First Species of Enantiornithes from Sihedang Elucidates Skeletal Development in Early Cretaceous Enantiornithines

Total Page:16

File Type:pdf, Size:1020Kb

First Species of Enantiornithes from Sihedang Elucidates Skeletal Development in Early Cretaceous Enantiornithines Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: http://www.tandfonline.com/loi/tjsp20 First species of Enantiornithes from Sihedang elucidates skeletal development in Early Cretaceous enantiornithines Han Hu & Jingmai K. O'Connor To cite this article: Han Hu & Jingmai K. O'Connor (2017) First species of Enantiornithes from Sihedang elucidates skeletal development in Early Cretaceous enantiornithines, Journal of Systematic Palaeontology, 15:11, 909-926, DOI: 10.1080/14772019.2016.1246111 To link to this article: https://doi.org/10.1080/14772019.2016.1246111 View supplementary material Published online: 14 Nov 2016. Submit your article to this journal Article views: 284 View related articles View Crossmark data Citing articles: 3 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Journal of Systematic Palaeontology, 2017 Vol. 15, No. 11, 909–926, http://dx.doi.org/10.1080/14772019.2016.1246111 First species of Enantiornithes from Sihedang elucidates skeletal development in Early Cretaceous enantiornithines Han Hu a,b* and Jingmai K. O’Connora aKey Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xizhimenwai Street, Beijing 100044, China; bUniversity of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China (Received 1 April 2016; accepted 19 September 2016; published online 14 November 2016) The Sihedang locality of the Lower Cretaceous Yixian Formation is the only recognized ornithuromorph-dominated locality in the Jehol Group of north-eastern China. Here we report on the first enantiornithine from this locality and erect a new taxon Monoenantiornis sihedangia gen. et sp. nov. The holotype and only specimen preserves a rare ontogenetic stage in which the intermedium is ossified but free from the other proximal tarsals and the tibia, consistent with the pattern of ossification that occurs in neornithines. In order to explore the pattern of skeletal development in the enantiornithines, we select several published specimens inferred to represent different ontogenetic stages and document their degree of fusion in five key compound bones and the sterna. This provides a preliminary hypothesis for the sequence in which compound bones form in Early Cretaceous enantiornithines. From this hypothesis, most known specimens can be categorized into four major ontogenetic stages: all the compound bones unfused; synsacrum and pygostyle fused; tarsals fused; tibiotarsus and carpometacarpus formed. http://zoobank.org/urn:lsid:zoobank.org:pub:347485CA-87E6-4834-BEB5-687B6798644E Keywords: Aves; Mesozoic; Enantiornithes; ontogeny; skeletal development Introduction recognizable, such as Longipterygidae, Bohaiornithidae and Pengornithidae (Zhou 2014). The Early Cretaceous Jehol Biota in north-eastern China Recently, a new locality in the Yixian Formation was contains the most diverse recognized Mesozoic avifauna. discovered at Sihedang near Lingyuan, in western Liaon- Thousands of exceptionally preserved bird fossils have ing. Initial reports described the Sihedang avifauna as been uncovered from these deposits, accounting for half consisting of a single ornithuromorph taxon, Iteravis the known diversity of Mesozoic birds so far. The Jehol huchzermeyeri (Zhou et al. 2014). This is unusual Biota occurs in the lower Huajiying Formation (130.7 amongst Early Cretaceous localities, in which enantiorni- Ma), the middle Yixian Formation (125 Ma) and the upper thines typically dominate in both numbers and diversity. Jiufotang Formation (120 Ma) (Swisher et al. 2002;He