Biogenic Amines (Ba)

Total Page:16

File Type:pdf, Size:1020Kb

Biogenic Amines (Ba) Complimentary Contributor Copy Complimentary Contributor Copy FOOD SCIENCE AND TECHNOLOGY BIOGENIC AMINES (BA) ORIGINS, BIOLOGICAL IMPORTANCE AND HUMAN HEALTH IMPLICATIONS No part of this digital document may be reproduced, stored in a retrieval system or transmitted in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Complimentary Contributor Copy FOOD SCIENCE AND TECHNOLOGY Additional books in this series can be found on Nova’s website under the Series tab. Additional e-books in this series can be found on Nova’s website under the eBooks tab. Complimentary Contributor Copy FOOD SCIENCE AND TECHNOLOGY BIOGENIC AMINES (BA) ORIGINS, BIOLOGICAL IMPORTANCE AND HUMAN HEALTH IMPLICATIONS JOANNA STADNIK EDITOR Complimentary Contributor Copy Copyright © 2018 by Nova Science Publishers, Inc. All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical photocopying, recording or otherwise without the written permission of the Publisher. We have partnered with Copyright Clearance Center to make it easy for you to obtain permissions to reuse content from this publication. Simply navigate to this publication’s page on Nova’s website and locate the “Get Permission” button below the title description. This button is linked directly to the title’s permission page on copyright.com. Alternatively, you can visit copyright.com and search by title, ISBN, or ISSN. For further questions about using the service on copyright.com, please contact: Copyright Clearance Center Phone: +1-(978) 750-8400 Fax: +1-(978) 750-4470 E-mail: [email protected]. NOTICE TO THE READER The Publisher has taken reasonable care in the preparation of this book, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained in this book. The Publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or in part, from the readers’ use of, or reliance upon, this material. Any parts of this book based on government reports are so indicated and copyright is claimed for those parts to the extent applicable to compilations of such works. Independent verification should be sought for any data, advice or recommendations contained in this book. In addition, no responsibility is assumed by the publisher for any injury and/or damage to persons or property arising from any methods, products, instructions, ideas or otherwise contained in this publication. This publication is designed to provide accurate and authoritative information with regard to the subject matter covered herein. It is sold with the clear understanding that the Publisher is not engaged in rendering legal or any other professional services. If legal or any other expert assistance is required, the services of a competent person should be sought. FROM A DECLARATION OF PARTICIPANTS JOINTLY ADOPTED BY A COMMITTEE OF THE AMERICAN BAR ASSOCIATION AND A COMMITTEE OF PUBLISHERS. Additional color graphics may be available in the e-book version of this book. Library of Congress Cataloging-in-Publication Data ISBN: 978-1-53612-713-3 (eBook) Library of Congress Control Number: 2017956846 Published by Nova Science Publishers, Inc. † New York Complimentary Contributor Copy CONTENTS Preface vii Chapter 1 Biogenic Amines in Food: Occurrence and Analytical Challenges for Their Analysis 1 Jorge A. M. Pereira, Priscilla Porto-Figueira, Beatriz Andrade, Patrícia Gonçalves, Joanna Pataca and José S. Câmara Chapter 2 The Role of Miniaturized Techniques in the Determination of Biogenic Amines in Biological Specimens 25 T. Rosado, T. Castro, M. Barroso and E. Gallardo Chapter 3 Occurrence and Health Implications of Dietary Biogenic Amines 101 Renata G. K. Leuschner Chapter 4 Biogenic Amines in Food: Presence and Control Measures 129 Miguel Elias, Maria João Fraqueza and Marta Laranjo Chapter 5 Biogenic Amines in Alcoholic Beverages 177 Klaudia Gustaw and Adam Waśko Complimentary Contributor Copy vi Contents Chapter 6 The Occurrence of Biogenic Amines in Food Originating from Animals: Current Knowledge and Future Perspectives 203 F. Gai, D. Pattono and M. Brasca Chapter 7 Biogenic Amines in Dry-Cured and Fermented Meats 243 Joanna Stadnik Chapter 8 Serotonin (5-HT): Origins, Biological Importance, and Human Health Implications in Pain 269 Alfonso Alfaro-Rodríguez, José Luis Cortes-Altamirano, Samuel Reyes-Long, Adriana Olmos-Hernández, Rebeca Uribe-Escamilla, Angélica González-Maciel and Cindy Bandala Chapter 9 Social Behaviors Modulated by