Inc., and are reprinted with the permission of the International Code Council, Inc. —— Page iii —— About the Fire Protection Research Foundation The Fire Protection Research Foundation plans, manages, and communicates research on a broad range of fire safety issues in collaboration with scientists and laboratories around the world. The Foundation is an affiliate of NFPA. About the National Fire Protection Association (NFPA) Founded in 1896, NFPA is a global, nonprofit organization devoted to eliminating death, injury, property and economic loss due to fire, electrical and related hazards. The association delivers information and knowledge through more than 300 consensus codes and standards, research, training, education, outreach and advocacy; and by partnering with others who share an interest in furthering the NFPA mission. All NFPA codes and standards can be viewed online for free. NFPA's membership totals more than 65,000 individuals around the world. Keywords: Ammonium Nitrate, Classification, Critical variables, NFPA 400, Fertilizer grade, TGAN, FGAN. Report number: FRPF-2017-03 —— Page iv —— —— Page v —— PROJECT TECHNICAL PANEL Elizabeth Buc. Fire & Materials Research Laboratory, MI Jonathan Butta, Jensen Hughes, MD Henry Febo, FM Global, MA Martin Gresho, FP2Fire Inc., CO Noel Hsu, The Fertilizer Institute, CO (Alt. Donald Thomas) Lynne Kilpatrick, Sunnyvale Public Safety, CA James Lay, OSHA, DC Tod Ossmann, Willis Towers Watson, NY Nancy Pearce, NFPA, MA Ronald Thomas, Institute of Makers of Explosives, UT PROJECT SPONSORS National Fire Protection Association —— Page vi —— —— Page vii —— Contents 1. Background Information ....................................................................................................................... 3 1.1. Project Background ...................................................................................................................... 3 1.2. Ammonium Nitrate ...................................................................................................................... 4 1.3. NFPA 400....................................................................................................................................... 5 2. Historical Incidents ................................................................................................................................ 6 3. Classifications ...................................................................................................................................... 13 3.1. Classification of Ammonium Nitrate in NFPA 400 – Summary ................................................. 13 3.2. Classification of Ammonium Nitrate in HMEx – Summary ....................................................... 17 3.3. Classification of Ammonium Nitrate in the International Fire and Building Codes –Summary 18 3.4. Classification of Ammonium Nitrate in the European Agreement Concerning the International Carriage of Dangerous Goods by Road (ADR) – Summary ............................................. 22 4. Testing and Additional Literature ....................................................................................................... 25 4.1. Takeaways from Testing and Additional Literature Review ..................................................... 34 5. Summary ............................................................................................................................................. 36 References .................................................................................................................................................. 37 1 2 1. Background Information 1.1. Project Background Ammonium Nitrate (AN) “is a chemical compound produced in both solid and liquid forms that is commonly used in fertilizers”. The burning rate of technical-grade AN prill falls within the Class 2 oxidizer criteria in Annex G of NFPA 400, 2016. The loss history of AN also indicates potential for unstable reactive hazard properties, uncontrolled decomposition and/or detonation under circumstances that are not fully understood. In the most recent revision of NFPA 400, Hazardous Materials Code, the Technical Committee (TC) classified Ammonium Nitrate as a Class 2 Oxidizer. However recent hazardous material incidents involving AN have resulted in differing views regarding the reactivity of the compound and whether or not it should be considered an unstable reactive in NFPA 400. In 2013, a fire broke out at an ammonium nitrate plant in West, Texas that ultimately caused a massive explosion culminating in the deaths of 15 people, mostly first responders. On the other hand a similar fire at an Ammonium Nitrate storage facility in Athens, Texas simply burned itself out without detonation and without the help of firefighters. The different behaviors of AN in different fire situations make it difficult to determine the appropriate safe practices for AN storage and handling. There are also discrepancies