Four additional ornithuromorphs have been reported from et al. 2004, 2006; Zhou 2014), together recording over the Sihedang locality: a new species of Gansus (Liu et al. 10 million years of early avian evolution. Enantiornithes 2014) and three longirostrine taxa: Juehuaornis zhangi (Aves: Ornithothoraces) is considered to be the dominant (Wang et al. 2015), Dingavis longimaxilla (O’Connor avian clade in the Cretaceous and the first major avian et al. 2016) and Changzuiornis ahgmi (Huang et al. radiation. The Protopteryx horizon of the Huajiying For- 2016). In addition, the holotype of Xinghaiornis lini, mation represents the second oldest known avian-bearing which was initially described as from the Sihetun locality deposit in the world and contains the earliest record of (Wang et al. 2013), may also be from the Sihedang local- the Enantiornithes. It records the first stage with low ity (O’Connor et al. 2016). The only other known orni- diversity in the evolution of the Jehol Biota, with only thuromorph-dominated locality is the Lower Cretaceous two primitive enantiornithines known: Protopteryx and Changma locality of the Xiagou Formation in Gansu, Eopengornis (Zhang & Zhou 2000; Wang et al. 2014). China. From the discovery of the similar Sihedang locality Enantiornithine diversity is much higher in both the youn- in the Yixian Formation, hypotheses regarding avian fau- ger Yixian and Jiufotang formations, with diverse families nal turnover based on the Changma locality likely need to *Corresponding author. Email: [email protected] Ó The Trustees of the Natural History Museum, London 2016. All rights reserved. Published online 14 Nov 2016 910 H. Hu and J. K. O’Connor be reassessed in light of potential ecological differences and minor metacarpals in Pterygornis, but this is thought (Zhou et al. 2014). to be an autapomorphy since it is absent in all other taxa; Here we describe a new fossil bird representing the first Wang et al. 2016), and the major and minor metacarpals enantiornithine reported from the Sihedang locality. The unfused distally, whereas the alular metacarpal is fused to specimen represents a new taxon, Monoenantiornis sihe- the major metacarpal which is fused distally to the minor dangia gen. et sp. nov. We conducted a cladistic analysis metacarpal in ornithuromorphs; the tibiotarsus is fully to determine its phylogenetic position relative to previ- formed; the distal tarsals are fused to the proximal ends of ously known Cretaceous birds. As the first enantiornithine metatarsals II–IV, which are unfused to each other reported from Sihedang, this new specimen provides criti- (O’Connor & Chiappe 2011). Late Cretaceous taxa show cal information regarding the perceived diversity of this increased fusion in certain regions such as the skull, pelvis avifauna. and tarsometatarsus. However, neither a fully fused tarso- The level of skeleton fusion and reduction in modern metatarsus nor a distally fused carpometacarpus is ever birds is much higher than in other animal groups, having known to occur in any enantiornithine taxa. evolved to reduce weight and reinforce the body for aerial The new specimen described here records a rarely pre- locomotion: skull elements are almost completely fused served and previously undocumented ontogenetic stage, and some are greatly reduced, such as the maxilla, lacri- and thus contributes to our understanding of the sequence mal and postorbital; several thoracic vertebrae fuse into of fusion in the development of compound bones in Early the notarium; thoracic and sacral vertebrae fuse into the Cretaceous enantiornithines. synsacrum; distal caudal vertebrae fuse into the pygostyle; the pelvic bones are fully fused; the sternum consists of a single element; the distal carpals