Egg Size and Bird Evolution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Chinese Archaeopterygian, Protarchaeopteryx Gen. Nov
A Chinese archaeopterygian, Protarchaeopteryx gen. nov. by Qiang Ji and Shu’an Ji Geological Science and Technology (Di Zhi Ke Ji) Volume 238 1997 pp. 38-41 Translated By Will Downs Bilby Research Center Northern Arizona University January, 2001 Introduction* The discoveries of Confuciusornis (Hou and Zhou, 1995; Hou et al, 1995) and Sinornis (Ji and Ji, 1996) have profoundly stimulated ornithologists’ interest globally in the Beipiao region of western Liaoning Province. They have also regenerated optimism toward solving questions of avian origins. In December 1996, the Chinese Geological Museum collected a primitive bird specimen at Beipiao that is comparable to Archaeopteryx (Wellnhofer, 1992). The specimen was excavated from a marl 5.5 m above the sediments that produce Sinornithosaurus and 8-9 m below the sediments that produce Confuciusornis. This is the first documentation of an archaeopterygian outside Germany. As a result, this discovery not only establishes western Liaoning Province as a center of avian origins and evolution, it provides conclusive evidence for the theory that avian evolution occurred in four phases. Specimen description Class Aves Linnaeus, 1758 Subclass Sauriurae Haeckel, 1866 Order Archaeopterygiformes Furbringer, 1888 Family Archaeopterygidae Huxley, 1872 Genus Protarchaeopteryx gen. nov. Genus etymology: Acknowledges that the specimen possesses characters more primitive than those of Archaeopteryx. Diagnosis: A primitive archaeopterygian with claviform and unserrated dentition. Sternum is thin and flat, tail is long, and forelimb resembles Archaeopteryx in morphology with three talons, the second of which is enlarged. Ilium is large and elongated, pubes are robust and distally fused, hind limb is long and robust with digit I reduced and dorsally migrated to lie in opposition to digit III and forming a grasping apparatus. -
LETTER Doi:10.1038/Nature14423
LETTER doi:10.1038/nature14423 A bizarre Jurassic maniraptoran theropod with preserved evidence of membranous wings Xing Xu1,2*, Xiaoting Zheng1,3*, Corwin Sullivan2, Xiaoli Wang1, Lida Xing4, Yan Wang1, Xiaomei Zhang3, Jingmai K. O’Connor2, Fucheng Zhang2 & Yanhong Pan5 The wings of birds and their closest theropod relatives share a ratios are 1.16 and 1.08, respectively, compared to 0.96 and 0.78 in uniform fundamental architecture, with pinnate flight feathers Epidendrosaurus and 0.79 and 0.66 in Epidexipteryx), an extremely as the key component1–3. Here we report a new scansoriopterygid short humeral deltopectoral crest, and a long rod-like bone articu- theropod, Yi qi gen. et sp. nov., based on a new specimen from the lating with the wrist. Middle–Upper Jurassic period Tiaojishan Formation of Hebei Key osteological features are as follows. STM 31-2 (Fig. 1) is inferred Province, China4. Yi is nested phylogenetically among winged ther- to be an adult on the basis of the closed neurocentral sutures of the opods but has large stiff filamentous feathers of an unusual type on visible vertebrae, although this is not a universal criterion for maturity both the forelimb and hindlimb. However, the filamentous feath- across archosaurian taxa12. Its body mass is estimated to be approxi- ers of Yi resemble pinnate feathers in bearing morphologically mately 380 g, using an empirical equation13. diverse melanosomes5. Most surprisingly, Yi has a long rod-like The skull and mandible are similar to those of other scansoriopter- bone extending from each wrist, and patches of membranous tissue ygids, and to a lesser degree to those of oviraptorosaurs and some basal preserved between the rod-like bones and the manual digits. -
The Triumphs, Challenges and Failures of Young North Island Brown Kiwi (Apteryx Mantelli): a Study of Behaviour, Growth, Dispersal and Mortality
