Extant Taxa Stem Frogs Stem Turtles Stem Lepidosaurs Stem Squamates

Total Page:16

File Type:pdf, Size:1020Kb

Extant Taxa Stem Frogs Stem Turtles Stem Lepidosaurs Stem Squamates Stem Taxa - Peters 2016 851 taxa, 228 characters 100 Eldeceeon 1990.7.1 91 Eldeceeon holotype 100 Romeriscus Ichthyostega Gephyrostegus watsoni Pederpes 85 Eryops 67 Solenodonsaurus 87 Proterogyrinus 100 Chroniosaurus Eoherpeton 94 72 Chroniosaurus PIN3585/124 98 Seymouria Chroniosuchus Kotlassia Stem 58 94 Westlothiana Utegenia Casineria 84 81 Amphibamus Brouffia 95 72 Cacops 93 77 Coelostegus Paleothyris 98 Doleserpeton 84 91 78 100 Gerobatrachus Hylonomus Rana Archosauromorphs Protorothyris MCZ1532 95 66 98 Adelospondylus 85 Protorothyris CM 8617 89 Brachydectes Protorothyris MCZ 2149 Eocaecilia 87 86 Microbrachis Vaughnictis Pantylus 80 89 75 94 Anthracodromeus Elliotsmithia 90 Utaherpeton 51 Apsisaurus Kirktonecta 95 90 86 Aerosaurus 96 Tuditanus 67 90 Varanops Stem Frogs 59 94 Eoserpeton Varanodon Diplocaulus Varanosaurus FMNH PR 1760 100 Sauropleura 62 84 Varanosaurus BSPHM 1901 XV20 88 Ptyonius 89 Archaeothyris 70 Scincosaurus Euryodus primus Ophiacodon 74 82 84 Micraroter Haptodus 91 Rhynchonkos 97 82 Secodontosaurus Batropetes 85 76 100 Dimetrodon 97 Sphenacodon Silvanerpeton Ianthodon 85 Edaphosaurus Gephyrostegeus bohemicus 99 Stem100 Reptiles 80 82 Ianthasaurus Glaucosaurus 94 Cutleria 100 Urumqia Bruktererpeton Stenocybus Stem Mammals 63 97 Thuringothyris MNG 7729 62 IVPP V18117 82 Thuringothyris MNG 10183 87 62 71 Kenyasaurus 82 Galechirus 52 Suminia Saurorictus Venjukovia 99 99 97 83 70 Cephalerpeton Opisthodontosaurus 94 Eodicynodon 80 98 Reiszorhinus 100 Dicynodon 75 Concordia KUVP 8702a Hipposaurus 100 98 96 Concordia KUVP 96/95 Biarmosuchus Romeria primus 100 Titanophoneus 74 Romeria texana 100 Procynosuchus Protocaptorhinus 66 100 Thrinaxodon Paracaptorhinus Stem99 86 94 Probainognathus Eocaptorhinus 100 96 95 Chiniquodon 99 Captorhinus Castorocauda 96 Labidosaurus Haldanodon Liaoconodon 100 Limnoscelis 91 Pachygenelus Orobates 94 Oligokyphus Lepidosaurmorpha 83 Kayentatherium 79 Tseajaia 100 100 98 Tetraceratops Tritylodon 94 Spinolestes Milleretta RC14 100 Jeholodens Milleretta RC70 93 97 Gobiconodon 79 Feeserpeton Repenomamus robustus 90 76 50 Australothyris Repenomamus giganticus 99 Eocasea 73 Heleosaurus Delorhynchus 81 Mycterosaurus FMNH UC169 85 Microleter 99 Yanoconodon 72 91 Nikkasaurus 97 Acleistorhinus 100 Sinoconodon Eunotosaurus 79 81 Mesenosaurus PIN 158/1 Docodon 88 Oedaleops 94 Niaftasuchus Amphitherium 84 Eothyris 85 100 <50 73 88 Kuehneotherium 91 Colobomycter vaughni Archaeovenator <50 81 Akidolestes Colobomycter pholeter 95 Orovenator 99 Datheosaurus 67 Ornithorhynchus 81 Pyozia 62 Ennatosaurus 87 Megazostrodon 74 100 Broomia 84 Casea Hadrocodium 89 Milleropsis BPI-720 