between the NFPA and International Fire Code (IFC) classifications of Ammonium Nitrate. As a result there is a need for additional data to assist in the proper classification/treatment of AN. An examination of existing data involving the reactivity of AN will assist the NFPA 400 TC in determining the appropriate classification of Ammonium Nitrate, and perhaps point to a need for future Ammonium Nitrate testing. The purpose of this project is to summarize the available information on the different forms of Ammonium Nitrate and how they are classified. This will be accomplished through a two-step literature review: summarizing the available information on AN classification from chemistry and code-based documentation, and identifying critical variables which led to AN instability from existing test data and results. The following tasks are carried out for this project: Task 1: Literature Review – A review of relevant literature related to previous and current classifications of Ammonium Nitrate, and a brief summary of recent Ammonium Nitrate explosion events. 3 Task 2: Identify the critical variables – Identifying the critical variables associated with Ammonium Nitrate instability from previous test data and results. Provide baseline recommendations for future Ammonium Nitrate testing,
Recommended publications
  • Conventional Explosions and Blast Injuries 7
    Chapter 7: CONVENTIONAL EXPLOSIONS AND BLAST INJURIES David J. Dries, MSE, MD, FCCM David Bracco, MD, EDIC, FCCM Tarek Razek, MD Norma Smalls-Mantey, MD, FACS, FCCM Dennis Amundson, DO, MS, FCCM Objectives ■ Describe the mechanisms of injury associated with conventional explosions. ■ Outline triage strategies and markers of severe injury in patients wounded in conventional explosions. ■ Explain the general principles of critical care and procedural support in mass casualty incidents caused by conventional explosions. ■ Discuss organ-specific support for victims of conventional explosions. Case Study Construction workers are using an acetylene/oxygen mixture to do some welding work in a crowded nearby shopping mall. Suddenly, an explosion occurs, shattering windows in the mall and on the road. The acetylene tank seems to be at the origin of the explosion. The first casualties arrive at the emergency department in private cars and cabs. They state that at the scene, blood and injured people are everywhere. - What types of patients do you expect? - How many patients do you expect? - When will the most severely injured patients arrive? - What is your triage strategy, and how will you triage these patients? - How do you initiate care in victims of conventional explosions? Fundamental Disaster Management I . I N T R O D U C T I O N Detonation of small-volume, high-intensity explosives is a growing threat to civilian as well as military populations. Understanding circumstances surrounding conventional explosions helps with rapid triage and recognition of factors that contribute to poor outcomes. Rapid evacuation of salvageable victims and swift identification of life-threatening injuries allows for optimal resource utilization and patient management.
    [Show full text]
  • Jones (Stephen) Oklahoma City Bombing Archive, 1798 – 2003 (Bulk 1995 – 1997)
    JONES (STEPHEN) OKLAHOMA CITY BOMBING ARCHIVE, 1798 ± 2003 (BULK 1995 ± 1997). See TARO record at http://www.lib.utexas.edu/taro/utcah/03493/cah-03493.html (Approximately 620 linear feet) This collection is open for research use. Portions are restricted due to privacy concerns. See Archivist's Note for more details. Use of DAT and Beta tapes by appointment only; please contact repository for more information. This collection is stored remotely. Advance notice required for retrieval. Contact repository for retrieval. Cite as: Stephen Jones Oklahoma City Bombing Archive, 1798 ± 2003 (Bulk 1995 ± 1997), Dolph Briscoe Center for American History, University of Texas at Austin. [AR 98-395; 2003-055; 2005-161] ______________________________________________________________________________ BIOGRAPHICAL NOTE: Stephen Jones (born 1940) was appointed in May 1995 by the United States District Court in Oklahoma City to serve as the lead defense attorney for Timothy McVeigh in the criminal court case of United States of America v. Timothy James McVeigh and Terry Lynn Nichols. On April 19, 1995, two years to the day after the infamous Federal Bureau of Investigation and Bureau of Alcohol, Tobacco, and Firearms raid on the Branch Davidians at Waco, Texas, a homemade bomb delivered inside of a Ryder rental truck was detonated in front of the Alfred P. Murrah Federal Building in Oklahoma City, Oklahoma. Timothy McVeigh, as well as his accomplice Terry Nichols, were accused of and, in 1997, found guilty of the crime, and McVeigh was executed in 2001. Terry Nichols is still serving his sentence of 161 consecutive life terms without the possibility of parole in the ADX Florence super maximum-security prison in Florence, Colorado.