Tyramine and Octopamine in Insects 313 Ken Sasaki About the Editor 337 Index 339 Complimentary Contributor Copy PREFACE Biogenic amines are nitrogenous organic bases of low molecular weight with biological functions in animals, plants, microorganisms and humans. Their formation in food is either the result of endogenous amino acids decarboxylase activity in raw food material or the breakdown of free amino acids due to the action of decarboxylase enzymes of microbial origin. Consumption of food containing excessive amounts of these amines can have toxicological implications due to their psychoactive and/or vasoactive properties. Therefore, the control of biogenic amines accumulation in foods during processing and storage is a challenge for the food industry. This book reviews origins, biological importance and human health implications of biogenic amines. Chapter One focus on the occurrence of BAs in different foodstuffs and in the correspondent challenges of their analysis. In Chapter Two the Authors provide an overview and a critical discussion of sample preparation techniques to determine BAs in biological specimens, with special emphasis on microextraction techniques. The advantages and some limitations, as well as how they compare to previously used extraction techniques, are also addressed herein. Chapter Three focuses on the relation of occurrence of dietary biogenic amines and associated adverse health effects following consumption of implicated food. In Chapter Four the Authors focus on some food products and the relationship between the Complimentary Contributor Copy viii Joanna Stadnik presence of BA according to their origin, inducing factors and distinctive characteristics of the technological processes that could control BA production in animal foods, plant foods and beverages. Chapter Five tackles the most important aspects of BA formation during manufacture of alcoholic beverages. The significance of BAs is also described from the perspective of microbiological and technological factors. The Authors of Chapter Six critically review the latest knowledge, described in studies carried out throughout the world, about the occurrence and the food safety issues of BAs in two selected animal origin food sources, that is, fish and dairy products. Moreover, different technological strategies adopted for the prevention of BA accumulation in the above mentioned food products, for safety purposes, are evaluated. Chapter Seven briefly summarizes current knowledge on biogenic amines content in dry-cured and fermented meats and collects data on the factors affecting their formation. The methods for aminogenesis control in dry-cured meats are also described. The aim of Chapter Eight is to identify the origin, biological importance, and human health implications of the serotonin (5-HydroxyTryptamine [5-HT]) in pain. Finally, effects of tyramine (TA) and octopamine (OA) on behaviors and physiology in social insects have been introduced in Chapter Nine. Chapter 1 - Biogenic amines (BAs) are naturally occurring nitrogenous organic compounds of low molecular weight organic bases with aliphatic, aromatic or heterocyclic structures. They are generally formed through microbiological activity during food processing and storage, and can be found in a wide variety of foods, particularly fermented foods and beverages as cheese, wine, beer, in addition to fishery products and meat. At low concentrations, BAs participate in the regulation of several physiological functions, but when present at high concentrations, they may cause several health problems in consumers, as headaches, hypo- or hypertension, nausea and cardiac palpitations, especially to sensitive persons. Therefore, the control of BAs levels in different food products is an important issue for food safety monitoring policies. Due to their low levels in complex food matrices, the analysis of BAs is not an easy task and several methods for their separation, identification, and determination have been described during the last decades. Overall, the chromatographic Complimentary Contributor Copy Preface ix approach is the most popular, although the recent trends points to the development of sensors able to measure BAs in food matrices without involving the laborious and complex laboratorial sample analysis methodologies. In this review we will essentially focus on
Recommended publications
  • Food Allergy • Higher Prevalence in Children: Many Food Allergic Children Develop Immune Tolerance Background Ctd