and metacarpals are Institutional abbreviations fused into the carpometacarpus; the proximal tarsals are fused to the tibia forming the tibiotarsus; and the distal BMNH: Beijing Museum of Natural History, Beijing, tarsals are fused to the metatarsals, forming the tarsometa- China; CNU: Capital Normal University, Beijing, China; tarsus. In the postcranial skeleton of some living domestic DNHM: Dalian Natural History Museum, Dalian, Liaon- fowls, the synsacrum is the first element to begin to fuse, ing, China; GMV: National Geological Museum of China, but fusion in this element occurs for a relatively long Beijing, China; IVPP: Institute of Vertebrate Palaeontol- period. The proximal tarsals begin to fuse nearly at the ogy and Palaeoanthropology, Beijing, China; LPM: same time as the synsacrum. Next, the sternum is fused, Liaoning Palaeontology Museum, Shenyang, Liaoning, followed by the formation of the tibiotarsus and the tarso- China; NIGP: Nanjing Institute of Palaeontology and metatarsus. The elements of the carpometacarpus are the Geology, Nanjing, China; STM: Shandong Tianyu last to begin the fusion process (Hogg 1982). Museum of Nature, Shandong, China. All these compound elements are absent in the earliest and basalmost bird, Archaeopteryx (Andrzej 2002). Skele- tal fusions occur in basal birds in various combinations: Systematic palaeontology the carpometacarpus is partially fused at the proximal end in the long bony-tailed bird Jeholornis (Zhou & Zhang Class Aves Linnaeus, 1758 2002a); the premaxillae are fused to each other, and the Ornithothoraces Chiappe, 1995 scapula and coracoid are fused into the scapulocoracoid Enantiornithes Walker, 1981 in Confuciusornis (Chiappe et al. 1999); the pygostyle, Genus Monoenantiornis gen. nov. synsacrum, tibiotarsus, tarsometatarsus and carpometacar- Type species. Monoenantiornis sihedangia sp. nov. pus (alular metacarpal still free) are all formed in Sapeor- nis (Zhou & Zhang 2002b). Compared to these basal Diagnosis. As for the type and only species.
Recommended publications
  • The Triumphs, Challenges and Failures of Young North Island Brown Kiwi (Apteryx Mantelli): a Study of Behaviour, Growth, Dispersal and Mortality
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. The triumphs, challenges and failures of young North Island brown kiwi (Apteryx mantelli): a study of behaviour, growth, dispersal and mortality Stephanie Walden A thesis in partial fulfilment of the requirements for the degree of Master of Science in Zoology at Massey University, Palmerston North, New Zealand Alexandra Louise Wilson 2013 i ii Abstract North Island brown kiwi (NIBK, Apteryx mantelli), an endemic New Zealand species, are estimated to have declined by 90% from pre-human colonisation numbers. Currently, at least 60% of mortality is attributed to introduced mammalian predators, namely stoats (Mustela erminea) preying on chicks. Therefore, conservation effort focuses on predator trapping/killing, and hatching and rearing NIBK chicks in captivity and releasing them back into the wild. These efforts are resulting in increased recruitment of chicks into populations. However, little is known about the biology and behaviour of NIBK chicks in the wild and how this may affect management of these populations. Consequently, the aim of this study was to examine the ecology of young wild NIBK in a natural high density population with reduced predator diversity on Ponui Island. More specifically, the goal was to determine their growth rates, behaviour around the natal nest, dispersal and mortality, and how these factors may be influenced by environmental variables. During the 2010 - 2011 and 2011 - 2012 breeding seasons 29 young NIBK were observed from hatching until mortality or the end of 2012.