Cotylorhynchus Juramaia 98 Erpetonyx 99 98 Diadectes CM25471 99 Cronopio 71 Silvadectes absitus MNG 8853 92 Acristatherium 71 Didelphis 67 92 Phonodus Eudibamus 96 Ukhaatherium Bolosaurus 100 Aphelosaurus Belebey 100 80 94 Eomaia 92 Petrolacosaurus 98 Oradectes sanmiguelensis Araeoscelis Agilodocodon Diadectes UC706 58 Spinoaequalis Diadectes sideropelicus 52 87 Galesphyrus Arctocyon 65 90 57 94 Youngina BPI 3859 Thylacinus Procolophon 85 Acerosodontosaurus 60 Borhyaena 69 98 911 Scolaparia NSM 99 GF82.1 Thadeosaurus 95 98 Leptopleuron 72 85 96 Hyaenodon 100 Tangasaurus 78 Ernanodon 99 Pentaedrusaurus Hovasaurus 83 Thylacosmilus Hypsognathus 90 Claudiosaurus 87 76 87 Oxyaena Adelosaurus 81 83 Vincelestes Stephanospondylus 100 98 Atopodentatus 91 Anebodon 87 Provelosaurus 100 Largocephalosaurus 86 Deltavjatia KPM232 Sinosaurosphargis Notoryctes 76 Scutosaurus 89 Dromiciops 100 Bradysaurus NHMW Anarosaurus 89 Balbaroo 99 95 65 66 Anthodon Diandongosaurus Macropus Pumiliopareia <50 86 77 Palatodonta Thylacoleo 98 Pappochelys 55 Arganaceras Vombatus 99 Majiashanosaurus <50 74 Paraplacodus 79 91 Interatherium Sclerosaurus 97 <50 68 Odontochelys Placodus inexpectatus Vintana 91 72 99 83 Trionyx 97 Placodus gigas 100 Toxodon Stem Turtles 98 96 98 Henodus Pyrotherium Ocepechelon 100 Placochelys Bunostegos Cyamodus Asioryctes 73 Elginia 84 64 Pachypleurosaurus Monodelphis domestica 67 Niolamia 91 Cartorhynchus 69 57 92 Docofossor Meiolania Qianxisaurus 93 80 89 87 Proterochersis 94 Keichousaurus Volaticotherium Proganochelys 85 Dianmeisaurus Nandinia 97 67 77 Mongolochelys 57 Hanosaurus Deltatherium Chubutemys 79 Lariosaurus 94 88 Vulpavus 86 59 Corosaurus 62 Alcidedorbignya Kayentachelys 90 Nothosaurus 53 Santanachelys 68 Protictis 99 89 Wangosaurus Chelonia 81 Talpa 91 60 Simosaurus 82 92 Macrochelys temminckii 85 Anningsaura Herpestes 83 76 Terrapene carolina 92 Pistosaurus Procyon 93 Pelomedusa 81 Yunguisaurus 99 99 Plesiosaurus 77 100 Palaeosinopa Foxemys 75 100 100 Trinacromerum 74 Phoca 99 Brachauchenius Canis 93 Bashkyroleter Kronosaurus Hyopsodus 72 97 Macroleter Miacis 72 Emeroleter 61 Psilotrachelosaurus 75 69 PIMUZ AIII 0192 Lanthanosuchus 95 Maotherium sinensis 89 96 SMF R 4710 96 Nyctiphruretus holotype 96 Stereosternum Maotherium asiaticus Nyctiphruretus PIN 4659/1 99 Brazilosaurus holotype Tupaia 78 76 54 Mesosaurus ?Hapalodectes IVPP V5235 Saurodectes 97 79 Serpianosaurus Macroscelides 85 Owenetta rubidgei 94 Concavispina 62 <50 Chrysochloris 74 Owenetta kitchingorum 83 98 Xinpusaurus kohi 56 77 Scutisorex Candelaria Xinpusaurus suni 96 Apatemys 55 87 Thalattosaurus 90 93 100 100 79 Endennasaurus Trogosus 97 Barasaurus Clarazia Zalambdalestes Askeptosaurus 63 84 Kitchingnathus 83 ?Hapalodectes IVPP V12385 Santaisaurus 68 Anshunsaurus 85 100 99 52 57 Solenodon Sauropareion 100 Miodentosaurus 