    Overview of Food-Related Adverse Reactions ALLSA 2017 Dr Claudia Gray Dr Claudia Gray • MBChB, FRCPCH (London), MSc (Surrey), Dip Allergy (Southampton), DipPaedNutrition(UK), PhD (UCT) • Paediatrician and Allergologist, UCT Lung Institute • Red Cross Children’s Hospital Allergy and Asthma Department • [email protected] Background 1. Food allergies are common: • Infants: 6-10%; children 2-8%, adults 1-2% true food allergy • Higher prevalence in children: many food allergic children develop immune tolerance Background ctd 2. Food allergies are increasing: • Peanut allergy in UK doubled in 1-2 decades: 1.8%. ? Stabilising in some regions Background 3. Spectrum changing: • Multiple food allergies increasing • “Rare” food allergies are increasing e.g. Eosinophilic oesophagitis; FPIES Allergenic Foods • Prevalence of food allergies influenced by geography and diet; egg and milk allergy universally common • Relatively small number of food types cause the majority of reactions: Allergenic Foods Young Children Adults • Cow’s milk • Fin-fish • Hen’s Egg • Shellfish • Wheat • Treenut • Soya • Peanut • Peanut • Fruit and vegetables • Treenut • Sesame • Kiwi • (* persistence likely) Allergenic Foods • A single food allergen can induce a range of allergic reactions e.g. wheat Classification of Adverse reactions to Food Classification of adverse reactions to food Adverse Reaction to food May occur in all Occurs only in some individuals if they eat susceptible sufficient quantity individuals Pharma- Micro- Toxic Food Food (e.g. cological biological scromboid) e.g. e.g food aversion hypersensitivity tyramine poisoning Classification of adverse reactions to food Food Hypersensitivity Non-allergic food Food Allergy hypersensitivity Mixed IgE- Unknown Metabolic IgE- and non Non IgE- e.g.
    [Show full text]
  • Histamine Poisoning Fact Sheet
    Histamine Poisoning Fact Sheet What is Histamine? How much histamine is a harmful dose? Scombroid food poisoning is caused by A threshold dose is considered to be 90 mg/100 ingestion of histamine, a product of the g. Although, levels as low as 5-20 mg/ 100 g could degradation of the amino acid histidine. possibly be toxic; particularly in susceptible Histidine can be found freely in the muscles individuals. of some fish species and can be degraded to What are the symptoms? histamine by enzymatic action of some naturally occurring bacteria. Initial symptoms resemble some allergic reactions which include sweating, nausea, headache and tingling or peppery sensation in the mouth and Which types of fish can be implicated? throat. The scombrid fish such as tuna and mackerel are Other symptoms include urticarial rash (hives), traditionally considered to present the highest localised skin inflammation, vomiting, diarrhoea, risk. However, other species have also been abdominal cramps, flushing of the face and low associated with histamine poisoning; e.g. blood pressure. anchovies, sardines, Yellowtail kingfish, Amberjack and Australian salmon, Mahi Mahi and Severe symptoms include blurred vision, severe Escolar. respiratory distress and swelling of the tongue. Which bacteria are involved? What can be done to manage histamine in seafood? A variety of bacterial genera have implicated in the formation of histamine; e.g. Clostridium, • Histamine levels can increase over a wide Morganella, Pseudomonas, Photobacterium, range of storage temperatures. However, Brochothrix and Carnobacterium. histamine production is highest over 21.8 °C. Once the enzyme is present in the fish, it can What outbreaks have occurred? continue to produce histamine at refrigeration temperatures.
    [Show full text]
  • Urticaria and Angioedema
    Challenging Cases in Allergy and Immunology Massoud Mahmoudi Editor Challenging Cases in Allergy and Immunology Editor Massoud Mahmoudi D.O, Ph.D. RM (NRM), FACOI, FAOCAI, FASCMS, FACP, FCCP, FAAAAI Assistant Clinical Professor of Medicine University of California San Francisco San Francisco, California Chairman, Department of Medicine Community Hospital of Los Gatos Los Gatos, California USA ISBN 978-1-60327-442-5 e-ISBN 978-1-60327-443-2 DOI 10.1007/978-1-60327-443-2 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009928233 © Humana Press, a part of Springer Science+Business Media, LLC 2009 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Humana Press, c/o Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made.