    [Show full text]
  • Chemical Accident Prevention & Preparedness
    Lessons Learned Bulletin No. 5 Chemical Accident Prevention & Preparedness Major accidents involving fertilizers The aim of the bulletin is to provide insights on lessons learned from accident reported in the European Major Accident Reporting System (eMARS) and other accident sources for both industry operators and government regulators. In future the CAPP Lessons Learned Bulletin will be produced on a semi-annual basis. Each issue of the Bulletin focuses on a particular theme. Accident 1 Summary Wholesale and retail storage and distribution In preparing this bulletin, 25 major accidents in eMARS involving fertiliz- Sequence of events was to attack the source of the fire with ers were studied together with an ad- portable fire extinguishers, in the absence ditional 25 accidents from other free A fire occurred in a warehouse storing fer- of activated fire hose reels. Arriving on sources, including also accidents in tilizers and chemical products belonging the site, firemen observed that very thick transport. Events were chosen on the to a wholesale distributor of numerous smoke was emitted from the storage basis that ammonium nitrate or NPK products, including sugar, molasses, fer- compartment. It also appeared that a fertilizer (nitrogen-phosphorus-potas- tilizers, and cereals. The storage instal- fire was burning beneath the mass. How- sium) was involved in the accident. lation was subdivided into 8 compart- ever, the intervention of the firefighters ments of which two contained NPK (15% appeared to focus solely on the presence In general, with some exceptions, N, 8% P, 22% K) fertilizers in quantities of ammonium nitrate fertilizer, ignoring, most accidents occurred in ware- of 600 tonnes and 850 tonnes respec- the nature of the other chemical prod- houses or general chemicals manu- tively.
    [Show full text]
  • Air Pollution and Increased Safety Risks to Workers and Nearby Residents
    1 ACKNOWLEDGEMENTS Written by Ari Phillips with analysis from Courtney Bernhardt and Gabriel Clark-Leach of the Environmental Integrity Project. THE ENVIRONMENTAL INTEGRITY PROJECT The Environmental Integrity Project (http://www.environmentalintegrity.org) is a nonpartisan, nonprofit organization established in March of 2002 by former EPA enforcement attorneys to advocate for effective enforcement of environmental laws. EIP has three goals: 1) to provide objective analyses of how the failure to enforce or implement environmental laws increases pollution and affects public health; 2) to hold federal and state agencies, as well as individual corporations, accountable for failing to enforce or comply with environmental laws; and 3) to help local communities obtain the protection of environmental laws. CONTACTS: For questions about this report, please contact: Tom Pelton, Environmental Integrity Project, (202) 888- 2703 or [email protected] PHOTO CREDITS: Cover Image: The ExxonMobil Baytown Olefin’s plant fire sends a toxic brew of chemicals into the sky on July 31, 2019. Thirty-seven people experienced minor injuring from the explosion, which occurred at a part of the facility where plastics are made. Photo by the Associated Press, used with permission. Page 1: Houston industrial district, Shutterstock. Page 4: Petrochemical complex, La Porte, Texas, by Roy Luck/Flickr. Page 8: Assessment units for the Wolfcamp Shale and Bone Spring Formation of the Delaware Basin, USGS. 2 Plastics Pollution on the Rise Executive Summary hat the word ‘plastic’ means pliable or easily shaped is deceiving. Over the last 50 years plastic has developed a stranglehold over us, with no sign of loosening up. It is T hard to imagine life without plastic: The versatile material is found in computers, phones, medical devices, packaging, and thousands of other products.
