Dwarfing in Ornithopod Dinosaurs from the Early Cretaceous of Romania
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sereno 20060098.Vp
Basal abelisaurid and carcharodontosaurid theropods from the Lower Cretaceous Elrhaz Formation of Niger PAUL C. SERENO and STEPHEN L. BRUSATTE Sereno, P.C. and Brusatte, S.L. 2008. Basal abelisaurid and carcharodontosaurid theropods from the Lower Cretaceous Elrhaz Formation of Niger. Acta Palaeontologica Polonica 53 (1): 15–46. We report the discovery of basal abelisaurid and carcharodontosaurid theropods from the mid Cretaceous (Aptian– Albian, ca. 112 Ma) Elrhaz Formation of the Niger Republic. The abelisaurid, Kryptops palaios gen. et sp. nov., is repre− sented by a single individual preserving the maxilla, pelvic girdle, vertebrae and ribs. Several features, including a maxilla textured externally by impressed vascular grooves and a narrow antorbital fossa, clearly place Kryptops palaios within Abelisauridae as its oldest known member. The carcharodontosaurid, Eocarcharia dinops gen. et sp. nov., is repre− sented by several cranial bones and isolated teeth. Phylogenetic analysis places it as a basal carcharodontosaurid, similar to Acrocanthosaurus and less derived than Carcharodontosaurus and Giganotosaurus. The discovery of these taxa sug− gests that large body size and many of the derived cranial features of abelisaurids and carcharodontosaurids had already evolved by the mid Cretaceous. The presence of a close relative of the North American genus Acrocanthosaurus on Af− rica suggests that carcharodontosaurids had already achieved a trans−Tethyan distribution by the mid Cretaceous. Key words: Theropod, abelisaurid, allosauroid, carcharodontosaurid, Kryptops, Eocarcharia, Cretaceous, Africa. Paul C. Sereno [[email protected]], Department of Organismal Biology and Anatomy, University of Chicago, 1027 E. 57th Street, Chicago, Illinois, 60637, USA; Stephen L. Brusatte [[email protected]], Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, United Kingdom. -
From the Early Cretaceous Wonthaggi Formation (Strzelecki Group)
Journal of Paleontology, 93(3), 2019, p. 543–584 Copyright © 2019, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/19/1937-2337 doi: 10.1017/jpa.2018.95 New small-bodied ornithopods (Dinosauria, Neornithischia) from the Early Cretaceous Wonthaggi Formation (Strzelecki Group) of the Australian-Antarctic rift system, with revision of Qantassaurus intrepidus Rich and Vickers-Rich, 1999 Matthew C. Herne,1,2 Jay P. Nair,2 Alistair R. Evans,3 and Alan M. Tait4 1School of Environmental and Rural Science, University of New England, Armidale 2351, New South Wales, Australia <ornithomatt@ gmail.com> 2School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia <[email protected]> 3School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia <[email protected]> 4School of Earth, Atmosphere & Environment, Monash University, Melbourne, Victoria 3800, Australia <[email protected]> Abstract.—The Flat Rocks locality in the Wonthaggi Formation (Strzelecki Group) of the Gippsland Basin, southeastern Australia, hosts fossils of a late Barremian vertebrate fauna that inhabited the ancient rift between Australia and Antarc- tica. Known from its dentary, Qantassaurus intrepidus Rich and Vickers-Rich, 1999 has been the only dinosaur named from this locality. However, the plethora of vertebrate fossils collected from Flat Rocks suggests that further dinosaurs await discovery. From this locality, we name a new small-bodied ornithopod, Galleonosaurus dorisae n. -
Camptosaurus Dispar Legs; Although, the Smaller Juveniles Might Have Been Able to Do So
Camptosaurus was too front heavy to walk on hind Camptosaurus dispar legs; although, the smaller juveniles might have been able to do so. e skull of Camptosaurus is about 15 inches long. It has no teeth at the front of the beak and broad crushing teeth in the cheeks. ese teeth are made stronger by ridges on the outer surface. Chewing causes these teeth to have a at, grinding surface. Unlike Allosaurus, these teeth cannot slice through esh, but they can pulverize vegetation. Our skeleton of Camptosaurus went on display Scienti c Name: Camptosaurus dispar at the museum around 1965 and was the Muse- Pronounced: KAMP-toe-SOR-us um’s second