    [Show full text]
  • Aspects of the Reproductive Biology of Sengis (Macroscelidea) in General
    Aspects of the Reproductive Biology of Sengis (Macroscelidea) in general and the Postnatal Development of the Short-eared Sengi (Macroscelides proboscideus) in particular Inaugural-Dissertation zur Erlangung des Doktorgrades Dr. rer.nat. des Fachbereiches Biologie und Geographie an der Universität Duisburg-Essen Vorgelegt von Gea Olbricht aus Leipzig Juli 2009 Die der vorliegenden Arbeit zugrunde liegenden Experimente wurden im Zoologischen Garten der Stadt Wuppertal, im Zentralafrikanischen Museum Tervuren, Belgien, im Museum Alexander Koenig, Bonn und in der Anatomischen Anstalt der Universität München, sowie in den südafrikanischen Museen McGregor in Kimberley und Amathole in King Williams Town durchgeführt. 1. GUTACHTER: Prof. Dr. H. Burda, Universität Duisburg-Essen 2. GUTACHTER: Prof. Dr. B. Sures, Universität Duisburg-Essen 3. GUTACHTER: Dr. R. Asher, Universität Cambridge, GB VORSITZENDER DES PRÜFUNGSAUSSCHUSSES: Prof. Dr. D. Hering, Universität Duisburg-Essen Tag der Disputation: 03. 07. 2009 When we try to pick anything for itself, then it turns out that it is linked to everything else in the universe. John Muir Was wir wissen, ist ein Tropfen; was wir nicht wissen, ein Ozean. Isaac Newton Es ist nicht schwer zu komponieren. Aber es ist fabelhaft schwer, die überflüssigen Noten unter den Tisch fallen zu lassen. Johannes Brahms Meiner Familie gewidmet, Dr. Alexander Sliwa mit Leona, Feline und Olivia ACKNOWLEDGMENTS Six years came and went in the blink of an eye. Through it all, I´ve had a great deal of fun and it is a great pleasure for me to acknowledge all those who´ve helped me in this endeavour. In 2002 I approached Professor Hynek Burda of the Department of General Zoology at the University of Duisburg-Essen with the idea of initiating a study on the reproductive biology of sengis after I have had the unique opportunity of observing short- eared sengis during my time as curator at Wuppertal Zoo.
    [Show full text]
  • Fully Fledged Enantiornithine Hatchling Revealed by Laser-Stimulated
    www.nature.com/scientificreports OPEN Fully fedged enantiornithine hatchling revealed by Laser- Stimulated Fluorescence supports Received: 31 July 2018 Accepted: 8 March 2019 precocial nesting behavior Published: xx xx xxxx Thomas G. Kaye 1, Michael Pittman 2, Jesús Marugán-Lobón3, Hugo Martín-Abad3, José Luis Sanz 3 & Angela D. Buscalioni3 Laser-Stimulated Fluorescence (LSF) is used to identify fully fedged feathering in the hatchling enantiornithine bird specimen MPCM-LH-26189, supporting precocial nesting behavior in this extinct group. The LSF results include the detection of a long pennaceous wing feather as well as cover feathers around the body. The LSF technique showed improved detection limits over and above synchrotron and UV imaging which had both been performed on this specimen. The fndings underscore the value of using a wide range of analytical techniques. Te enantiornithine hatchling MPCM-LH-26189 from the Las Hoyas locality of Spain helped to identify an asynchronous clade-wide pattern of sternal and vertebral osteogenesis in early juvenile enantiornithines, sup- porting variation in their size and their tempo of skeletal maturation1. Tis previous study found no feathers or chemical evidence for plumage (see Fig. 5 caption of1) with faint ribbing visible in a yellowish stain suggested to be more consistent with the morphology of vegetal material than with feathers (see Supplementary Note 1 of1). MPCM-LH-26189 is reasonably well articulated and has some sof-tissue-associated chemistry1. Tese lines of evidence were used to suggest that MPCM-LH-26189 might have been largely featherless when it died (see Supplementary Note 1, Supplementary Figs 2–5 and Supplementary Table 2 of1).