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. The triumphs, challenges and failures of young North Island brown kiwi (Apteryx mantelli): a study of behaviour, growth, dispersal and mortality Stephanie Walden A thesis in partial fulfilment of the requirements for the degree of Master of Science in Zoology at Massey University, Palmerston North, New Zealand Alexandra Louise Wilson 2013 i ii Abstract North Island brown kiwi (NIBK, Apteryx mantelli), an endemic New Zealand species, are estimated to have declined by 90% from pre-human colonisation numbers. Currently, at least 60% of mortality is attributed to introduced mammalian predators, namely stoats (Mustela erminea) preying on chicks. Therefore, conservation effort focuses on predator trapping/killing, and hatching and rearing NIBK chicks in captivity and releasing them back into the wild. These efforts are resulting in increased recruitment of chicks into populations. However, little is known about the biology and behaviour of NIBK chicks in the wild and how this may affect management of these populations. Consequently, the aim of this study was to examine the ecology of young wild NIBK in a natural high density population with reduced predator diversity on Ponui Island. More specifically, the goal was to determine their growth rates, behaviour around the natal nest, dispersal and mortality, and how these factors may be influenced by environmental variables. During the 2010 - 2011 and 2011 - 2012 breeding seasons 29 young NIBK were observed from hatching until mortality or the end of 2012. -
Aspects of the Reproductive Biology of Sengis (Macroscelidea) in General
Aspects of the Reproductive Biology of Sengis (Macroscelidea) in general and the Postnatal Development of the Short-eared Sengi (Macroscelides proboscideus) in particular Inaugural-Dissertation zur Erlangung des Doktorgrades Dr. rer.nat. des Fachbereiches Biologie und Geographie an der Universität Duisburg-Essen Vorgelegt von Gea Olbricht aus Leipzig Juli 2009 Die der vorliegenden Arbeit zugrunde liegenden Experimente wurden im Zoologischen Garten der Stadt Wuppertal, im Zentralafrikanischen Museum Tervuren, Belgien, im Museum Alexander Koenig, Bonn und in der Anatomischen Anstalt der Universität München, sowie in den südafrikanischen Museen McGregor in Kimberley und Amathole in King Williams Town durchgeführt. 1. GUTACHTER: Prof. Dr. H. Burda, Universität Duisburg-Essen 2. GUTACHTER: Prof. Dr. B. Sures, Universität Duisburg-Essen 3. GUTACHTER: Dr. R. Asher, Universität Cambridge, GB VORSITZENDER DES PRÜFUNGSAUSSCHUSSES: Prof. Dr. D. Hering, Universität Duisburg-Essen Tag der Disputation: 03. 07. 2009 When we try to pick anything for itself, then it turns out that it is linked to everything else in the universe. John Muir Was wir wissen, ist ein Tropfen; was wir nicht wissen, ein Ozean. Isaac Newton Es ist nicht schwer zu komponieren. Aber es ist fabelhaft schwer, die überflüssigen Noten unter den Tisch fallen zu lassen. Johannes Brahms Meiner Familie gewidmet, Dr. Alexander Sliwa mit Leona, Feline und Olivia ACKNOWLEDGMENTS Six years came and went in the blink of an eye. Through it all, I´ve had a great deal of fun and it is a great pleasure for me to acknowledge all those who´ve helped me in this endeavour. In 2002 I approached Professor Hynek Burda of the Department of General Zoology at the University of Duisburg-Essen with the idea of initiating a study on the reproductive biology of sengis after I have had the unique opportunity of observing short- eared sengis during my time as curator at Wuppertal Zoo. -
Fully Fledged Enantiornithine Hatchling Revealed by Laser-Stimulated
www.nature.com/scientificreports OPEN Fully fedged enantiornithine hatchling revealed by Laser- Stimulated Fluorescence supports Received: 31 July 2018 Accepted: 8 March 2019 precocial nesting behavior Published: xx xx xxxx Thomas G. Kaye 1, Michael Pittman 2, Jesús Marugán-Lobón3, Hugo Martín-Abad3, José Luis Sanz 3 & Angela D. Buscalioni3 Laser-Stimulated Fluorescence (LSF) is used to identify fully fedged feathering in the hatchling enantiornithine bird specimen MPCM-LH-26189, supporting precocial nesting behavior in this extinct group. The LSF results include the detection of a long pennaceous wing feather as well as cover feathers around the body. The LSF technique showed improved detection limits over and above synchrotron and UV