    [Show full text]
  • 2015 " 35Th PAKISTAN CONGRESS of ZOOLOGY (INTERNATIONAL) CENTRE OF
    PROCEEDINGS OF PAKISTAN CONGRESS OF ZOOLOGY Volume 35, 2015 All the papers in this Proceedings were refereed by experts in respective disciplines THIRTY FOURTH PAKISTAN CONGRESS OF ZOOLOGY held under auspices of THE ZOOLOGICAL SOCIETY OF PAKISTAN at CENTRE OF EXCELLENCE IN MARINE BIOLOGY, UNIVERSITY OF KARACHI, KARACHI MARCH 1 – 4, 2015 CONTENTS Acknowledgements i Programme ii Members of the Congress xi Citations Life Time Achievement Award 2015 Late Prof. Dr. Shahzad A. Mufti ............................................xv Dr. Quddusi B. Kazmi .........................................................xvii Dr. Muhammad Ramzan Mirza.............................................xix Abdul Aziz Khan...................................................................xx Zoologist of the year award 2015............................................... xxii Prof. Dr. A.R. Shakoori Gold Medal 2015 ............................... xxiii Prof. Dr. Mirza Azhar Beg Gold Medal 2015 ........................... xxiv Prof. Imtiaz Ahmad Gold Medal 2015 ........................................xxv Prof. Dr. Nasima M. Tirmizi Memorial Gold Medal 2015..........xxvi Gold Medals for M.Sc. and Ph.D. positions 2015 ................... xxviii Certificate of Appreciation .........................................................xxx Research papers SAMI, A.J. JABBAR, B., AHMAD, N., NAZIR, M.T. AND SHAKOORI, A.R. in silico analysis of structure-function relationship of a neutral lipase from Tribolium castaneum .......................... 1 KHAN, I., HUSSAIN, A., KHAN, A. AND
    [Show full text]
  • Contribution to the Knowledge of Ensifera (Insecta: Orthoptera) Fauna of Turkey
    J. Entomol. Res. Soc., 18(1): 75-98, 2016 ISSN:1302-0250 Contribution to the Knowledge of Ensifera (Insecta: Orthoptera) Fauna of Turkey Abbas MOL1 Mehmet Sait TAYLAN2* Eyüp DEMİR3 Deniz ŞİRİN3 1H e a l t h A c a d e m y S c h o o l , A k s a r a y U n i v e r s i t y , A k s a r a y , T U R K E Y 2*The Society of Anatolian Speleology Group (ASPEG), Serpil S k . , Y ı l d ı z A p t . 1 4 / A , K a v a c ı k , B e y k o z , İ s t a n b u l , T U R K E Y 3Department of Biology, Faculty of Art and Science, N a m ı k K e m a l U n i v e r s i t y, Te k i r d a ğ , T U R K E Y e-mails: [email protected], [email protected], [email protected] *Corresponding author’s email: [email protected] ABSTRACT In this study which contributes to the distribution of species of Ensifera (Insecta: Orthoptera), which are known as bush-crickets, in Turkey, specimens of Tettigoniidae, Gryllidae and Gryllotalpidae (Orthoptera) collected from Turkey and preserved in Aksaray University and Namık Kemal University have been examined. As a result, a total of 117 species-subspecies belonging to 37 genera of the family Tettigoniidae, 6 species belonging to five genera of the family Gryllidae and one species belonging to one genus of the family Gryllotalpidae have been determined from the examined material.
    [Show full text]
  • Date: 1/9/2017 Question: Botulism Is an Uncommon Disorder Caused By
    6728 Old McLean Village Drive, McLean, VA 22101 Tel: 571.488.6000 Fax: 703.556.8729 www.clintox.org Date: 1/9/2017 Question: Botulism is an uncommon disorder caused by toxins produced by Clostridium botulinum. Seven subtypes of botulinum toxin exist (subtypes A, B, C, D, E, F and G). Which subtypes have been noted to cause human disease and which ones have been reported to cause infant botulism specifically in the United States? Answer: According to the cited reference “Only subtypes A, B, E and F cause disease in humans, and almost all cases of infant botulism in the United States are caused by subtypes A and B. Botulinum-like toxins E and F are produced by Clostridium baratii and Clostridium butyricum and are only rarely implicated in infant botulism” (Rosow RK and Strober JB. Infant botulism: Review and clinical update. 2015 Pediatr Neurol 52: 487-492) Date: 1/10/2017 Question: A variety of clinical forms of botulism have been recognized. These include wound botulism, food borne botulism, and infant botulism. What is the most common form of botulism reported in the United States? Answer: According to the cited reference, “In the United States, infant botulism is by far the most common form [of botulism], constituting approximately 65% of reported botulism cases per year. Outside the United States, infant botulism is less common.” (Rosow RK and Strober JB. Infant botulism: Review and clinical update. 2015 Pediatr Neurol 52: 487-492) Date: 1/11/2017 Question: Which foodborne pathogen accounts for approximately 20 percent of bacterial meningitis in individuals older than 60 years of age and has been associated with unpasteurized milk and soft cheese ingestion? Answer: According to the cited reference, “Listeria monocytogenes, a gram-positive rod, is a foodborne pathogen with a tropism for the central nervous system.