    [Show full text]
  • Egg Size and Bird Evolution
    © The Authors, 2010. Journal compilation © Australian Museum, Sydney, 2010 Records of the Australian Museum (2010) Vol. 62: 207–216. ISSN 0067-1975 doi:10.3853/j.0067-1975.62.2010.1547 Cracking a Developmental Constraint: Egg Size and Bird Evolution Gareth J. Dyke,*1 anD Gary W. kaiser2 1 School of Biology and Environmental Science, University College Dublin, Belfield Dublin 4, Ireland [email protected] 2 Royal British Columbia Museum, Victoria, B.C. Canada V8W 9W2 [email protected] abstract. It has been suggested that relative egg size in living birds is strongly correlated with the developmental mode of the young; “altricial” (helpless) or “precocial” (independent). Using a data set of extant taxa we show that altricial birds lay relatively larger eggs than their precocial counterparts but that this may be due to the small size of most altricial species. Smaller birds tend to lay relatively small eggs compared to large species. Nonetheless, a predictive egg mass-body mass relationship extends into the avian fossil record. Such a relationship is important to our understanding of avian evolution because relative egg size (and thus available developmental mode) was constrained in many early birds—oviduct diameter was limited by the presence of pubic fusion. Therefore we document the evolution of avian developmental strategies using morphology-based phylogenies for Mesozoic and extant avians and corroborate correlations between developmental strategies, egg weight and female body mass. The sequential loss of precocial features in hatchlings characterises the evolution of birds while altriciality is derived within Neoaves. A set of precocial strategies is seen in earlier lineages, including basal Neornithes (modern birds) and are implied in their Mesozoic counterparts—skeletal constraints on egg size, present in many Jurassic and Early Cretaceous birds (Archaeopteryx, Confuciusornis, Enantiornithes) were lost in later diverging lineages.
    [Show full text]
  • Cellular Preservation of Musculoskeletal Specializations in the Cretaceous Bird Confuciusornis
    ARTICLE Received 14 Jan 2016 | Accepted 2 Feb 2017 | Published 22 Mar 2017 DOI: 10.1038/ncomms14779 OPEN Cellular preservation of musculoskeletal specializations in the Cretaceous bird Confuciusornis Baoyu Jiang1,2, Tao Zhao1, Sophie Regnault3, Nicholas P. Edwards4, Simon C. Kohn5, Zhiheng Li6, Roy A. Wogelius4, Michael J. Benton5 & John R. Hutchinson3 The hindlimb of theropod dinosaurs changed appreciably in the lineage leading to extant birds, becoming more ‘crouched’ in association with changes to body shape and gait dynamics. This postural evolution included anatomical changes of the foot and ankle, altering the moment arms and control of the muscles that manipulated the tarsometatarsus and digits, but the timing of these changes is unknown. Here, we report cellular-level preservation of tendon- and cartilage-like tissues from the lower hindlimb of Early Cretaceous Confuciusornis. The digital flexor tendons passed through cartilages, cartilaginous cristae and ridges on the plantar side of the distal tibiotarsus and proximal tarsometatarsus, as in extant birds. In particular, fibrocartilaginous and cartilaginous structures on the plantar surface of the ankle joint of Confuciusornis may indicate a more crouched hindlimb posture. Recognition of these specialized soft tissues in Confuciusornis is enabled by our combination of imaging and chemical analyses applied to an exceptionally preserved fossil. 1 School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China. 2 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008, China. 3 Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Hatfield, Hertfordshire AL9 7TA, UK.
    [Show full text]
  • The Oldest Record of Ornithuromorpha from the Early Cretaceous of China
    ARTICLE Received 6 Jan 2015 | Accepted 20 Mar 2015 | Published 5 May 2015 DOI: 10.1038/ncomms7987 OPEN The oldest record of ornithuromorpha from the early cretaceous of China Min Wang1, Xiaoting Zheng2,3, Jingmai K. O’Connor1, Graeme T. Lloyd4, Xiaoli Wang2,3, Yan Wang2,3, Xiaomei Zhang2,3 & Zhonghe Zhou1 Ornithuromorpha is the most inclusive clade containing extant birds but not the Mesozoic Enantiornithes. The early evolutionary history of this avian clade has been advanced with recent discoveries from Cretaceous deposits, indicating that Ornithuromorpha and Enantiornithes are the two major avian groups in Mesozoic. Here we report on a new ornithuromorph bird, Archaeornithura meemannae gen. et sp. nov., from the second oldest avian-bearing deposits (130.7 Ma) in the world. The new taxon is referable to the Hongshanornithidae and constitutes the oldest record of the Ornithuromorpha. However, A. meemannae shows few primitive features relative to younger hongshanornithids and is deeply nested within the Hongshanornithidae, suggesting that this clade is already well established. The new discovery extends the record of Ornithuromorpha by five to six million years, which in turn pushes back the divergence times of early avian lingeages into the Early Cretaceous. 1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China. 2 Institue of Geology and Paleontology, Linyi University, Linyi, Shandong 276000, China. 3 Tianyu Natural History Museum of Shandong, Pingyi, Shandong 273300, China. 4 Department of Biological Sciences, Faculty of Science, Macquarie University, Sydney, New South Wales 2019, Australia.
