Proquest Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Proquest Dissertation Femur 2-4 Tibia 2 Fibula 1 Patella Pretibial bone Tarsals Metatarsal I 8 Phalanx 1 9 Phalanx 2 9 Metatarsal II 4 Phalanx 1 8 Phalanx 2 9 Phalanx 3 9 Metatarsal III 2 Phalanx 1 8 Phalanx 2 9 Phalanx 3 9 Phalanx 4 9 Metatarsal IV 2 Phalanx 1 8 Phalanx 2 9 Phalanx 3 12 Phalanx 4 11 Phalanx 5 9 If an element is unnumbered, it was unossified in all specimens examined. If two numbers are given, these represent the range of ranks over which a variable element can ossify. 282 Evolution of Avian Ossification Sequences Erin E. Maxwell Department of Biology McGill University, Montreal April 2008 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy © Erin Maxwell 2008 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de ('edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-53317-8 Our file Notre reference ISBN: 978-0-494-53317-8 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantias de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation. without the author's permission. In compliance with the Canadian Conformement a la loi canadienne sur la Privacy Act some supporting forms protection de la vie privee, quelques may have been removed from this formulaires secondaires ont ete enleves de thesis. cette these. While these forms may be included Bien que ces formulaires aient inclus dans in the document page count, their la pagination, il n'y aura aucun contenu removal does not represent any loss manquant. of content from the thesis. 1*1 Canada ACKNOWLEDGMENTS Discussion and Support I would like to thank my supervisor Hans Larsson, my supervisory committee (Ehab Abouheif and Bob Carroll) and the members of the Larsson- Carroll lab for discussion. Special thanks to Audrey Heppleston, Maria de Boef and Sylvie Tissandier for assisting with the lab work, and to Luke Harrison and Nadia Frobisch for commenting on early drafts of Chapter 1. Luke Harrison also provided essential assistance with programming issues. Matt Vavrek and Maria de Boef helped with proofreading, and Julie Rousseau translated the abstract. The comments of anonymous reviewers improved Chapters 3, 4 and 5. Collections Access I appreciate the efforts of Virginie Millien and Anthony Howell for accessioning the Redpath Museum specimens for me. I would also like to thank Kristof Zyskowski, Richard Prum and the other Peabody Museum vertebrate zoology staff for their hospitality and allowing me access to the collections to collect the data used in Chapter 2. Thanks to Parker Cane for access to the cleared and stained Common Tern specimens, as well as Paul Sweet, Joel Cracraft and other members of the AMNH Department of Ornithology for allowing me access to the collections to assemble the data presented in Chapter 5. Thanks to David Evans for allowing me access to the ROM collections for comparative purposes. Specimen Collection I would like to thank Dr. Katherine Mehl and the members of the Ducks Unlimited NL/Labrador field team (2004/2005) for collecting Common Eider embryos for me. Thanks also to the Presqu'ile ProvincialPark staff (2005) for collecting Double-crested Cormorant eggs on my behalf. Thanks to the Biodome de Montreal for providing me with access to altricial embryos, used for comparative purposes. i Funding Funding for this project was provided by a Tomlinson Fellowship, a Wylie Memorial Fellowship, FQRNT, and NSERC CGS-M and CGS-D fellowships to myself, as well as an NSERC Discovery Grant and Canada Research Chair to H. Larsson which covered logistical expenses. A collections study grant helped cover the cost of the collections visit to the AMNH. 11 CONTRIBUTIONS OF AUTHORS Chapter 5, "Ossification Sequence of the Common Tern (Sterna hirundo) and Its Implications for the Interrelationships of the Lari (Aves, Charadriiformes)" (In Press, Journal of Morphology) is a manuscript I co-authored with Luke Harrison. I examined the embryos and reconstructed the ossification sequence. I wrote all portions of the manuscript not directly pertaining to PGi analysis, and made figures 2-5. 