    [Show full text]
  • Processing Parameters Needed to Control Pathogens in Cold-Smoked Fish
    Processing Parameters Needed to Control Pathogens in Cold-Smoked Fish A Report of the Institute of Food Technologists for the Food and Drug Administration of the U.S. Department of Health and Human Services submitted March 29, 2001 IFT/FDA Contract No. 223-98-2333 Task Order 2 Processing Parameters Needed to Control Pathogens in Cold-smoked Fish Table of Contents Preface ........................................................................ S-1058 7. Conclusions ....................................................................... S-1079 8. Research needs ................................................................. S-1079 Science Advisory Board .......................................... S-1058 References ............................................................................. S-1080 Scientific and Technical Panel ............................... S-1058 Chapter III. Potential Hazards in Cold-Smoked Fish: Clostridium botulinum type E Reviewers .................................................................. S-1058 Scope ...................................................................................... S-1082 1. Introduction ....................................................................... S-1082 Additional Acknowledgments ............................... S-1058 2. Prevalence in water, raw fish, and smoked fish .............. S-1083 3. Growth in refrigerated smoked fish ................................. S-1083 Background ...............................................................S-1059 4. Effect of processing
    [Show full text]
  • Histamine (Scombroid
    Histamine (Scombroid Poisioning) Fact Sheet What is Histamine? What are the symptoms? Initial symptoms resemble some allergic reactions, Scombroid food poisoning is caused by including sweating, nausea, headache and tingling ingestion of fish containing high or a peppery taste in the mouth and throat. concentrations of histamine, which is a Other symptoms include urticarial rash (hives), product of the degradation of the amino acid localised skin inflammation, vomiting, diarrhoea, histidine. Histidine can be found freely in the abdominal cramps, flushing of the face and low muscles of some fish species and can be blood pressure. degraded to histamine by enzymatic action of Severe symptoms include blurred vision, severe some naturally occurring bacteria. respiratory distress and swelling of the tongue. What can be done to manage histamine in Which types of fish can be implicated? seafood? The scombrid fish such as tuna and mackerel are Histamine levels can increase over a wide range traditionally considered to present the highest risk. of storage temperatures. However, histamine However, other species have also been associated production is highest over 21.8 °C. Once the with histamine poisoning; e.g. anchovies, sardines, enzyme is present in the fish, it can continue to Yellowtail kingfish, Amberjack, Australian salmon produce histamine at refrigeration and Mahi Mahi. temperatures. Which bacteria are involved? Preventing the degradation of histidine to A variety of bacterial genera have been implicated histamine by rapid chilling of fish immediately in the formation of histamine; e.g. Clostridium, after death, followed by good temperature Morganella, Pseudomonas, Photobacterium, control in the supply chain is the most Brochothrix and Carnobacterium.