100 Eusaurosphargis 93 Henkelotherium Coletta 100 Helveticosaurus 75 Nambaroo 99 Paliguana Vancleavea 100 Gomphos 86 Sophineta Oryctolagus Wumengosaurus 76 94 98 Saurosternon Thaisaurus 64 Erinaceus 92 Palaegama Xinminosaurus Brachyerix 93 Utatsusaurus Jesairosaurus 93 72 Carpolestes 99 95 98 Shastasaurus alexandrae Hypuronector 87 Shastasaurus pacificus UCMP 9017 <50 66 Paulchoffatia 99 98 Plesiadapis Vallesaurus Eohupehsuchus brevicollis 55 85 99 97 Parahupehsuchus Taeniolabis 77 Megalancosaurus 96 97 Hupehsuchus 85 70 Shenshou Tridentinosaurus 84 Grippia Paramys 98 88 Mikadocephalus 100 70 94 Coelurosauravus Rattus Mecistotrachelos 79 YGMIRSPCV03108 92 62 Parvinatator 57 Mus Lanthanolania 86 94 Chaohusaurus 97 Kryptobataar Icarosaurus 79 Besanosaurus Ptilodus 97 Qianichthyosaurus CMNH V1412 100 100 Kuehneosaurus Rugosodon 64 Qianichthyosaurus IVPP V11839 80 Stem Lepidosaurs Xianglong Phalarodon fraasi Megaconus 53 91 100 Megachirella 94 Contectopalatus 'Phalarodon' nordenskioeldii Ptilocercus Pleurosaurus <50 96 Mixosaurus Notharctus Marmoretta 57 66 Cymbospondylus petrinus 58 92 Proconsul 86 Gephyrosaurus Shonisaurus sikanniensis 100 96 Ankylosphenodon Stem 92 Guanlingsaurus GNG dq-50 55 Homo sapiens 82 91 Paleopleurosaurus 52 Guanlingsaurus YGMR SPC V03107 97 Palaechthon 98 Planocephalosaurus Wimania Cynocephalus 73 73 Heleosuchus Guizhouichthyosaurus tangae IVPP V 11853 Chriacus 98 84 'Cymbospondylus' buchseri 52 51 61 Kallimodon 63 79 Sphenodon Shonisaurus popularis 93 Onychonycteris Ichthyosaurus communis 53 Pteropus 85 Brachyrhinodon 91 Clevosaurus Ophthalmosaurus Zhangheotherium 88 90 Archosaurs 71 90 Sphenotitan Leptonectes tenuirostris Metachcheiromys 75 Hauffiopteryx 100 Leptosaurus 76 87 Manis 55 89 BRLSI M1399 98 Sapheosaurus Eurhinosaurus 55 Noteosuchus Maelestes 99 Trilophosaurus 58 Anagale Azendohsaurus Youngina SAM K7710 69 97 Youngina BPI 375 <50 Leptictis 60 Eohyosaurus 88 Rhynchocyon 66 Mesosuchus Prolacerta AMNH 9502 59 <50 70 Andrewsarchus Priosphenodon 78 85 Malerisaurus 78 96 Rhynchosaurus articeps Prolacerta BPI 1/471 53 Sinonyx 95 73 Protorosaurus NHMW 1943I4* Hemicentetes 93 Bentonyx 58 90 Leptictidium Leptictidium Hyperodapedon 87 98 Boreopricea 90 Jaxtasuchus Maiacetus Maiacetus 90 88 Tijubina Protorosaurus NMK S 180 Orcinus Homoeosaurus macrodactylus 65 89 99 Protorosaurus WMsN P47361 Onychodectes 96 Huehuecuetzpalli Pamelaria 93 Ectoconus Pantolambda 61 Macrocnemus BES SC 111 Youngina TM 3603 Macrocnemus T2472 100 Youngopsis rubidgei RC90 72 Barylambda 98 79 Dinocephalosaurus Youngopsis kitchingi TM1490 74 Glyptodon 63 Langobardisaurus Youngoides RC91 95 76 100 Tanytrachelos Paramylodon 62 87 Youngina AMNH 5561 95 Triopticus 52 71 Bradypus Youngoides UC1528 91 Tanystropheus k and q 82 60 Peltephilus Cosesaurus Orycteropus 99 89 Proterosuchus BPI 1 4016 80 99 