    [Show full text]
  • Tutt, the Proper Use and Handling of Explosives
    THE PROPER USE AND HANDLING OF EXPLOSIVES BY IAN TUTT INSPECTOR OF EXPLOSIVES EXPLOSIVES INSPECTORATE DEPARTMENT OF MINES AND ENERGY The Proper Use and Handling of Explosives 1. Introductions The power released in a typical production blast is beyond the comprehension of most people. Few people understand the magnitude of the forces released at detonation. In a shot in which all goes well, the muffled sound of the explosives releasing their energy and the gentle rise and fall of the ground which contained the explosives does not give a true indication of the violent forces being released. One 25mmx200mm cartridge of explosives releases about 33 million horsepower of energy in .00004 of a second. The combined horsepower of all the equipment on any mine site pales into insignificance when compared to that of a single small cartridge of explosive. The power of a large production blast I would venture to say is beyond the comprehension of all, including myself. The powers unleashed by explosives are only equalled or bettered by Mother Nature yet with each passing day the respect for the very useful commodity has decreased to a point where many individuals and companies pay scant regard to its hazardous nature. Studies carried out in the USA have determined that 70 out of 1000 blasting accidents are fatal. If one reads these statistics quickly this may not seem as being a high strike rate, that is until you compare these statistics with that of other activities which we consider as high risk occupations. Excluding explosives, the statistics for other mining operations in the U.S.A is a fatality for 7 out of every 1000 accidents.
    [Show full text]
  • Risk and Safety Management of Ammonium Nitrate Fertilizers: Keeping the Memory of Disasters Alive
    32 | Loss Prevention Bulletin 251 October 2016 Incident Risk and safety management of ammonium nitrate fertilizers: keeping the memory of disasters alive Dr. Zsuzsanna Gyenes, EC Joint Research Centre, Italy; Nicolas Dechy, CHAOS association, France This paper is aimed at keeping the memory of disasters alive, with the new process had fractions with higher ammonium assuming that risk awareness and implementation of safety nitrate (AN) content and this inhomogeneous mass was stored measures are facilitated by case histories. There have been together with the ASN that was dried with the old process. several accidents and a few disasters in the ammonium nitrate Due to higher AN content, lower density, lower water content fertilizer industry, and it is worthwhile to review these from (reduction from 4% to 2% with the new technique) and time to time, beyond the regulation and practice changes changed crystalline structure, the accumulated fine fraction which they triggered. was explosive. In addition, the operational issue was that the storage in large quantity lead to caking. The anti-caking BASF plant, Oppau, 1921 procedure at that time was to use dynamite! It was repeated over 20,000 times with no large explosion before that day. On 21 September in 1921, two consecutive explosions Similar risky procedures were at the origin of other accidents occurred in a silo in the BASF plant in Oppau, Germany, in Kriewald in Germany in 1921 (26 July)25 and Tessenderlo in creating a 20m deep, 90x125m large crater. The entire area Belgium in 1942 (29 April)26. was covered by dark green smoke and there were several additional fires and small explosions.
    [Show full text]
  • Factors Affecting Anfo Fumes Production
    FACTORS AFFECTING ANFO FUMES PRODUCTION James H. Rowland III and Richard Mainiero ABSTRACT For many years there have been small scale tests available for evaluating the toxic fumes production by cap- sensitive explosives (DOT Class 1.1), but these could not be used with blasting agents due to the large charge sizes and heavy confinement required for proper detonation. Considering the extensive use of blasting agents in construction and mining, there is a need to determine the quantities of toxic fumes generated by blasting agents. At the International Society of Explosive Engineers Twenty Third Annual Conference on Explosives and Blasting Technique in 1997, the authors reported on a facility for detonating large (4.54 kg), confined blasting agent charges in a controlled volume that had been constructed at the National Institute for Occupational Safety and Health’s Pittsburgh Research Lab’s Experimental Mine. Since 1997, this facility has been used to collect data on toxic fumes produced by the detonation of various ammonium nitrate/fuel oil (ANFO) mixtures and several cap-sensitive explosives. ANFO composition ranging from 1 to 10 percent (pct) fuel oil have been studied. As expected from previous studies, with an increase in fuel oil content the carbon monoxide production increases, while nitric oxide and nitrogen dioxide production decrease. The detonation velocity varies from 3,000 to 4,000 m/sec for the 1 to 10 pct range of fuel oil content, suggesting that ANFO mixes with improper fuel oil content may appear to detonate properly, while their fume production differs significantly from optimum. The study also considers such factors as degree of confinement, water contamination, and aluminum content on blasting agent fume production.