    [Show full text]
  • Seafood Poisoning Symptom, Treatment and Prevention
    Borneo Journal of Marine Science and Aquaculture Volume: 02 | December 2018, 64 - 69 Seafood poisoning symptom, treatment and prevention Murtaza Mustafa1, Teruaki Yoshida2, Zarinah Waheed3, Mohd Yusof Ibrahim1, Mohammad Illzam Elahee4, Shahjee Hussain1, Sharifa Mariam Uma Abdullah5 and Mehvish Muhammad Hanif6 1Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia 2Harmful Algal Blooms Research Unit, Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia. 3Endangered Marine Species Research Unit, Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia. 4Polyclinic Sihat, Likas, Kota Kinabalu, Sabah, Malaysia 5Quality Unit, Hospital Queen Elizabeth, Kota Kinabalu, Sabah, Malaysia. 6Department of Zoology, Wildlife and Fisheries, Agriculture University, Faisalabad, Pakistan. *Corresponding author: [email protected] Abstract Food related disease or food poisoning is prevalent worldwide and is associated with high mortality. It can be caused by bacteria, viruses, parasites, enterotoxins, mycotoxins, chemicals, histamine poisoning (scombroid) ciguatera and harmful algal bloom (HAB). Illness can also result by red tide while breathing in the aerosolized brevitoxins (i.e. PbTx or Ptychodiscus toxins). Bacterial toxin food poisoning can affect within 1-6 hours and 8-16 hours, and illness can be with or without bloody diarrhea. The common symptoms of food poisoning include abdominal cramps, vomiting and diarrhea. Diagnosis includes examination of leftover food, food preparation environment, food handlers, feces, vomitus, serum and blood. Treatment involves oral rehydration, antiemetic, and anti-peristaltic drugs. Antimicrobial agents may be needed in the treatment of shigellosis, cholera, lifesaving invasive salmonellosis and typhoid fever. Proper care in handling and cooking is important to prevent any food borne diseases.
    [Show full text]
  • Diseases Tiunsmitted by Foods
    DISEASES TIUNSMITTED BY FOODS ( A CLASSIFICATION AND SUMMARY) SECOND EDITION U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE CENTERS FOR DISEASE CONTROL CENTER FOR PROFESSIONAL DEVELOPMENT AND TRAINING ATLANTA. GEORGIA 30333 DISEASES TIUNSMITTED BY FOODS ( A CIJiSSIFICATION AND SUMMARY) SECOND EDITION Frank L. Bryan, Ph.D., M.P.H. — U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE CENTERS FOR DISEASE CONTROL CENTER FOR PROFESSIONAL DEVE~PMENR AN_QTRAtNING ATLANTA, GEORGIA 30333 1982 DISEASES TRANSMITTED BY FOODS CONTENTS Page 1 INTRODUCTION 2 BACTERIAL DISEASES 2 Diseases of Contemporary Importance 7 Usually Transmitted by Other Means but Sometimes Foodborne Diseases in Which Proof of Transmission by Foods Is Inconclusive Unknown Role in Foodborne Transmission (Pathogenic and 16 Isolated from Foods) 17 VIRAL AND RICKETTSIW DISEASES 17 Epidemiological Evidence of Foodborne Transmission Viral Diseases which Could Possible be Transmitted by Foods but Proof Is Lacking 18 -I.-I PAMSITIC DISEASES LL 22 Always or Usually Transmitted by Foods 29 Usually Transmitted by Other Means but Sometimes Foodborne 33 FUNGAL DISEASES ‘- 33 Mycotoxicoses 37 Mushrooms 42 Mycotic Infections 43 PLANT TOXICANTS AND TOXINS 43 Alkaloids 47 Glycosides 4.9 Toxalbumins Resins 50 50 Other Toxicants, Toxins, and Allergens 54 TOXIC ANIM4LS 54 Fish Shellfish 53 60 Other Marine Animals 62 Non-Marine Animals 64 POISONOUS CHEMICALS 64 Metallic’Containers 65 Intentional Additives 68 Incidental and Accidental Food Additives 75 Allergens