Kyrgyzsaurus Dasypus 70 Sharovipteryx 87 100 Chasmatosaurus QR 880C.500 75 Tamandua Stem 93 95 100 Longisquama 91 Chasmatosaurus SAM PK 11208 60 94 Chasmatosaurus TM 201 Cyclopes MPUM6009 pterosaur 75 97 Proterosuchus RC96 Eudimorphodon 95 98 Chasmatosaurus NMQR 1484 95 Meniscotherium 100 Preondactyluis 71 Teyujagua Astrapotherium Elaphrosuchus RC59 Dimorphodon Phenacodus 64 Thomashuxleya Squamates84 93 Proterosuchus SAMPKK10603 Bavarisaurus 57 Gobiatherium Doswellia 58 96 Lacertulus 89 Arsinoitherium Daohugou lizard IVPP V13747 86 97 Youngina BPI 2871 61 71 83 Coryphodon Meyasaurus Elachistosuchus 99 87 Uintatherium Carusia 98 94 Tchoiria 100 Hoyalacerta 91 97 Ikechosaurus 98 IPB R 535 100 Champsosaurus Mesonyx 62 88 <50 94 Homoeosaurus solnhofensis Simoedosaurus 99 Harpagolestes Cteniogenys 89 99 IVPP V14386 99 Ocepeia Dalinghosaurus Philydrosaurus 66 Hippopotamus 57 97 Lazarussuchus 81 87 Anthracobune Anthracobune MFSN 19235 94 Hyphalosaurus 100 91 64 Paleoparadoxia Paleoparadoxia Scandensia 100 Monjurosuchus GMV216 Monjurosuchus NMM3671 Janjucetus 97 Calanguban Balaenoptera ZC Bu1803 - amber 95 96 Diandongosuchus <50 95 Homalodotherium 93 Teraterpeton Miocochilius 69 74 Liushusaurus 80 91 Mesorhinosuchus Protypotherium Purbicella
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • Ischigualasto Formation. the Second Is a Sile- Diversity Or Abundance, but This Result Was Based on Only 19 of Saurid, Ignotosaurus Fragilis (Fig
    This article was downloaded by: [University of Chicago Library] On: 10 October 2013, At: 10:52 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Journal of Vertebrate Paleontology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ujvp20 Vertebrate succession in the Ischigualasto Formation Ricardo N. Martínez a , Cecilia Apaldetti a b , Oscar A. Alcober a , Carina E. Colombi a b , Paul C. Sereno c , Eliana Fernandez a b , Paula Santi Malnis a b , Gustavo A. Correa a b & Diego Abelin a a Instituto y Museo de Ciencias Naturales, Universidad Nacional de San Juan , España 400 (norte), San Juan , Argentina , CP5400 b Consejo Nacional de Investigaciones Científicas y Técnicas , Buenos Aires , Argentina c Department of Organismal Biology and Anatomy, and Committee on Evolutionary Biology , University of Chicago , 1027 East 57th Street, Chicago , Illinois , 60637 , U.S.A. Published online: 08 Oct 2013. To cite this article: Ricardo N. Martínez , Cecilia Apaldetti , Oscar A. Alcober , Carina E. Colombi , Paul C. Sereno , Eliana Fernandez , Paula Santi Malnis , Gustavo A. Correa & Diego Abelin (2012) Vertebrate succession in the Ischigualasto Formation, Journal of Vertebrate Paleontology, 32:sup1, 10-30, DOI: 10.1080/02724634.2013.818546 To link to this article: http://dx.doi.org/10.1080/02724634.2013.818546 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content.