dinosaur skeleton. Originally, it was Name Meaning: Flexible lizard mounted in the kangaroo pose on its hind legs and Time Period: 147 Million Years Ago (MYA) Late using its tail as a prop. It was remounted into a new Jurassic four-legged pose in 2013 . e skeleton is 17¾ feet Length:16-23 feet (5-7 m) long long and 5 feet tall at the hips. It is a plaster of Paris Height: 3-4 feet (1 m) high at the hips cast of bones collected from the Cleveland Lloyd Weight: 2,200 pounds (1000 kg). Dinosaur Quarry, about 30 miles south of Price. Diet: Herbivore (plant eater) e pelvis is rather broad for its length and the Places Found: Camptosaurus was a distant relative of Iguanodon, upper bone, called the ilium, bows outwards. Discoverer: Marsh (1885) the dinosaur with the thumb-spike. In fact, the thumb (digit I) of Camptosaurus had little move- e hand of Camptosaurus has ve digits, but only ment and the claw was almost like a spike . -
Brains and Intelligence
BRAINS AND INTELLIGENCE The EQ or Encephalization Quotient is a simple way of measuring an animal's intelligence. EQ is the ratio of the brain weight of the animal to the brain weight of a "typical" animal of the same body weight. Assuming that smarter animals have larger brains to body ratios than less intelligent ones, this helps determine the relative intelligence of extinct animals. In general, warm-blooded animals (like mammals) have a higher EQ than cold-blooded ones (like reptiles and fish). Birds and mammals have brains that are about 10 times bigger than those of bony fish, amphibians, and reptiles of the same body size. The Least Intelligent Dinosaurs: The primitive dinosaurs belonging to the group sauropodomorpha (which included Massospondylus, Riojasaurus, and others) were among the least intelligent of the dinosaurs, with an EQ of about 0.05 (Hopson, 1980). Smartest Dinosaurs: The Troodontids (like Troödon) were probably the smartest dinosaurs, followed by the dromaeosaurid dinosaurs (the "raptors," which included Dromeosaurus, Velociraptor, Deinonychus, and others) had the highest EQ among the dinosaurs, about 5.8 (Hopson, 1980). The Encephalization Quotient was developed by the psychologist Harry J. Jerison in the 1970's. J. A. Hopson (a paleontologist from the University of Chicago) did further development of the EQ concept using brain casts of many dinosaurs. Hopson found that theropods (especially Troodontids) had higher EQ's than plant-eating dinosaurs. The lowest EQ's belonged to sauropods, ankylosaurs, and stegosaurids. A SECOND BRAIN? It used to be thought that the large sauropods (like Brachiosaurus and Apatosaurus) and the ornithischian Stegosaurus had a second brain. -
A Phylogenetic Analysis of the Basal Ornithischia (Reptilia, Dinosauria)
A PHYLOGENETIC ANALYSIS OF THE BASAL ORNITHISCHIA (REPTILIA, DINOSAURIA) Marc Richard Spencer A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor Don C. Steinker Daniel M. Pavuk © 2007 Marc Richard Spencer All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The placement of Lesothosaurus diagnosticus and the Heterodontosauridae within the Ornithischia has been problematic. Historically, Lesothosaurus has been regarded as a basal ornithischian dinosaur, the sister taxon to the Genasauria. Recent phylogenetic analyses, however, have placed Lesothosaurus as a more derived ornithischian within the Genasauria. The Fabrosauridae, of which Lesothosaurus was considered a member, has never been phylogenetically corroborated and has been considered a paraphyletic assemblage. Prior to recent phylogenetic analyses, the problematic Heterodontosauridae was placed within the Ornithopoda as the sister taxon to the Euornithopoda. The heterodontosaurids have also been considered as the basal member of the Cerapoda (Ornithopoda + Marginocephalia), the sister taxon to the Marginocephalia, and as the sister taxon to the Genasauria. To reevaluate the placement of these taxa, along with other basal ornithischians and more derived subclades, a phylogenetic analysis of 19 taxonomic units, including two outgroup taxa, was performed. Analysis of 97 characters and their associated character states culled, modified, and/or rescored from published literature based on published descriptions, produced four most parsimonious trees. Consistency and retention indices were calculated and a bootstrap analysis was performed to determine the relative support for the resultant phylogeny. The Ornithischia was recovered with Pisanosaurus as its basalmost member. -