imaging which had both been performed on this specimen. The fndings underscore the value of using a wide range of analytical techniques. Te enantiornithine hatchling MPCM-LH-26189 from the Las Hoyas locality of Spain helped to identify an asynchronous clade-wide pattern of sternal and vertebral osteogenesis in early juvenile enantiornithines, sup- porting variation in their size and their tempo of skeletal maturation1. Tis previous study found no feathers or chemical evidence for plumage (see Fig. 5 caption of1) with faint ribbing visible in a yellowish stain suggested to be more consistent with the morphology of vegetal material than with feathers (see Supplementary Note 1 of1). MPCM-LH-26189 is reasonably well articulated and has some sof-tissue-associated chemistry1. Tese lines of evidence were used to suggest that MPCM-LH-26189 might have been largely featherless when it died (see Supplementary Note 1, Supplementary Figs 2–5 and Supplementary Table 2 of1). -
Egg Size and Bird Evolution
© The Authors, 2010. Journal compilation © Australian Museum, Sydney, 2010 Records of the Australian Museum (2010) Vol. 62: 207–216. ISSN 0067-1975 doi:10.3853/j.0067-1975.62.2010.1547 Cracking a Developmental Constraint: Egg Size and Bird Evolution Gareth J. Dyke,*1 anD Gary W. kaiser2 1 School of Biology and Environmental Science, University College Dublin, Belfield Dublin 4, Ireland [email protected] 2 Royal British Columbia Museum, Victoria, B.C. Canada V8W 9W2 [email protected] abstract. It has been suggested that relative egg size in living birds is strongly correlated with the developmental mode of the young; “altricial” (helpless) or “precocial” (independent). Using a data set of extant taxa we show that altricial birds lay relatively larger eggs than their precocial counterparts but that this may be due to the small size of most altricial species. Smaller birds tend to lay relatively small eggs compared to large species. Nonetheless, a predictive egg mass-body mass relationship extends into the avian fossil record. Such a relationship is important to our understanding of avian evolution because relative egg size (and thus available developmental mode) was constrained in many early birds—oviduct diameter was limited by the presence of pubic fusion. Therefore we document the evolution of avian developmental strategies using morphology-based phylogenies for Mesozoic and extant avians and corroborate correlations between developmental strategies, egg weight and female body mass. The sequential loss of precocial features in hatchlings characterises the evolution of birds while altriciality is derived within Neoaves. A set of precocial strategies is seen in earlier lineages, including basal Neornithes (modern birds) and are implied in their Mesozoic counterparts—skeletal constraints on egg size, present in many Jurassic and Early Cretaceous birds (Archaeopteryx, Confuciusornis, Enantiornithes) were lost in later diverging lineages. -
On the Preservation of the Beak in Confuciusornis (Aves: Pygostylia)
diversity Article On the Preservation of the Beak in Confuciusornis (Aves: Pygostylia) Amanda Falk 1, Jingmai O’Connor 2,3,* , Min Wang 2,3 and Zhonghe Zhou 2,3,* 1 Biology Department, Centre College, 600 W. Walnut St. Danville, KY 40422, USA; [email protected] 2 Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing 100044, China; [email protected] 3 CAS Center for Excellence in Life and Paleoenvironment, Beijing 10010, China * Correspondence: [email protected] (J.O.); [email protected] (Z.Z.) Received: 27 October 2019; Accepted: 10 November 2019; Published: 11 November 2019 Abstract: The Confuciusornithiformes represent the most stem-ward avian occurrence of an edentulous rostrum. Although a keratinous beak is widely considered to have covered the rostrum in confuciusornithiforms, this feature is almost never preserved, having been previously reported only in the holotype of Confuciusornis dui and the holotype of Eoconfuciusornis zhengi. This strongly contrasts with the widespread preservation of the keratinous sheaths that cover the manual and pedal ungual phalanges. Here, we report on a third occurrence of a