    [Show full text]
  • A New Early Cretaceous Lizard with Well-Preserved Scale Impressions from Western Liaoning , China*
    PROGRESS IN NATURAL SCIENCE Vol .15 , N o .2 , F ebruary 2005 A new Early Cretaceous lizard with well-preserved scale impressions from western Liaoning , China* JI Shu' an ** (S chool of Earth and S pace Sciences, Peking University , Beijing 100871 , China) Received May 14 , 2004 ;revised September 29 , 2004 Abstract A new small lizard , Liaoningolacerta brevirostra gen .et sp .nov ., from the Early Cretaceous Yixian Formation of w estern Liaoning is described in detail.The new specimen w as preserved not only by the skeleton , but also by the exceptionally clear scale impressions.This lizard can be included w ithin the taxon Scleroglossa based on its 26 or more presacrals, cruciform interclavicle with a large anterior p rocess, moderately elongated pubis, and slightly notched distal end of tibia .The scales vary evidently in size and shape at different parts of body :small and rhomboid ventral scales, tiny and round limb scales, and large and longitudinally rectangular caudal scales that constitute the caudal w horls.This new finding provides us with more information on the lepidosis of the Mesozoic lizards. Keywords: new genus, Squamata, skeleton, lepidosis, Early Cretaceous, western Liaoning . Lizards are majo r groups in the Late Mesozoic Etymology:Liaoning , the province where the Jehol Biota of w estern Liaoning and the adjacent holoty pe w as collected ;lacerta (Latin), lizard . regions, no rtheastern China .Several fossil lizards Brevi- (Latin), short ;rostra (Latin), snout . have been found from the Yixian Formation , the lower unit of the Early C retaceous Jehol G roup in Holotype :An articulated skeleton w ith its rig ht w hich the feathered theropods , primitive birds , early fo relimb and mid to posterior caudals missing (GM V mamm als and angiosperms were discovered in the past 1580 ; National Geological Museum of China , decade[ 1, 2] .
    [Show full text]
  • Reptile Family Tree
    Reptile Family Tree - Peters 2015 Distribution of Scales, Scutes, Hair and Feathers Fish scales 100 Ichthyostega Eldeceeon 1990.7.1 Pederpes 91 Eldeceeon holotype Gephyrostegus watsoni Eryops 67 Solenodonsaurus 87 Proterogyrinus 85 100 Chroniosaurus Eoherpeton 94 72 Chroniosaurus PIN3585/124 98 Seymouria Chroniosuchus Kotlassia 58 94 Westlothiana Casineria Utegenia 84 Brouffia 95 78 Amphibamus 71 93 77 Coelostegus Cacops Paleothyris Adelospondylus 91 78 82 99 Hylonomus 100 Brachydectes Protorothyris MCZ1532 Eocaecilia 95 91 Protorothyris CM 8617 77 95 Doleserpeton 98 Gerobatrachus Protorothyris MCZ 2149 Rana 86 52 Microbrachis 92 Elliotsmithia Pantylus 93 Apsisaurus 83 92 Anthracodromeus 84 85 Aerosaurus 95 85 Utaherpeton 82 Varanodon 95 Tuditanus 91 98 61 90 Eoserpeton Varanops Diplocaulus Varanosaurus FMNH PR 1760 88 100 Sauropleura Varanosaurus BSPHM 1901 XV20 78 Ptyonius 98 89 Archaeothyris Scincosaurus 77 84 Ophiacodon 95 Micraroter 79 98 Batropetes Rhynchonkos Cutleria 59 Nikkasaurus 95 54 Biarmosuchus Silvanerpeton 72 Titanophoneus Gephyrostegeus bohemicus 96 Procynosuchus 68 100 Megazostrodon Mammal 88 Homo sapiens 100 66 Stenocybus hair 91 94 IVPP V18117 69 Galechirus 69 97 62 Suminia Niaftasuchus 65 Microurania 98 Urumqia 91 Bruktererpeton 65 IVPP V 18120 85 Venjukovia 98 100 Thuringothyris MNG 7729 Thuringothyris MNG 10183 100 Eodicynodon Dicynodon 91 Cephalerpeton 54 Reiszorhinus Haptodus 62 Concordia KUVP 8702a 95 59 Ianthasaurus 87 87 Concordia KUVP 96/95 85 Edaphosaurus Romeria primus 87 Glaucosaurus Romeria texana Secodontosaurus
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • New Lizards and Rhynchocephalians from the Lower Cretaceous of Southern Italy