111 TABLE OF CONTENTS Acknowledgments i Contributions of authors Hi ABSTRACT/RESUME 1 INTRODUCTION 4 CHAPTER 1: Analysis of developmental sequence data: a review Introduction 8 Phenetic Methods 10 Phylogenetic Methods 16 Mapping sequences on an existing tree topology 16 The problem of simultaneity 17 The problem of polymorphism 18 The use of developmental sequence data for phylogenetic reconstruction 23 Conclusions 26 CHAPTER 2: Skeletal development in palaeognathous birds Introduction 28 Materials and Methods 30 Results Skull Dromaius novaehollandiae 31 Rhea americana 35 Struthio camelus 36 Eudromia elegans 39 Postcranial axial skeleton Dromaius novaehollandiae 42 Rhea americana 45 Struthio camelus 46 Eudromia elegans 47 Forelimb Dromaius novaehollandiae 48 Rhea americana 50 Struthio camelus 51 Eudromia elegans 52 Hind limb Dromaius novaehollandiae 55 Rhea americana 57 Struthio camelus 58 IV Eudromia elegans 60 Discussion Skull 63 Paedomorphosis and ratite cranial evolution 67 Postcranial axial skeleton 69 Forelimb 71 Hind limb 75 Incubation period, adult size and ossification 77 Mechanisms of skeletal reduction 78 Morphology and ossification sequence 79 CHAPTER 3: Comparative embryonic development of the skeleton of the Domestic Turkey (Meleagris gallopavo) and other galliform birds Introduction 87 Materials and Methods 88 Results Sequence variability 89 Skull 89 Postcranial axial skeleton 94 Forelimb 95 Hind limb 98 Discussion Skull 100 Postcranial axial skeleton 101 Forelimb 102 Hind limb 103 Factors affecting ossification sequence 105 CHAPTER 4: Ossification Sequence of the Avian Order Anseriformes, with Comparison to other Precocial Birds Introduction 115 Materials and Methods 117 Results Sequence variability 118 Skull 119 Postcranial axial skeleton 125 Forelimb 128 Hind limb 132 Discussion Sequence variability 137 Comparative ossification sequence Skull 137 Postcranial axial skeleton 140 Forelimb 141 Hind limb 142 v Life history and ossifcation sequence 143 CHAPTER 5: Ossification Sequence of the Common Tern {Sterna hirundo) and Its Implications for the Interrelationships of the Lari (Aves, Charadriiformes) Introduction 156 Materials and Methods 160 Results Skeletal development of Sterna hirundo Skull 163 Post-crartial axial skeleton 169 Forelimb 171 Hind limb 175 Intraspecific variability 178 Phylogenetic analysis Parsimony analysis of event-pairs 178 PGi analysis - 179 Discussion Skull 180 Post-cranial axial skeleton 181 Forelimb 182 Hind limb 183 Potential factors affecting ossification sequence 184 Intraspecific variability 186 Phylogenetic analysis 186 CHAPTER 6: Phylogenetic analysis of avian ossification sequence data Introduction 193 Materials and Methods 195 Results Topology reconstruction 197 Character evolution 198 Discussion 202 CONCLUSIONS AND FUTURE RESEARCH 250 BIBLIOGRAPHY 253 APPENDICES Appendix 1: List of specimens 274 Appendix 2: Ossification sequence of the Double-crested Cormorant 281 Appendix 3: Supporting documents 283 vi ABSTRACT The relative timing and sequence of events during embryonic development plays an important role in adult shape and thus in evolution. The sequence in which bones form in the developing embryo should therefore contain a component capable of revealing evolutionary history, however processes relating to ossification sequence and the sequences themselves are poorly known and rarely discussed. In this thesis, I describe the embryonic skeletal development of Meleagris gallopavo, Sterna hirundo, Somateria mollissima, Anas platyrhynchos, Cairina moschata, Dromaius novaehollandiae, Rhea americana and Struthio camelus for the first time in the scientific literature, focusing on ossification. All species exhibited intraspecific variation in ossification sequence, but the level of polymorphism present was generally quite low. Specimens collected from the wild did not show more variability in ossification sequence than those incubated under constant conditions in the lab. Dermal bones did not always ossify before endochondral bones, nor did neural-crest derived elements always form before elements derived from the paraxial mesoderm. All of this suggests that the factors controlling ossification sequence are complex, and more than one variable may play a role. In order to examine sequences in a more explicit phylogenetic context, I converted them