    [Show full text]
  • The Texas City Disaster
    National Hazardous Materials Fusion Center HAZMAT HISTORY The Texas City Disaster The National Hazardous Materials Fusion Center offers Hazmat History as an avenue for responders to learn from the past and apply those lessons learned to future incidents for a more successful outcome. This coincides with the overarching mission of the Fusion Center – to improve hazmat responder safety and enhance the decision‐making process during pre‐planning and mitigation of hazmat incidents. Incident Details: Insert Location and Date Texas City, TX April 16, 1947 Hazardous Material Involved Ammonium Nitrate Fertilizer Type (mode of transportation, fixed facility) Cargo Ship Overview The morning of 16 April 1947 dawned clear and crisp, cooled by a brisk north wind. Just before 8 am, longshoremen removed the hatch covers on Hold 4 of the French Liberty ship Grandcamp as they prepared to load the remainder of a consignment of ammonium nitrate fertilizer. Some 2,086 mt (2,300 t) were already onboard, 798 (880) of which were in the lower part of Hold 4. The remainder of the ship's cargo consisted of large balls of sisal twine, peanuts, drilling equipment, tobacco, cotton, and a few cases of small ammunition. No special safety precautions were in focus at the time. Several longshoremen descended into the hold and waited for the first pallets holding the 45 kg (100 lb) packages to be hoisted from dockside. Soon thereafter, someone smelled smoke, a plume was observed rising between the cargo holds and the ship’s hull, apparently about seven or eight layers of sacks down. Neither a 3.8 L (1 gal) jug of drinking water nor the contents of two fire extinguishers supplied by crew members seemed to do much good.
    [Show full text]
  • Chapter 2 EXPLOSIVES
    Chapter 2 EXPLOSIVES This chapter classifies commercial blasting compounds according to their explosive class and type. Initiating devices are listed and described as well. Military explosives are treated separately. The ingredi- ents and more significant properties of each explosive are tabulated and briefly discussed. Data are sum- marized from various handbooks, textbooks, and manufacturers’ technical data sheets. THEORY OF EXPLOSIVES In general, an explosive has four basic characteristics: (1) It is a chemical compound or mixture ignited by heat, shock, impact, friction, or a combination of these conditions; (2) Upon ignition, it decom- poses rapidly in a detonation; (3) There is a rapid release of heat and large quantities of high-pressure gases that expand rapidly with sufficient force to overcome confining forces; and (4) The energy released by the detonation of explosives produces four basic effects; (a) rock fragmentation; (b) rock displacement; (c) ground vibration; and (d) air blast. A general theory of explosives is that the detonation of the explosives charge causes a high-velocity shock wave and a tremendous release of gas. The shock wave cracks and crushes the rock near the explosives and creates thousands of cracks in the rock. These cracks are then filled with the expanding gases. The gases continue to fill and expand the cracks until the gas pressure is too weak to expand the cracks any further, or are vented from the rock. The ingredients in explosives manufactured are classified as: Explosive bases. An explosive base is a solid or a liquid which, upon application or heat or shock, breaks down very rapidly into gaseous products, with an accompanying release of heat energy.