    New lizards and rhynchocephalians from the Lower Cretaceous of southern Italy SUSAN. E. EVANS, PASQUALE RAIA, and CARMELA BARBERA Evans, S.E., Raia, P., and Barbera, C. 2004. New lizards and rhynchocephalians from the Lower Cretaceous of southern Italy. Acta Palaeontologica Polonica 49 (3): 393–408. The Lower Cretaceous (Albian age) locality of Pietraroia, near Benevento in southern Italy, has yielded a diverse assem− blage of fossil vertebrates, including at least one genus of rhynchocephalian (Derasmosaurus) and two named lizards (Costasaurus and Chometokadmon), as well as the exquisitely preserved small dinosaur, Scipionyx. Here we describe ma− terial pertaining to a new species of the fossil lizard genus Eichstaettisaurus (E. gouldi sp. nov.). Eichstaettisaurus was first recorded from the Upper Jurassic (Tithonian age) Solnhofen Limestones of Germany, and more recently from the basal Cretaceous (Berriasian) of Montsec, Spain. The new Italian specimen provides a significant extension to the tempo− ral range of Eichstaettisaurus while supporting the hypothesis that the Pietraroia assemblage may represent a relictual is− land fauna. The postcranial morphology of the new eichstaettisaur suggests it was predominantly ground−living. Further skull material of E. gouldi sp. nov. was identified within the abdominal cavity of a second new lepidosaurian skeleton from the same locality. This second partial skeleton is almost certainly rhynchocephalian, based primarily on foot and pelvic structure, but it is not Derasmosaurus and cannot be accommodated within any known genus due to the unusual morphology of the tail vertebrae. Key words: Lepidosauria, Squamata, Rhynchocephalia, palaeobiogeography, predation, Cretaceous, Italy. Susan E. Evans [[email protected]], Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, England; Pasquale Raia [[email protected]] and Carmela Barbera [[email protected]], Dipartimento di Paleontologia, Università di Napoli, Largo S.
    [Show full text]
  • A Small Lepidosauromorph Reptile from the Early Triassic of Poland
    A SMALL LEPIDOSAUROMORPH REPTILE FROM THE EARLY TRIASSIC OF POLAND SUSAN E. EVANS and MAGDALENA BORSUK−BIAŁYNICKA Evans, S.E. and Borsuk−Białynicka, M. 2009. A small lepidosauromorph reptile from the Early Triassic of Poland. Palaeontologia Polonica 65, 179–202. The Early Triassic karst deposits of Czatkowice quarry near Kraków, southern Poland, has yielded a diversity of fish, amphibians and small reptiles. Two of these reptiles are lepido− sauromorphs, a group otherwise very poorly represented in the Triassic record. The smaller of them, Sophineta cracoviensis gen. et sp. n., is described here. In Sophineta the unspecial− ised vertebral column is associated with the fairly derived skull structure, including the tall facial process of the maxilla, reduced lacrimal, and pleurodonty, that all resemble those of early crown−group lepidosaurs rather then stem−taxa. Cladistic analysis places this new ge− nus as the sister group of Lepidosauria, displacing the relictual Middle Jurassic genus Marmoretta and bringing the origins of Lepidosauria closer to a realistic time frame. Key words: Reptilia, Lepidosauria, Triassic, phylogeny, Czatkowice, Poland. Susan E. Evans [[email protected]], Department of Cell and Developmental Biology, Uni− versity College London, Gower Street, London, WC1E 6BT, UK. Magdalena Borsuk−Białynicka [[email protected]], Institut Paleobiologii PAN, Twarda 51/55, PL−00−818 Warszawa, Poland. Received 8 March 2006, accepted 9 January 2007 180 SUSAN E. EVANS and MAGDALENA BORSUK−BIAŁYNICKA INTRODUCTION Amongst living reptiles, lepidosaurs (snakes, lizards, amphisbaenians, and tuatara) form the largest and most successful group with more than 7 000 widely distributed species. The two main lepidosaurian clades are Rhynchocephalia (the living Sphenodon and its extinct relatives) and Squamata (lizards, snakes and amphisbaenians).