Recommended publications
  • The Triumphs, Challenges and Failures of Young North Island Brown Kiwi (Apteryx Mantelli): a Study of Behaviour, Growth, Dispersal and Mortality
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. The triumphs, challenges and failures of young North Island brown kiwi (Apteryx mantelli): a study of behaviour, growth, dispersal and mortality Stephanie Walden A thesis in partial fulfilment of the requirements for the degree of Master of Science in Zoology at Massey University, Palmerston North, New Zealand Alexandra Louise Wilson 2013 i ii Abstract North Island brown kiwi (NIBK, Apteryx mantelli), an endemic New Zealand species, are estimated to have declined by 90% from pre-human colonisation numbers. Currently, at least 60% of mortality is attributed to introduced mammalian predators, namely stoats (Mustela erminea) preying on chicks. Therefore, conservation effort focuses on predator trapping/killing, and hatching and rearing NIBK chicks in captivity and releasing them back into the wild. These efforts are resulting in increased recruitment of chicks into populations. However, little is known about the biology and behaviour of NIBK chicks in the wild and how this may affect management of these populations. Consequently, the aim of this study was to examine the ecology of young wild NIBK in a natural high density population with reduced predator diversity on Ponui Island. More specifically, the goal was to determine their growth rates, behaviour around the natal nest, dispersal and mortality, and how these factors may be influenced by environmental variables. During the 2010 - 2011 and 2011 - 2012 breeding seasons 29 young NIBK were observed from hatching until mortality or the end of 2012.
    [Show full text]
  • Aspects of the Reproductive Biology of Sengis (Macroscelidea) in General
    Aspects of the Reproductive Biology of Sengis (Macroscelidea) in general and the Postnatal Development of the Short-eared Sengi (Macroscelides proboscideus) in particular Inaugural-Dissertation zur Erlangung des Doktorgrades Dr. rer.nat. des Fachbereiches Biologie und Geographie an der Universität Duisburg-Essen Vorgelegt von Gea Olbricht aus Leipzig Juli 2009 Die der vorliegenden Arbeit zugrunde liegenden Experimente wurden im Zoologischen Garten der Stadt Wuppertal, im Zentralafrikanischen Museum Tervuren, Belgien, im Museum Alexander Koenig, Bonn und in der Anatomischen Anstalt der Universität München, sowie in den südafrikanischen Museen McGregor in Kimberley und Amathole in King Williams Town durchgeführt. 1. GUTACHTER: Prof. Dr. H. Burda, Universität Duisburg-Essen 2. GUTACHTER: Prof. Dr. B. Sures, Universität Duisburg-Essen 3. GUTACHTER: Dr. R. Asher, Universität Cambridge, GB VORSITZENDER DES PRÜFUNGSAUSSCHUSSES: Prof. Dr. D. Hering, Universität Duisburg-Essen Tag der Disputation: 03. 07. 2009 When we try to pick anything for itself, then it turns out that it is linked to everything else in the universe. John Muir Was wir wissen, ist ein Tropfen; was wir nicht wissen, ein Ozean. Isaac Newton Es ist nicht schwer zu komponieren. Aber es ist fabelhaft schwer, die überflüssigen Noten unter den Tisch fallen zu lassen. Johannes Brahms Meiner Familie gewidmet, Dr. Alexander Sliwa mit Leona, Feline und Olivia ACKNOWLEDGMENTS Six years came and went in the blink of an eye. Through it all, I´ve had a great deal of fun and it is a great pleasure for me to acknowledge all those who´ve helped me in this endeavour. In 2002 I approached Professor Hynek Burda of the Department of General Zoology at the University of Duisburg-Essen with the idea of initiating a study on the reproductive biology of sengis after I have had the unique opportunity of observing short- eared sengis during my time as curator at Wuppertal Zoo.