    [Show full text]
  • Loss Prevention Bulletin Improving Process Safety by Sharing Experience
    Loss Prevention Bulletin Improving process safety by sharing experience Disaster 1916 Issue 251, October 2016 Anniversaries The great explosion of 1916 1986 Fire and explosion of LPG tanks at Feyzin 1966 Seveso – 40 years on 1986 Chernobyl – 1976 30 years on The Sandoz warehouse fi re – 30 years on The Challenger Space Shuttle disaster Risk and safety management of ammonium nitrate fertilizers 1921 1986 LPBcover251.indd 1 30/09/2016 14:25 I C h e m E S a f e t e ISC y r t n C e IChemE safety training October – December 2016 IChemE offers a range of training courses to help you, Fundamentals of Process Safety your staff and your organisation improve safety and 10–14 Oct, Melbourne, Australia www.icheme.org/fpsmel reduce risk. Comprehensive Explosion Science 11–12 Oct, London, UK All IChemE training courses can be run in-company. www.icheme.org/ces Email [email protected] for a quotation. Gas Explosion Hazards on LNG Facilities 13–14 Oct, London, UK Visit www.icheme.org/courses to view all IChemE www.icheme.org/lng training courses. Layer of Protection Analysis (LOPA) 25–26 Oct, Boksburg, South Africa Register for any course at www.icheme.org/booking www.icheme.org/lopasa Fundamentals of Nuclear Safety 31 Oct–4 Nov, Preston, UK www.icheme.org/fns Fundamentals of Process Safety Management 7–11 Nov, Boksburg, South Africa www.icheme.org/fpsm Layer of Protection Analysis (LOPA) 8–9 Nov, Cork, Ireland www.icheme.org/lopa Human Factors in Health and Safety 16–17 Nov, Melbourne, Australia www.icheme.org/humanfactors Layer of Protection Analysis
    [Show full text]
  • The Role of Leadership and Development of Management Systems to Ensure Safety Performance in Energy Sectors
    THE ROLE OF LEADERSHIP AND DEVELOPMENT OF MANAGEMENT SYSTEMS TO ENSURE EFFECTIVE SAFETY PERFORMANCE A Thesis by SEYEDSHAYAN NIKNEZHAD Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, M. Sam Mannan Committee Members, Efstratios N. Pistikopoulos Mahmoud El-Halwagi Michael Wesson Intercollegiate Faculty Chair, Efstratios N. Pistikopoulos August 2017 Major Subject: Energy Copyright 2017 Seyedshayan Niknezhad ABSTRACT Safety is one of the crucial issues that industry has aimed at improving for many decades and continues to progress. Discoveries show that organizations optimize their effort when they provide effective management systems to support front line employees, supervisors, and senior level managers. In this research, the role of leaders regarding safety in the energy industry is studied, and moreover, how to develop safety management systems to ensure an effective safety performance is surveyed. Leadership has the greatest impact on safety improvement. Leaders by different techniques can increase their influence on employees; set the mission and vision for staff; implement rules; provide resources; improve the teamwork; make effective communication from top to bottom, bottom to top and along the organization, educate staff, develop a safety management system, and create safety culture in the organization. By organizational safety culture, I mean the shared common values that drive organizational performance, more commonly defined as “the way we do around here.” While there are regulations regarding safety, every organization requires self-standard beyond the codified rules to have effective safety programs. Regulations should follow new research to develop new management systems to ensure the highest standards for safety.
    [Show full text]
  • NITROGYLCERIN and ETHYLENE GLYCOL DINITRATE Criteria for a Recommended Standard OCCUPATIONAL EXPOSURE to NITROGLYCERIN and ETHYLENE GLYCOL DINITRATE
    CRITERIA FOR A RECOMMENDED STANDARD OCCUPATIONAL EXPOSURE TO NITROGYLCERIN and ETHYLENE GLYCOL DINITRATE criteria for a recommended standard OCCUPATIONAL EXPOSURE TO NITROGLYCERIN and ETHYLENE GLYCOL DINITRATE U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health June 1978 For »ale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 DISCLAIMER Mention of company name or products does not constitute endorsement by the National Institute for Occupational Safety and Health. DHEW (NIOSH) Publication No. 78-167 PREFACE The Occupational Safety and Health Act of 1970 emphasizes the need for standards to protect the health and provide for the safety of workers occupationally exposed to an ever-increasing number of potential hazards. The National Institute for Occupational Safety and Health (NIOSH) evaluates all available research data and criteria and recommends standards for occupational exposure. The Secretary of Labor will weigh these recommendations along with other considerations, such as feasibility and means of implementation, in promulgating regulatory standards. NIOSH will periodically review the recommended standards to ensure continuing protection of workers and will make successive reports as new research and epidemiologic studies are completed and as sampling and analytical methods are developed. The contributions to this document on nitroglycerin (NG) and ethylene glycol dinitrate (EGDN) by NIOSH staff, other Federal agencies or departments, the review consultants, the reviewers selected by the American Industrial Hygiene Association, and by Robert B. O ’Connor, M.D., NIOSH consultant in occupational medicine, are gratefully acknowledged. The views and conclusions expressed in this document, together with the recommendations for a standard, are those of NIOSH.
    [Show full text]