    [Show full text]
  • Mammal and Plant Localities of the Fort Union, Willwood, and Iktman Formations, Southern Bighorn Basin* Wyoming
    Distribution and Stratigraphip Correlation of Upper:UB_ • Ju Paleocene and Lower Eocene Fossil Mammal and Plant Localities of the Fort Union, Willwood, and Iktman Formations, Southern Bighorn Basin* Wyoming U,S. GEOLOGICAL SURVEY PROFESS IONAL PAPER 1540 Cover. A member of the American Museum of Natural History 1896 expedition enter­ ing the badlands of the Willwood Formation on Dorsey Creek, Wyoming, near what is now U.S. Geological Survey fossil vertebrate locality D1691 (Wardel Reservoir quadran­ gle). View to the southwest. Photograph by Walter Granger, courtesy of the Department of Library Services, American Museum of Natural History, New York, negative no. 35957. DISTRIBUTION AND STRATIGRAPHIC CORRELATION OF UPPER PALEOCENE AND LOWER EOCENE FOSSIL MAMMAL AND PLANT LOCALITIES OF THE FORT UNION, WILLWOOD, AND TATMAN FORMATIONS, SOUTHERN BIGHORN BASIN, WYOMING Upper part of the Will wood Formation on East Ridge, Middle Fork of Fifteenmile Creek, southern Bighorn Basin, Wyoming. The Kirwin intrusive complex of the Absaroka Range is in the background. View to the west. Distribution and Stratigraphic Correlation of Upper Paleocene and Lower Eocene Fossil Mammal and Plant Localities of the Fort Union, Willwood, and Tatman Formations, Southern Bighorn Basin, Wyoming By Thomas M. Down, Kenneth D. Rose, Elwyn L. Simons, and Scott L. Wing U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1540 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Robert M. Hirsch, Acting Director For sale by U.S. Geological Survey, Map Distribution Box 25286, MS 306, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • 01 Oliveira & Pinheiro RBP V20 N2 COR.Indd
    Rev. bras. paleontol. 20(2):155-162, Maio/Agosto 2017 © 2017 by the Sociedade Brasileira de Paleontologia doi: 10.4072/rbp.2017.2.01 ISOLATED ARCHOSAURIFORM TEETH FROM THE UPPER TRIASSIC CANDELÁRIA SEQUENCE (HYPERODAPEDON ASSEMBLAGE ZONE, SOUTHERN BRAZIL) TIANE MACEDO DE OLIVEIRA & FELIPE L. PINHEIRO Laboratório de Paleobiologia, Universidade Federal do Pampa, Campus São Gabriel, R. Aluízio Barros Macedo, BR 290, km 423, 97300-000, São Gabriel, RS, Brazil. [email protected], [email protected] ABSTRACT – We describe isolated teeth found in the locality “Sítio Piveta” (Hyperodapedon Assemblage Zone, Candelaria Sequence, Upper Triassic of the Paraná Basin). The material consists of five specimens, here classified into three different morphotypes. The morphotype I is characterized by pronounced elongation, rounded base and symmetry between lingual and labial surfaces. The morphotype II presents serrated mesial and distal edges, mesial denticles decreasing in size toward the base, distal denticles present until the base and asymmetry, with a flat lingual side and rounded labial side. The morphotype III, although similar to morphotype II, has a greater inclination of the posterior carinae. The conservative dental morphology in Archosauriformes makes difficult an accurate taxonomic assignment based only on isolated teeth. However, the specimens we present are attributable to “Rauisuchia” (morphotype II and III) and, possibly, Phytosauria (morphotype I). The putative presence of a phytosaur in the Carnian Hyperodapedon Assemblage Zone would have impact in the South American distribution of the group. The taxonomic assignments proposed herein contribute to the faunal composition of the Hyperodapedon Assemblage Zone, a critical unit on the study of the Upper Triassic radiation of archosaurs.