preserved rhamphotheca in a specimen of Confuciusornis sanctus. We illuminated the preserved traces using laser-stimulated fluorescence. Similarly to E. zhengi, the rhamphotheca has been preserved only as a two-dimensional trace, whereas ungual sheaths are preserved in three dimensions. In contrast to the traces preserved in C. dui, the rhamphotheca in the discussed specimen of C. sanctus is straight rather than upturned. This hints towards hidden morphological diversity within the thousands of Confuciusornis specimens, in which species may be further differentiated by soft tissue features or behaviors, much like many living birds, that cannot be detected in fossils, even with exceptional preservation. -
Birds Have Paedomorphic Dinosaur Skulls
LETTER doi:10.1038/nature11146 Birds have paedomorphic dinosaur skulls Bhart-Anjan S. Bhullar1, Jesu´s Maruga´n-Lobo´n2, Fernando Racimo1, Gabe S. Bever3, Timothy B. Rowe4, Mark A. Norell5 & Arhat Abzhanov1 The interplay of evolution and development has been at the heart of which includes Archaeopteryx and modern birds, seem to change little evolutionary theory for more than a century1. Heterochrony— from juvenile to adult. The Eichsta¨tt and Berlin specimens of change in the timing or rate of developmental events—has been Archaeopteryx (Fig. 1d) are nearly identical cranially despite the fact implicated in the evolution of major vertebrate lineages such as a mammals2, including humans1. Birds are the most speciose land Euparkeria vertebrates, with more than 10,000 living species3 representing a Alligator bewildering array of ecologies. Their anatomy is radically different Herrerasaurus from that of other vertebrates. The unique bird skull houses two Eoraptor highly specialized systems: the sophisticated visual and neuro- Theropoda Coelophysis 4,5 muscular coordination system allows flight coordination and Dilophosaurus exploitation of diverse visual landscapes, and the astonishing Ceratosauria variations of the beak enable a wide range of avian lifestyles. Megalosauroidea Here we use a geometric morphometric approach integrating developmental, neontological and palaeontological data to show Carnosauria that the heterochronic process of paedomorphosis, by which Compsognathidae descendants resemble the juveniles of their ancestors, is respons- Tyrannosauroidea Coelurosauria ible for several major evolutionary transitions in the origin of Ornithomimosauria birds. We analysed the variability of a series of landmarks on all Alvarezsauroidea known theropod dinosaur skull ontogenies as well as outgroups Therizinosauroidea + and birds. -
Redalyc.Unenlagiinae Revisited: Dromaeosaurid Theropods From
Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil GIANECHINI, FEDERICO A.; APESTEGUÍA, SEBASTIÁN Unenlagiinae revisited: dromaeosaurid theropods from South America Anais da Academia Brasileira de Ciências, vol. 83, núm. 1, marzo, 2011, pp. 163-195 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32717681008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative “main” — 2011/2/10 — 14:11 — page 163 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 163-195 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Unenlagiinae revisited: dromaeosaurid theropods from South America FEDERICO A. GIANECHINI and SEBASTIÁN APESTEGUÍA CONICET – Área de Paleontología, Fundación de Historia Natural ‘Félix de Azara’ Departamento de Ciencias Naturales y Antropología CEBBAD, Universidad Maimónides, Hidalgo 775 (1405BDB), Ciudad Autónoma de Buenos Aires, Argentina Manuscript received on October 30, 2009; accepted for publication on June 21, 2010 ABSTRACT Over the past two decades, the record of South American unenlagiine dromaeosaurids was substantially increased both in quantity as well as in quality of specimens. Here is presented a summary review of the South American record for these theropods. Unenlagia comahuensis, Unenlagia paynemili, and Neuquenraptor argentinus come from the Portezuelo Formation, the former genus being the most complete and with putative avian features. -
First Species of Enantiornithes from Sihedang Elucidates Skeletal Development in Early Cretaceous Enantiornithines
Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: http://www.tandfonline.com/loi/tjsp20 First species of Enantiornithes from Sihedang elucidates skeletal development in Early Cretaceous enantiornithines Han Hu & Jingmai K. O'Connor To cite this article: Han Hu & Jingmai K. O'Connor (2017) First species of Enantiornithes from Sihedang elucidates skeletal development in Early Cretaceous enantiornithines, Journal of Systematic Palaeontology, 15:11, 909-926, DOI: 10.1080/14772019.2016.1246111 To link to this article: https://doi.org/10.1080/14772019.2016.1246111 View supplementary material Published online: 14 Nov 2016. Submit your article to this journal Article views: 284 View related articles View Crossmark data Citing articles: 3 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Journal of Systematic Palaeontology, 2017 Vol. 15, No. 11, 909–926, http://dx.doi.org/10.1080/14772019.2016.1246111 First species of Enantiornithes from Sihedang elucidates skeletal development in Early Cretaceous enantiornithines Han Hu a,b* and Jingmai K. O’Connora aKey Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xizhimenwai Street, Beijing 100044, China; bUniversity of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China (Received 1 April 2016; accepted 19 September 2016; published online 14 November 2016) The Sihedang locality of the Lower Cretaceous Yixian Formation is the only recognized ornithuromorph-dominated locality in the Jehol Group of north-eastern China. Here we report on the first enantiornithine from this locality and erect a new taxon Monoenantiornis sihedangia gen. -
Avialan Status for Oviraptorosauria
Avialan status for Oviraptorosauria TERESA MARYAŃSKA, HALSZKA OSMÓLSKA, and MIECZYSŁAW WOLSAN Maryańska, T., Osmólska, H., and Wolsan, M. 2002. Avialan status for Oviraptorosauria. Acta Palaeontologica Polonica 47 (1): 97–116. Oviraptorosauria is a clade of Cretaceous theropod dinosaurs of uncertain affinities within Maniraptoriformes. All pre− vious phylogenetic analyses placed oviraptorosaurs outside a close relationship to birds (Avialae), recognizing Dromaeo− sauridae or Troodontidae, or a clade containing these two taxa (Deinonychosauria), as sister taxon to birds. Here we pres− ent the results of a phylogenetic analysis using 195 characters scored for four outgroup and 13 maniraptoriform (ingroup) terminal taxa, including new data on oviraptorids. This analysis places Oviraptorosauria within Avialae, in a sister−group relationship with Confuciusornis. Archaeopteryx, Therizinosauria, Dromaeosauridae, and Ornithomimosauria are suc− cessively more distant outgroups to the Confuciusornis−oviraptorosaur clade. Avimimus and Caudipteryx are succes− sively more closely related to Oviraptoroidea, which contains the sister taxa Caenagnathidae and Oviraptoridae. Within Oviraptoridae, “Oviraptor” mongoliensis and Oviraptor philoceratops are successively more closely related to the Conchoraptor−Ingenia clade. Oviraptorosaurs are hypothesized to be secondarily flightless. Emended phylogenetic defi− nitions are provided for Oviraptoridae, Caenagnathidae, Oviraptoroidea, Oviraptorosauria, Avialae, Eumaniraptora, Maniraptora, and Maniraptoriformes. -
Reproduction in Mesozoic Birds and Evolution of the Modern Avian Reproductive Mode Author(S): David J
Reproduction in Mesozoic birds and evolution of the modern avian reproductive mode Author(s): David J. Varricchio and Frankie D. Jackson Source: The Auk, 133(4):654-684. Published By: American Ornithological Society DOI: http://dx.doi.org/10.1642/AUK-15-216.1 URL: http://www.bioone.org/doi/full/10.1642/AUK-15-216.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Volume 133, 2016, pp. 654–684 DOI: 10.1642/AUK-15-216.1 REVIEW Reproduction in Mesozoic birds and evolution of the modern avian reproductive mode David J. Varricchio and Frankie D. Jackson Earth Sciences, Montana State University, Bozeman, Montana, USA [email protected], [email protected] Submitted November 16, 2015; Accepted June 2, 2016; Published August 10, 2016 ABSTRACT The reproductive biology of living birds differs dramatically from that of other extant vertebrates.