    [Show full text]
  • Anatomy of the Early Cretaceous Enantiornithine Bird Rapaxavis Pani
    Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani JINGMAI K. O’CONNOR, LUIS M. CHIAPPE, CHUNLING GAO, and BO ZHAO O’Connor, J.K., Chiappe, L.M., Gao, C., and Zhao, B. 2011. Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani. Acta Palaeontologica Polonica 56 (3): 463–475. The exquisitely preserved longipterygid enantiornithine Rapaxavis pani is redescribed here after more extensive prepara− tion. A complete review of its morphology is presented based on information gathered before and after preparation. Among other features, Rapaxavis pani is characterized by having an elongate rostrum (close to 60% of the skull length), rostrally restricted dentition, and schizorhinal external nares. Yet, the most puzzling feature of this bird is the presence of a pair of pectoral bones (here termed paracoracoidal ossifications) that, with the exception of the enantiornithine Concornis lacustris, are unknown within Aves. Particularly notable is the presence of a distal tarsal cap, formed by the fu− sion of distal tarsal elements, a feature that is controversial in non−ornithuromorph birds. The holotype and only known specimen of Rapaxavis pani thus reveals important information for better understanding the anatomy and phylogenetic relationships of longipterygids, in particular, as well as basal birds as a whole. Key words: Aves, Enantiornithes, Longipterygidae, Rapaxavis, Jiufotang Formation, Early Cretaceous, China. Jingmai K. O’Connor [[email protected]], Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwaidajie, Beijing, China, 100044; The Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007 USA; Luis M. Chiappe [[email protected]], The Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Ex− position Boulevard, Los Angeles, CA 90007 USA; Chunling Gao [[email protected]] and Bo Zhao [[email protected]], Dalian Natural History Museum, No.
    [Show full text]
  • The Morphology of Chiappeavis Magnapremaxillo (Pengornithidae: Enantiornithes) and a Comparison of Aerodynamic Function in Early Cretaceous Avian Tail Fans Jingmai K
    第55卷 第1期 古 脊 椎 动 物 学 报 pp. 41-58 2017年1月 VERTEBRATA PALASIATICA figs. 1-8 The morphology of Chiappeavis magnapremaxillo (Pengornithidae: Enantiornithes) and a comparison of aerodynamic function in Early Cretaceous avian tail fans Jingmai K. O’CONNOR1 ZHENG Xiao-Ting2,3 HU Han1 WANG Xiao-Li2 ZHOU Zhong-He1 (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044 [email protected]) (2 Institute of Geology and Paleontology, Linyi University Linyi, Shandong 276000) (3 Shandong Tianyu Museum of Nature Pingyi, Shandong 273300) Abstract We provide a complete description of the skeletal anatomy of the holotype of Chiappeavis magnapremaxillo, the first enantiornithine to preserve a rectricial fan, suggesting that possibly rectricial bulbs were present in basal members of this clade. Notably, Chiappeavis preserves a primitive palatal morphology in which the vomers reach the premaxillae similar to Archaeopteryx but unlike the condition in the Late Cretaceous enantiornithine Gobipteryx. If rectricial bulbs were present, pengornithid pygostyle morphology suggests they were minimally developed. We estimate the lift generated by the tail fan preserved in this specimen and compare it to the tail fans preserved in other Early Cretaceous birds. Aerodynamic models indicate the tail of Chiappeavis produced less lift than that of sympatric ornithuromorphs. This information provides a possible explanation for the absence of widespread aerodynamic tail morphologies in the Enantiornithes. Key words Mesozoic, Jehol Biota, Aves, rectrix Citation O’Connor J K, Zheng X T, Hu H et al., 2016. The morphology of Chiappeavis magnapremaxillo (Pengornithidae: Enantiornithes) and a comparison of aerodynamic function in Early Cretaceous avian tail fans.