    [Show full text]
  • Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field
    Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field June 12, 2007 ABSTRACT This is compilation of a technical analysis of existing paleontological data and a limited, selective paleontological field survey of the geologic bedrock formations that will be impacted on Federal lands by construction associated with energy development in the Jonah Field, Sublette County, Wyoming. The field survey was done on approximately 20% of the field, primarily where good bedrock was exposed or where there were existing, debris piles from recent construction. Some potentially rich areas were inaccessible due to biological restrictions. Heavily vegetated areas were not examined. All locality data are compiled in the separate confidential appendix D. Uinta Paleontological Associates Inc. was contracted to do this work through EnCana Oil & Gas Inc. In addition BP and Ultra Resources are partners in this project as they also have holdings in the Jonah Field. For this project, we reviewed a variety of geologic maps for the area (approximately 47 sections); none of maps have a scale better than 1:100,000. The Wyoming 1:500,000 geology map (Love and Christiansen, 1985) reveals two Eocene geologic formations with four members mapped within or near the Jonah Field (Wasatch – Alkali Creek and Main Body; Green River – Laney and Wilkins Peak members). In addition, Winterfeld’s 1997 paleontology report for the proposed Jonah Field II Project was reviewed carefully. After considerable review of the literature and museum data, it became obvious that the portion of the mapped Alkali Creek Member in the Jonah Field is probably misinterpreted.
    [Show full text]
  • Tiago Rodrigues Simões
    Diapsid Phylogeny and the Origin and Early Evolution of Squamates by Tiago Rodrigues Simões A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in SYSTEMATICS AND EVOLUTION Department of Biological Sciences University of Alberta © Tiago Rodrigues Simões, 2018 ABSTRACT Squamate reptiles comprise over 10,000 living species and hundreds of fossil species of lizards, snakes and amphisbaenians, with their origins dating back at least as far back as the Middle Jurassic. Despite this enormous diversity and a long evolutionary history, numerous fundamental questions remain to be answered regarding the early evolution and origin of this major clade of tetrapods. Such long-standing issues include identifying the oldest fossil squamate, when exactly did squamates originate, and why morphological and molecular analyses of squamate evolution have strong disagreements on fundamental aspects of the squamate tree of life. Additionally, despite much debate, there is no existing consensus over the composition of the Lepidosauromorpha (the clade that includes squamates and their sister taxon, the Rhynchocephalia), making the squamate origin problem part of a broader and more complex reptile phylogeny issue. In this thesis, I provide a series of taxonomic, phylogenetic, biogeographic and morpho-functional contributions to shed light on these problems. I describe a new taxon that overwhelms previous hypothesis of iguanian biogeography and evolution in Gondwana (Gueragama sulamericana). I re-describe and assess the functional morphology of some of the oldest known articulated lizards in the world (Eichstaettisaurus schroederi and Ardeosaurus digitatellus), providing clues to the ancestry of geckoes, and the early evolution of their scansorial behaviour.
    [Show full text]
  • New Insights on Prestosuchus Chiniquensis Huene
    New insights on Prestosuchus chiniquensis Huene, 1942 (Pseudosuchia, Loricata) based on new specimens from the “Tree Sanga” Outcrop, Chiniqua´ Region, Rio Grande do Sul, Brazil Marcel B. Lacerda1, Bianca M. Mastrantonio1, Daniel C. Fortier2 and Cesar L. Schultz1 1 Instituto de Geocieˆncias, Laborato´rio de Paleovertebrados, Universidade Federal do Rio Grande do Sul–UFRGS, Porto Alegre, Rio Grande do Sul, Brazil 2 CHNUFPI, Campus Amı´lcar Ferreira Sobral, Universidade Federal do Piauı´, Floriano, Piauı´, Brazil ABSTRACT The ‘rauisuchians’ are a group of Triassic pseudosuchian archosaurs that displayed a near global distribution. Their problematic taxonomic resolution comes from the fact that most taxa are represented only by a few and/or mostly incomplete specimens. In the last few decades, renewed interest in early archosaur evolution has helped to clarify some of these problems, but further studies on the taxonomic and paleobiological aspects are still needed. In the present work, we describe new material attributed to the ‘rauisuchian’ taxon Prestosuchus chiniquensis, of the Dinodontosaurus Assemblage Zone, Middle Triassic (Ladinian) of the Santa Maria Supersequence of southern Brazil, based on a comparative osteologic analysis. Additionally, we present well supported evidence that these represent juvenile forms, due to differences in osteological features (i.e., a subnarial fenestra) that when compared to previously described specimens can be attributed to ontogeny and indicate variation within a single taxon of a problematic but important
    [Show full text]