A Revised Taxonomy of the Iguanodont Dinosaur Genera and Species
ARTICLE IN PRESS + MODEL Cretaceous Research xx (2007) 1e25 www.elsevier.com/locate/CretRes A revised taxonomy of the iguanodont dinosaur genera and species Gregory S. Paul 3109 North Calvert Station, Side Apartment, Baltimore, MD 21218-3807, USA Received 20 April 2006; accepted in revised form 27 April 2007 Abstract Criteria for designating dinosaur genera are inconsistent; some very similar species are highly split at the generic level, other anatomically disparate species are united at the same rank. Since the mid-1800s the classic genus Iguanodon has become a taxonomic grab-bag containing species spanning most of the Early Cretaceous of the northern hemisphere. Recently the genus was radically redesignated when the type was shifted from nondiagnostic English Valanginian teeth to a complete skull and skeleton of the heavily built, semi-quadrupedal I. bernissartensis from much younger Belgian sediments, even though the latter is very different in form from the gracile skeletal remains described by Mantell. Currently, iguanodont remains from Europe are usually assigned to either robust I. bernissartensis or gracile I. atherfieldensis, regardless of lo- cation or stage. A stratigraphic analysis is combined with a character census that shows the European iguanodonts are markedly more morpho- logically divergent than other dinosaur genera, and some appear phylogenetically more derived than others. Two new genera and a new species have been or are named for the gracile iguanodonts of the Wealden Supergroup; strongly bipedal Mantellisaurus atherfieldensis Paul (2006. Turning the old into the new: a separate genus for the gracile iguanodont from the Wealden of England. In: Carpenter, K. (Ed.), Horns and Beaks: Ceratopsian and Ornithopod Dinosaurs. -
Dinosaurs British Isles
DINOSAURS of the BRITISH ISLES Dean R. Lomax & Nobumichi Tamura Foreword by Dr Paul M. Barrett (Natural History Museum, London) Skeletal reconstructions by Scott Hartman, Jaime A. Headden & Gregory S. Paul Life and scene reconstructions by Nobumichi Tamura & James McKay CONTENTS Foreword by Dr Paul M. Barrett.............................................................................10 Foreword by the authors........................................................................................11 Acknowledgements................................................................................................12 Museum and institutional abbreviations...............................................................13 Introduction: An age-old interest..........................................................................16 What is a dinosaur?................................................................................................18 The question of birds and the ‘extinction’ of the dinosaurs..................................25 The age of dinosaurs..............................................................................................30 Taxonomy: The naming of species.......................................................................34 Dinosaur classification...........................................................................................37 Saurischian dinosaurs............................................................................................39 Theropoda............................................................................................................39 -
Implications for Predatory Dinosaur Macroecology and Ontogeny in Later Late Cretaceous Asiamerica