    [Show full text]
  • Fully Fledged Enantiornithine Hatchling Revealed by Laser-Stimulated
    www.nature.com/scientificreports OPEN Fully fedged enantiornithine hatchling revealed by Laser- Stimulated Fluorescence supports Received: 31 July 2018 Accepted: 8 March 2019 precocial nesting behavior Published: xx xx xxxx Thomas G. Kaye 1, Michael Pittman 2, Jesús Marugán-Lobón3, Hugo Martín-Abad3, José Luis Sanz 3 & Angela D. Buscalioni3 Laser-Stimulated Fluorescence (LSF) is used to identify fully fedged feathering in the hatchling enantiornithine bird specimen MPCM-LH-26189, supporting precocial nesting behavior in this extinct group. The LSF results include the detection of a long pennaceous wing feather as well as cover feathers around the body. The LSF technique showed improved detection limits over and above synchrotron and UV imaging which had both been performed on this specimen. The fndings underscore the value of using a wide range of analytical techniques. Te enantiornithine hatchling MPCM-LH-26189 from the Las Hoyas locality of Spain helped to identify an asynchronous clade-wide pattern of sternal and vertebral osteogenesis in early juvenile enantiornithines, sup- porting variation in their size and their tempo of skeletal maturation1. Tis previous study found no feathers or chemical evidence for plumage (see Fig. 5 caption of1) with faint ribbing visible in a yellowish stain suggested to be more consistent with the morphology of vegetal material than with feathers (see Supplementary Note 1 of1). MPCM-LH-26189 is reasonably well articulated and has some sof-tissue-associated chemistry1. Tese lines of evidence were used to suggest that MPCM-LH-26189 might have been largely featherless when it died (see Supplementary Note 1, Supplementary Figs 2–5 and Supplementary Table 2 of1).
    [Show full text]
  • Egg Size and Bird Evolution
    © The Authors, 2010. Journal compilation © Australian Museum, Sydney, 2010 Records of the Australian Museum (2010) Vol. 62: 207–216. ISSN 0067-1975 doi:10.3853/j.0067-1975.62.2010.1547 Cracking a Developmental Constraint: Egg Size and Bird Evolution Gareth J. Dyke,*1 anD Gary W. kaiser2 1 School of Biology and Environmental Science, University College Dublin, Belfield Dublin 4, Ireland [email protected] 2 Royal British Columbia Museum, Victoria, B.C. Canada V8W 9W2 [email protected] abstract. It has been suggested that relative egg size in living birds is strongly correlated with the developmental mode of the young; “altricial” (helpless) or “precocial” (independent). Using a data set of extant taxa we show that altricial birds lay relatively larger eggs than their precocial counterparts but that this may be due to the small size of most altricial species. Smaller birds tend to lay relatively small eggs compared to large species. Nonetheless, a predictive egg mass-body mass relationship extends into the avian fossil record. Such a relationship is important to our understanding of avian evolution because relative egg size (and thus available developmental mode) was constrained in many early birds—oviduct diameter was limited by the presence of pubic fusion. Therefore we document the evolution of avian developmental strategies using morphology-based phylogenies for Mesozoic and extant avians and corroborate correlations between developmental strategies, egg weight and female body mass. The sequential loss of precocial features in hatchlings characterises the evolution of birds while altriciality is derived within Neoaves. A set of precocial strategies is seen in earlier lineages, including basal Neornithes (modern birds) and are implied in their Mesozoic counterparts—skeletal constraints on egg size, present in many Jurassic and Early Cretaceous birds (Archaeopteryx, Confuciusornis, Enantiornithes) were lost in later diverging lineages.
    [Show full text]
  • First Species of Enantiornithes from Sihedang Elucidates Skeletal Development in Early Cretaceous Enantiornithines
    Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: http://www.tandfonline.com/loi/tjsp20 First species of Enantiornithes from Sihedang elucidates skeletal development in Early Cretaceous enantiornithines Han Hu & Jingmai K. O'Connor To cite this article: Han Hu & Jingmai K. O'Connor (2017) First species of Enantiornithes from Sihedang elucidates skeletal development in Early Cretaceous enantiornithines, Journal of Systematic Palaeontology, 15:11, 909-926, DOI: 10.1080/14772019.2016.1246111 To link to this article: https://doi.org/10.1080/14772019.2016.1246111 View supplementary material Published online: 14 Nov 2016. Submit your article to this journal Article views: 284 View related articles View Crossmark data Citing articles: 3 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Journal of Systematic Palaeontology, 2017 Vol. 15, No. 11, 909–926, http://dx.doi.org/10.1080/14772019.2016.1246111 First species of Enantiornithes from Sihedang elucidates skeletal development in Early Cretaceous enantiornithines Han Hu a,b* and Jingmai K. O’Connora aKey Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xizhimenwai Street, Beijing 100044, China; bUniversity of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China (Received 1 April 2016; accepted 19 September 2016; published online 14 November 2016) The Sihedang locality of the Lower Cretaceous Yixian Formation is the only recognized ornithuromorph-dominated locality in the Jehol Group of north-eastern China. Here we report on the first enantiornithine from this locality and erect a new taxon Monoenantiornis sihedangia gen.