    [Show full text]
  • Pepid Pediatric Emergency Medicine Clinical Topics
    PEPID PEDIATRIC EMERGENCY MEDICINE CLINICAL TOPICS NEONATOLOGY • CEPHAL HEMATOMA • CYSTIC FIBROSIS • ABDOMINAL AND CHEST WALL • CEREBRAL PALSY • CYTOMEGALOVIRUS (CMV) DEFECTS (NEONATE AND INFANT) • CHRONIC NEONATAL LUNG • DELAYED TRANSITION • ABNORMAL HEAD SHAPE DISEASE • DRUG EXPOSED INFANT • ABO-INCOMPATIBILITY • COMNGENITAL PARVOVIRUS B 19 • ERYTHROBLASTOSIS FETALIS • ACNE - INFANTILE • CONGENITAL CANDIDIASIS • EXAMINATION OF THE NEWBORN • ALIGILLE SYNDROME • CONGENITAL CATARACTS • EXCHANGE TRANSFUSION • AMBIGUOUS GENITALIA • CONGENITAL CMV • EYE MISALIGNMENT • AMNIOTIC FLUID ASPIRATION • CONGENITAL COXSACKIEVIRUS • FETAL HYDRONEPHROSIS • ANAL ATRESIA • CONGENITAL DYSERYTHROPOIETIC • FETOMATERNAL TRANSFUSION • ANEMIA - SEVERE AT BIRTH ANEMIA • FFEDS/FLUIDS - PRETERM • ANEMIA OF PREMATURITY • CONGENITAL EMPHYSEMA • FPIES(FOOD PROTEIN INDUCED • ANHYDRAMNIOS SEQUENCE • CONGENITAL GLAUCOMA ENTEROCOLITIES SYNDROME) • APGAR SCORE • CONGENITAL GOITER • GASTRO INTESTINAL REFLUX • APNEA OF PREMATURITY • CONGENITAL HEART BLOCK • GROUP B STREPTOCOCCUS • APT TEST • CONGENITAL HEPATIC FIBROSIS • HEMORRHAGIC DISEASE OF THE • ASPHYXIATING THORACIC DYSTRO- • CONGENITAL HEPATITIS B NEWBORN PHY (JEUNE SYNDROME) INFECTION • HEPATIC RUPTURE • ATELECTASIS • CONGENITAL HEPTITIS C • HIV • ATRIAL SEPTAL DEFECTS INFECTION • HYALINE MEMBRANE DISEASE • BARLOW MANEUVER • CONGENITAL HYDROCELE • HYDROCEPHALUS • BECKWITH-WIEDEMANN SYN- • CONGENITAL HYPOMYELINATING • HYDROPS FETALIS DROME • CONGENITAL HYPOTHYROIDISM • HYPOGLYCEMIA OF INFANCY • BENIGN FAMILIAL NEONATAL
    [Show full text]
  • Ecairdiac Poisons
    CHAPTER 36 ECAIRDIAC POISONS NICOTIANA TABACUM : All parts are FATAL DOSE: 50 to 100 rug, of nicotine. It rivals poisonous except the ripe seeds. The dried leaves cyanide as a poison capable of producing rapid death; (tobacco, lanthaku) contain one to eight percent of 15 to 30 g. of crude tobacco. nicotine and are used in the form of smoke or snuff FATAL PERIOD: Five to 15 minutes. or chewed. The leaves contain active principles, which TREATMENT: (I) Wash the stomach with warm are the toxic alkaloids nicotine and anabasine (which water containing charcoal, tannin or potassium are equall y toxic); nornicotine (less toxic). Nicotine permanganate. (2) A purge and colonic wash-out. (3) is a colourless, volatile, hitter, hygroscopic liquid Mecamylamine (Inversine) is a specific antidote given alkaloid. It is used extensively in agricultural and orally (4) Protect airway. (5) Oxygen. (6) horticultural work, for fumigating and spraying, as Symptomatic. insecticides, worm powders, etc. POST-MORTEM APPEARANCES: They are those ABSORPTION ANT) EXCRETION : Each of asphyxia. Brownish froth at mouth and nostrils, cigarette contains about IS to 20 mg. of nicotine of haemorrhagic congestion of Cl tract, and pulmonary which I to 2 rug, is absorbed by smoking; each cigar oedema are seen. Stomach may contain fragments of contains 15 to 40 mg. Nicotine is rapidly absorbed from leaves or may smell of tobacco. all mucous membranes, lungs and the skin. 80 to. 90 THE CIRCUMSTANCES OF POISONING: (1) percent is metabolised by the liver, but some may be Accidental poisoning results due to ingestion, excessive metabolised in the kidneys and the lungs.
    [Show full text]