Canadian Journal of Earth Sciences Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous Asiamerica Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2020-0174.R1 Manuscript Type: Article Date Submitted by the 04-Jan-2021 Author: Complete List of Authors: Holtz, Thomas; University of Maryland at College Park, Department of Geology; NationalDraft Museum of Natural History, Department of Geology Keyword: Dinosaur, Ontogeny, Theropod, Paleocology, Mesozoic, Tyrannosauridae Is the invited manuscript for consideration in a Special Tribute to Dale Russell Issue? : © The Author(s) or their Institution(s) Page 1 of 91 Canadian Journal of Earth Sciences 1 Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: 2 Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous 3 Asiamerica 4 5 6 Thomas R. Holtz, Jr. 7 8 Department of Geology, University of Maryland, College Park, MD 20742 USA 9 Department of Paleobiology, National Museum of Natural History, Washington, DC 20013 USA 10 Email address: [email protected] 11 ORCID: 0000-0002-2906-4900 Draft 12 13 Thomas R. Holtz, Jr. 14 Department of Geology 15 8000 Regents Drive 16 University of Maryland 17 College Park, MD 20742 18 USA 19 Phone: 1-301-405-4084 20 Fax: 1-301-314-9661 21 Email address: [email protected] 22 23 1 © The Author(s) or their Institution(s) Canadian Journal of Earth Sciences Page 2 of 91 24 ABSTRACT 25 Well-sampled dinosaur communities from the Jurassic through the early Late Cretaceous show 26 greater taxonomic diversity among larger (>50kg) theropod taxa than communities of the 27 Campano-Maastrichtian, particularly to those of eastern/central Asia and Laramidia. -
A Short History of Dinosaurian Osteocytes
Palaeont. afr., 34, 59-61 ( 1997) A SHORT HISTORY OF DINOSAURIAN OSTEOCYTES. by _ R.E.H. (Robin) Reid School of Geosciences, The Queen's University ofB elfast, Belfast BT7 INN, Northern Ireland. ABSRACT A recent supposed discovery of dinosauri an osteocytes by Fukuda and Obata ( 1993) ignored earli er records from more than 20 d inosaurs, dating back 150 years. Some of the bodies they identified as osteocytes are also more like ly to represent chondrocytes. KEYWORDS: Bone histology, osteocytes. INTRODUCTION Brontosaurus (pp. 302, 303), Diplodocus (pp. 304, In a recent paper, Fukuda and Obata (1993) claimed 306), Camarasaurus (p. 311, as "M orosaurus" pp. 322, the discovery of dinosaurian osteocytes, in the form of 324), Haplocanthosaurus (pp.313, 314), Allosaurus mineral casts of their lacunae and canaliculi seen in (pp. 315, 3 16), Stegosaurus (p. 321) Iguanodon (pp. hadrosaurid bones, and stated that, despite recent 326-328), Dryptosaurus (p. 344), Triceratops (p. 346), histological studies, " ... there is no information on and Anatosaurus (pp. 348-350), as "Trachodon". osteocytes in dinosaur bone ti ssues" (p. 99, para. 1). At Osteocyte Stegosaurus lacunae recorded as from that date, however, earlier studies outlined here Zanclodon (p. 262), which is now considered contained records from more than 20 dinosaurs, dating indeterminate, are probably from a prosauropod (c.f. back 150 years (Quelett 1849), and even electron Benton 1986, pp. 295-297). A preserved canalicular microscope photographs had been in print since 1966 network was noted in Brontosaurus (p. 302), though (Pawlicki, Korbel & Kubiak 1966). This note reviews a not illustrated, and lacunae affected by fungal range of relevant references, for readers not familiar enlargement, mineral infilling, loss of canaliculae or with them, and also shows that some bodies identified complete obliteration were reported from various as osteocytes by Fukuda and Obata in the articular genera. -
Notes on British Dinosaurs. Part I: Hypsilophodon
Dr. Francis Baron Nopcsa—British Dinosaurs. 203 II.—NOTES ON BRITISH DINOSAURS. PAET I: ffrpsiLOPHODOK. By Dr. FRANCIS BARON NOPCSA. (WITH A PAGE-ILLUSTRATION.) URING a recent stay in London the kindness of Dr. A. S. Woodward enabled me to study some of the splendid Dinosaurian remainD s in the British Museum. Having principally occupied myself till now with Ornithopodous Dinosaurs, first of all Hypsilophodon attracted my attention, and my expectation that this type would prove to be the clue for the- understanding of all the other Orthopoda has been perfectly fulfilled. Hypsilophodon was described and figured at various times by Owen, Huxley, and Hulke; a restoration of this animal was given by Marsh in the GEOLOGICAL MAGAZINE for 1896 (p. 6, Fig. 2), and the complete bibliographical list concerning this Dinosaur is compiled in my paper "Synopsis und Abstammung der Dinosaurier" (Foldtani Xozlony, 1901, Budapest). In consequence of our more recent knowledge of Dinosaurs in general I managed to detect some new points of remarkable interest. Mandible. What Hulke, in describing the