    [Show full text]
  • Downloaded from Firmed That Mouse Chromatin “…Condensin Chromosomes (SMC) Family of to a Fully Formed Chick
    INSIGHTS | PERSPECTIVES components that are required to assemble an important contribution by occasionally EVOLUTION chromosomes in a test tube (9). Three com- inflecting the path of the DNA. ponents were found to be essential: histones, The DNA kinking property of histones together with assembly factors that they might also explain a little twist to the The most require to load onto DNA; condensin; and story. Vertebrate condensin comes in two topoisomerase II. The latter is an enzyme types, condensin I and condensin II. Con- that allows DNA strands to pass each other, densin II is present in low abundance in perfect thing, thereby preventing DNA from getting hope- Xenopus egg extracts, and its depletion is lessly tangled up. usually hardly noticeable on the resultant How do histones contribute to chromo- chromosomes. However, in the absence of explained some assembly? Histones are abundant in histones, condensin II becomes crucial for The requirements of flight the egg extract, and even if it were possible chromosome formation. The ability of ei- to remove them all, half of the histone octa- ther histones to bend DNA or of condensin best explain the evolution mers are already present in the Xenopus II to stabilize a bent DNA conformation of different egg shapes sperm chromatin. To study the role of his- might be required as a basis for the action tones in chromosome assembly, Shintomi of the condensin I complex. et al. took advantage of the almost com- An important open question highlighted By Claire N. Spottiswoode1,2 plete absence of histones from mouse sperm by the study of Shintomi et al.
    [Show full text]
  • Precocial Spectrum for Social Complexity in Mammals and Birds – a Review Isabella B
    Scheiber et al. Frontiers in Zoology (2017) 14:3 DOI 10.1186/s12983-016-0185-6 REVIEW Open Access The importance of the altricial – precocial spectrum for social complexity in mammals and birds – a review Isabella B. R. Scheiber1*, Brigitte M. Weiß2,3, Sjouke A. Kingma1 and Jan Komdeur1 Abstract Various types of long-term stable relationships that individuals uphold, including cooperation and competition between group members, define social complexity in vertebrates. Numerous life history, physiological and cognitive traits have been shown to affect, or to be affected by, such social relationships. As such, differences in developmental modes, i.e. the ‘altricial-precocial’ spectrum, may play an important role in understanding the interspecific variation in occurrence of social interactions, but to what extent this is the case is unclear because the role of the developmental mode has not been studied directly in across-species studies of sociality. In other words, although there are studies on the effects of developmental mode on brain size, on the effects of brain size on cognition, and on the effects of cognition on social complexity, there are no studies directly investigating the link between developmental mode and social complexity. This is surprising because developmental differences play a significant role in the evolution of, for example, brain size, which is in turn considered an essential building block with respect to social complexity. Here, we compiled an overview of studies on various aspects of the complexity of social systems in altricial and precocial mammals and birds. Although systematic studies are scarce and do not allow for a quantitative comparison, we show that several forms of social relationships and cognitive abilities occur in species along the entire developmental spectrum.