    [Show full text]
  • Extant Taxa Stem Frogs Stem Turtles Stem Lepidosaurs Stem Squamates
    Stem Taxa - Peters 2016 851 taxa, 228 characters 100 Eldeceeon 1990.7.1 91 Eldeceeon holotype 100 Romeriscus Ichthyostega Gephyrostegus watsoni Pederpes 85 Eryops 67 Solenodonsaurus 87 Proterogyrinus 100 Chroniosaurus Eoherpeton 94 72 Chroniosaurus PIN3585/124 98 Seymouria Chroniosuchus Kotlassia Stem 58 94 Westlothiana Utegenia Casineria 84 81 Amphibamus Brouffia 95 72 Cacops 93 77 Coelostegus Paleothyris 98 Doleserpeton 84 91 78 100 Gerobatrachus Hylonomus Rana Archosauromorphs Protorothyris MCZ1532 95 66 98 Adelospondylus 85 Protorothyris CM 8617 89 Brachydectes Protorothyris MCZ 2149 Eocaecilia 87 86 Microbrachis Vaughnictis Pantylus 80 89 75 94 Anthracodromeus Elliotsmithia 90 Utaherpeton 51 Apsisaurus Kirktonecta 95 90 86 Aerosaurus 96 Tuditanus 67 90 Varanops Stem Frogs 59 94 Eoserpeton Varanodon Diplocaulus Varanosaurus FMNH PR 1760 100 Sauropleura 62 84 Varanosaurus BSPHM 1901 XV20 88 Ptyonius 89 Archaeothyris 70 Scincosaurus Euryodus primus Ophiacodon 74 82 84 Micraroter Haptodus 91 Rhynchonkos 97 82 Secodontosaurus Batropetes 85 76 100 Dimetrodon 97 Sphenacodon Silvanerpeton Ianthodon 85 Edaphosaurus Gephyrostegeus bohemicus 99 Stem100 Reptiles 80 82 Ianthasaurus Glaucosaurus 94 Cutleria 100 Urumqia Bruktererpeton Stenocybus Stem Mammals 63 97 Thuringothyris MNG 7729 62 IVPP V18117 82 Thuringothyris MNG 10183 87 62 71 Kenyasaurus 82 Galechirus 52 Suminia Saurorictus Venjukovia 99 99 97 83 70 Cephalerpeton Opisthodontosaurus 94 Eodicynodon 80 98 Reiszorhinus 100 Dicynodon 75 Concordia KUVP 8702a Hipposaurus 100 98 96 Concordia
    [Show full text]
  • Downloaded from Firmed That Mouse Chromatin “…Condensin Chromosomes (SMC) Family of to a Fully Formed Chick
    INSIGHTS | PERSPECTIVES components that are required to assemble an important contribution by occasionally EVOLUTION chromosomes in a test tube (9). Three com- inflecting the path of the DNA. ponents were found to be essential: histones, The DNA kinking property of histones together with assembly factors that they might also explain a little twist to the The most require to load onto DNA; condensin; and story. Vertebrate condensin comes in two topoisomerase II. The latter is an enzyme types, condensin I and condensin II. Con- that allows DNA strands to pass each other, densin II is present in low abundance in perfect thing, thereby preventing DNA from getting hope- Xenopus egg extracts, and its depletion is lessly tangled up. usually hardly noticeable on the resultant How do histones contribute to chromo- chromosomes. However, in the absence of explained some assembly? Histones are abundant in histones, condensin II becomes crucial for The requirements of flight the egg extract, and even if it were possible chromosome formation. The ability of ei- to remove them all, half of the histone octa- ther histones to bend DNA or of condensin best explain the evolution mers are already present in the Xenopus II to stabilize a bent DNA conformation of different egg shapes sperm chromatin. To study the role of his- might be required as a basis for the action tones in chromosome assembly, Shintomi of the condensin I complex. et al. took advantage of the almost com- An important open question highlighted By Claire N. Spottiswoode1,2 plete absence of histones from mouse sperm by the study of Shintomi et al.