Hypsilophodon skull, No. 110, supposed to be the parietal, frontal, and post-frontal bones (Phil. Trans., 1882, pi. lxxi, fig. 1, pa., fr., ps.f.), turned out to be the outer view of a complete right mandibular ramus, so that the parietal changes into an articular, the frontal becomes the dentary, and the post-frontal the coronoid bone. This piece (p. 207, Fig. 4) is, in fact, the finest mandibulum of Hypsilophodon I have seen in the whole collection, and as such worthy to be refigured. The general outline of the mandibulum, with its strongly ab- breviated post-coronoidal part and its blunt processus coronoideum, reminds one somewhat of the under jaw of Placodus gigas, though it differs of course in nearly every detail, being built up after the Iguanodon type. -
The Dinosaurs Transylvanian Province in Hungary
COMMUNICATIONS OF THE YEARBOOK OF THE ROYAL HUNGARIAN GEOLOGICAL IMPERIAL INSTITUTE ================================================================== VOL. XXIII, NUMBER 1. ================================================================== THE DINOSAURS OF THE TRANSYLVANIAN PROVINCE IN HUNGARY. BY Dr. FRANZ BARON NOPCSA. WITH PLATES I-IV AND 3 FIGURES IN THE TEXT. Published by The Royal Hungarian Geological Imperial Institute which is subject to The Royal Hungarian Agricultural Ministry BUDAPEST. BOOK-PUBLISHER OF THE FRANKLIN ASSOCIATION. 1915. THE DINOSAURS OF THE TRANSYLVANIAN PROVINCE IN HUNGARY. BY Dr. FRANZ BARON NOPCSA. WITH PLATES I-IV AND 3 FIGURES IN THE TEXT. Mit. a. d. Jahrb. d. kgl. ungar. Geolog. Reichsanst. XXIII. Bd. 1 heft I. Introduction. Since it appears doubtful when my monographic description of the dinosaurs of Transylvania1 that formed my so-to-speak preparatory works to my current dinosaur studies can be completed, due on one hand to outside circumstances, but on the other hand to the new arrangement of the vertebrate material in the kgl. ungar. geologischen Reichsanstalt accomplished by Dr. KORMOS, the necessity emerged of also exhibiting some of the dinosaur material located here, so that L. v. LÓCZY left the revision to me; I view the occasion, already briefly anticipating my final work at this point, to give diagnoses of the dinosaurs from the Transylvanian Cretaceous known up to now made possible from a systematic division of the current material, as well as to discuss their biology. The reptile remains known from the Danian of Transylvania will be mentioned only incidentally. Concerning the literature, I believe in refraining from more exact citations, since this work presents only a preliminary note. -
The Triumphs, Challenges and Failures of Young North Island Brown Kiwi (Apteryx Mantelli): a Study of Behaviour, Growth, Dispersal and Mortality
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. The triumphs, challenges and failures of young North Island brown kiwi (Apteryx mantelli): a study of behaviour, growth, dispersal and mortality Stephanie Walden A thesis in partial fulfilment of the requirements for the degree of Master of Science in Zoology at Massey University, Palmerston North, New Zealand Alexandra Louise Wilson 2013 i ii Abstract North Island brown kiwi (NIBK, Apteryx mantelli), an endemic New Zealand species, are estimated to have declined by 90% from pre-human colonisation numbers. Currently, at least 60% of mortality is attributed to introduced mammalian predators, namely stoats (Mustela erminea) preying on chicks. Therefore, conservation effort focuses on predator trapping/killing, and hatching and rearing NIBK chicks in captivity and releasing them back into the wild. These efforts are resulting in increased recruitment of chicks into populations. However, little is known about the biology and behaviour of NIBK chicks in the wild and how this may affect management of these populations. Consequently, the aim of this study was to examine the ecology of young wild NIBK in a natural high density population with reduced predator diversity on Ponui Island. More specifically, the goal was to determine their growth rates, behaviour around the natal nest, dispersal and mortality, and how these factors may be influenced by environmental variables. During the 2010 - 2011 and 2011 - 2012 breeding seasons 29 young NIBK were observed from hatching until mortality or the end of 2012.