    [Show full text]
  • Do Feathered Dinosaurs Exist? Testing the Hypothesis on Neontological and Paleontological Evidence
    JOURNAL OF MORPHOLOGY 266:000–000 (2005) Do Feathered Dinosaurs Exist? Testing the Hypothesis on Neontological and Paleontological Evidence Alan Feduccia,1* Theagarten Lingham-Soliar,2 and J. Richard Hinchliffe3 1Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280 2Department of Zoology, University of KwaZulu-Natal, Westville Campus, Durban 4000, KwaZulu-Natal, South Africa 3Institute of Biological Sciences, University of Wales, Aberystwyth SY23 3DA, United Kingdom ABSTRACT The origin of birds and avian flight from KEY WORDS: feathered dinosaurs; theropod; feather within the archosaurian radiation has been among the most morphogenesis; dromaeosaur; integument; collagen; dig- contentious issues in paleobiology. Although there is general its; frame-shift; limb morphogenesis agreement that birds are related to theropod dinosaurs at some level, debate centers on whether birds are derived “When I use a word,” Humpty Dumpty said in rather a directly from highly derived theropods, the current dogma, scornful tone, “it means just what I choose it to mean — or from an earlier common ancestor lacking suites of derived neither more nor less.” “The question is,” said Alice, anatomical characters. Recent discoveries from the Early “whether you can make words mean so many different Cretaceous of China have highlighted the debate, with things.” “The question is,” said Humpty Dumpty, “which claims of the discovery of all stages of feather evolution and is to be master — that’s all.” —Lewis Carroll, 1871. ancestral birds (theropod dinosaurs), although the deposits Prior to the 1970s birds and dinosaurs were are at least 25 million years younger than those containing the earliest known bird Archaeopteryx.
    [Show full text]
  • The Fossil Record of Bird Behaviour D
    bs_bs_bannerJournal of Zoology Journal of Zoology. Print ISSN 0952-8369 The fossil record of bird behaviour D. Naish Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, UK Keywords Abstract birds; Avialae; fossil; behaviour; palaeontology; ecomorphology. Between the Middle Jurassic and Holocene, birds evolved an enormous diversity of behaviours. The distribution and antiquity of these behaviours is difficult to Correspondence establish given a relatively poor fossil record. Rare crop, stomach and gut contents Darren Naish, Ocean and Earth Science, typically reveal diets consistent with morphology but stem-members of some National Oceanography Centre, lineages (including Cariamae and Coraciiformes) seem to have been different in Southampton ecology from their extant relatives. Most of our ideas about the behaviour of fossil University of Southampton, Southampton birds are based on analogy (with skull form, limb proportions and claw curvature SO14 3ZH, UK. being used to guide hypotheses). However, this has limitations given that some Email: [email protected] extinct taxa lack extant analogues and that some extant taxa do not behave as predicted by osteology. Reductionist methods have been used to test predation Editor: David Hone style and running ability in fossil taxa including moa, Gastornis and phorusrhacids. Virtually nothing is known of nesting and nest-building behaviour Received 18 July 2013; revised 11 but colonial nesting is known from the Cretaceous onwards. Rare vegetative nests December 2013; accepted 17 December demonstrate modern nest-building from the Eocene onwards. Ornamental 2013 rectrices indicate that sexually driven display drove some aspects of feather evo- lution and evidence for loud vocal behaviour and intraspecific combat is known doi:10.1111/jzo.12113 for some taxa.
    [Show full text]
  • Precocial Problems
    ALTERRA Hans Schekkerman SCIENTIFIC CONTRIBUTIONS precocial problems Shorebird chick performance in relation to weather, farming, and predation 24 RIJKSUNIVERSITEIT GRONINGEN Precocial problems Shorebird chick performance in relation to weather, farming, and predation Proefschrift ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. F. Zwarts, in het openbaar te verdedigen op maandag 26 mei 2008 om 13.15 uur door Hans Schekkerman geboren op 19 december 1963 te Alkmaar Promotores: Prof. dr. T. Piersma Prof. dr. G.H. Visser † Beoordelingscommissie: Prof. dr. F. Berendse Prof. dr. M. Klaassen Prof. dr. Å. Lindström precocial problems Shorebird chick performance in relation to weather, farming, and predation Colophon Photograpy Harvey van Diek: page 6, 22, 210 (left) Jan van de Kam: page 44, 68 Henk-Jan Ottens: page 204, 210 (right) Wolf Teunissen: page 152 Ingrid Tulp: page 212 (centre) All other pictures: Hans Schekkerman Figures Dick Visser Graphic Design Nicolet Pennekamp Printing Drukkerij van Denderen BV, Groningen ISBN: 978-90-9022979-9 1. Introduction 6 2. Prefl edging energy requirements in shorebirds: energetic implications 22 of self-feeding precocial development 3. Mechanisms promoting higher growth rate in arctic than in temperate 44 shorebirds. 4. Growth, behaviour of broods, and weather-related variation in breeding 68 productivity of Curlew Sandpipers Calidris ferruginea 5. Foraging in precocial chicks of the black-tailed godwit Limosa limosa: 90 CONTENTS vulnerability to weather and prey size 6. Abundance of invertebrates and foraging success of Black-tailed Godwit 112 Limosa limosa chicks in relation to agricultural grassland management 7.