    [Show full text]
  • New Bohaiornis-Like Bird from the Early Cretaceous of China: Enantiornithine Interrelationships and flight Performance
    New Bohaiornis-like bird from the Early Cretaceous of China: enantiornithine interrelationships and flight performance Luis M. Chiappe1, Meng Qingjin2, Francisco Serrano1,3, Trond Sigurdsen1,4, Wang Min5, Alyssa Bell1 and Liu Di2 1 Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA, USA 2 Beijing Museum of Natural History, Beijing, China 3 Spanish Royal Academy of Sciences, Madrid, Spain 4 Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA 5 Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China ABSTRACT During the last decade, several Bohaiornis-like enantiornithine species—and numerous specimens—have been recognized from the celebrated Jehol Biota of northwestern China. In this paper, we describe the anatomy of another “bohaiornithid” species from the 125 million-year-old Yixian Formation of Liaoning Province, China. The new taxon differs from previously recognized “bohaiornithids” on a number of characters from the forelimb and shoulder girdle. We also provide a new phylogenetic framework for enantiornithine birds, which questions the monophyly of the previously recognized bohaiornithid clade and highlights ongoing challenges for resolving enantiornithine interrelationships. Additionally, we offer the first assessment of the flight properties of Bohaiornis-like enantiornithines. Our results indicate that while “bohaiornithids” were morphologically suited for flying through continuous flapping, they would have been unable to sustain prolonged flights. Such findings expand the flight strategies previously known for enantiornithines and other early birds. Submitted 8 March 2019 8 September 2019 Accepted Subjects Evolutionary Studies, Paleontology, Taxonomy Published 25 October 2019 Keywords Evolution of flight, Jehol Biota, Birds, Enantiornithes, Cretaceous Corresponding authors Luis M.
    [Show full text]
  • Precocial Spectrum for Social Complexity in Mammals and Birds – a Review Isabella B
    Scheiber et al. Frontiers in Zoology (2017) 14:3 DOI 10.1186/s12983-016-0185-6 REVIEW Open Access The importance of the altricial – precocial spectrum for social complexity in mammals and birds – a review Isabella B. R. Scheiber1*, Brigitte M. Weiß2,3, Sjouke A. Kingma1 and Jan Komdeur1 Abstract Various types of long-term stable relationships that individuals uphold, including cooperation and competition between group members, define social complexity in vertebrates. Numerous life history, physiological and cognitive traits have been shown to affect, or to be affected by, such social relationships. As such, differences in developmental modes, i.e. the ‘altricial-precocial’ spectrum, may play an important role in understanding the interspecific variation in occurrence of social interactions, but to what extent this is the case is unclear because the role of the developmental mode has not been studied directly in across-species studies of sociality. In other words, although there are studies on the effects of developmental mode on brain size, on the effects of brain size on cognition, and on the effects of cognition on social complexity, there are no studies directly investigating the link between developmental mode and social complexity. This is surprising because developmental differences play a significant role in the evolution of, for example, brain size, which is in turn considered an essential building block with respect to social complexity. Here, we compiled an overview of studies on various aspects of the complexity of social systems in altricial and precocial mammals and birds. Although systematic studies are scarce and do not allow for a quantitative comparison, we show that several forms of social relationships and cognitive abilities occur in species along the entire developmental spectrum.
    [Show full text]