    [Show full text]
  • Insight Into the Early Evolution of the Avian Sternum from Juvenile Enantiornithines
    ARTICLE Received 25 Jun 2012 | Accepted 30 Aug 2012 | Published 9 Oct 2012 DOI: 10.1038/ncomms2104 Insight into the early evolution of the avian sternum from juvenile enantiornithines Xiaoting Zheng1,2, Xiaoli Wang1, Jingmai O’Connor3 & Zhonghe Zhou3 The sternum is one of the most important and characteristic skeletal elements in living birds, highly adapted for flight and showing a diverse range of morphologies.N ew exceptional material of young juvenile specimens from the Early Cretaceous Jehol Group in northeastern China reveals the unique sequence of development in the sternum of Enantiornithes, the dominant clade of Cretaceous birds. We recognize six ossifications that together form the sternum, three of which were previously unknown. Here we show that although basal living birds apparently have retained the dinosaurian condition in which the sternum develops from a bilateral pair of ossifications (present in paravian dinosaurs and basal birds), the enantiornithine sternal body primarily develops from two unilateral proximo-distally arranged ossifications. This indicates that although superficially similar, the sternum formed very differently in enantiornithines and ornithuromorphs, suggesting that several ornithothoracine sternal features may represent parallelism. This highlights the importance of ontogenetic studies for understanding homology and the evolution of skeletal features in palaeontology. 1 Institute of Geology and Paleontology, Linyi University, Linyi 276000, China. 2 Tianyu Natural History Museum of Shandong, Pingyi 273300, China. 3 Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China. Correspondence and requests for materials should be addressed to J.O’C. (email: [email protected]).
    [Show full text]
  • (1985) 207491-509 ! Brain Size, Development and Metabolism In
    WZooLLond.(A) (1985) 207,491-509 Peter M. Bennett and Paul H. Harvey* School of Biological Sciences, University of Sussex, Palmer, Brighton BN1 9QG, U.K. (Accepted 12 March 1985) (With 11 figures in the text) ! BrainRecent size, hypotheses development that variation and in brain metabolism size among birds in and birds mammals and result mammals from differences Indices of embryonic and post-embryonic brain growth are defined. Precocial birds and mammals have high embryonic brain growth indices which arc compensated for by low post- iin metabolicembryonic allocation indices during(with the ontogeny exception ofare Homo tested. sapiens). In contrast, altricial birds and mammals have low embryonic and high post-embryonic indices. Altricial birds have relatively small brains at hatching and develop relatively large brains as adults, but among mammals there is no equivalent correlation between variation in adult relative brain sizes and state of neonatal development. Compensatory brain development in both birds and mammals is associated with compensatory parental metabolic allocation. In comparison with altricial development, precocial development is characterized by higher levels of brain growth and parental metabolic allocation prior to hutching or birth and lower levels subsequently. Differences between degrees of postnatal investment by the parents in the young of precocial birds versus precocial mammals may result in the different patterns of adult brain size associated with precociality versus altriciality in the two groups. The allometric exponent scaling brain on body size dilTcrs among taxonomic levels in birds. The exponent is higher for some parts ofthe brain than others, irrespective of taxonomic level. Unlike mammals, the exponents for birds do not show a general increase with taxonomic level.
    [Show full text]