Glen Allen Weather History</B>
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jeff Donnelly [[email protected]] Sent: Friday, April 28, 2006 4:55 PM To: [email protected] Subject: Re: Martha's Vineyard and Hurricanes
From: Jeff Donnelly [[email protected]] Sent: Friday, April 28, 2006 4:55 PM To: [email protected] Subject: Re: Martha's Vineyard and Hurricanes Hi Paul... The current hospital location is relatively safe from hurricanes making landfall to the west of Martha's Vineyard. For example storm surge from the 1938 hurricane at that location was between 4 and 6 feet. The location is much more susceptible to nor'easters. You might get 6 feet of surge associated with an intense nor'easter potentially with some large waves on top of that. However, my biggest concern is if an intense hurricane were to slowly pass to the east of the island. This would result in strong north and northeast winds that could pile significant storm surge and waves into Vineyard Haven Harbor. The October 3, 1841 hurricane was just such a storm. One of the key factors is the forward motion of the storm. If the storm track is to the east of the island and it is moving rapidly the speed of forward motion would be subtracted from the rotary winds of the west side of the storm and the duration of strong winds would be less (a couple of hours or less). If the storm moves slowly the duration of onshore hurricane force winds could be more like 6 to 10 hours. In this scenario the hospital might be in peril. You could get between 10 and 15 feet of storm surge in Vineyard Haven Harbor during such an event. From my read of the topographic map it looks like the hospital is between 10 and 20 feet above sea level. -
Eastern North Pacific Hurricane Season of 1997
2440 MONTHLY WEATHER REVIEW VOLUME 127 Eastern North Paci®c Hurricane Season of 1997 MILES B. LAWRENCE Tropical Prediction Center, National Weather Service, National Oceanic and Atmospheric Administration, Miami, Florida (Manuscript received 15 June 1998, in ®nal form 20 October 1998) ABSTRACT The hurricane season of the eastern North Paci®c basin is summarized and individual tropical cyclones are described. The number of tropical cyclones was near normal. Hurricane Pauline's rainfall ¯ooding killed more than 200 people in the Acapulco, Mexico, area. Linda became the strongest hurricane on record in this basin with 160-kt 1-min winds. 1. Introduction anomaly. Whitney and Hobgood (1997) show by strat- Tropical cyclone activity was near normal in the east- i®cation that there is little difference in the frequency of eastern Paci®c tropical cyclones during El NinÄo years ern North Paci®c basin (east of 1408W). Seventeen trop- ical cyclones reached at least tropical storm strength and during non-El NinÄo years. However, they did ®nd a relation between SSTs near tropical cyclones and the ($34 kt) (1 kt 5 1nmih21 5 1852/3600 or 0.514 444 maximum intensity attained by tropical cyclones. This ms21) and nine of these reached hurricane force ($64 kt). The long-term (1966±96) averages are 15.7 tropical suggests that the slightly above-normal SSTs near this storms and 8.7 hurricanes. Table 1 lists the names, dates, year's tracks contributed to the seven hurricanes reach- maximum 1-min surface wind speed, minimum central ing 100 kt or more. pressure, and deaths, if any, of the 1997 tropical storms In addition to the infrequent conventional surface, and hurricanes, and Figs. -
Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific Ab Sins Nicholas S
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School March 2019 Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific aB sins Nicholas S. Grondin Louisiana State University, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Climate Commons, Meteorology Commons, and the Physical and Environmental Geography Commons Recommended Citation Grondin, Nicholas S., "Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific asinB s" (2019). LSU Master's Theses. 4864. https://digitalcommons.lsu.edu/gradschool_theses/4864 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. CLIMATOLOGY, VARIABILITY, AND RETURN PERIODS OF TROPICAL CYCLONE STRIKES IN THE NORTHEASTERN AND CENTRAL PACIFIC BASINS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geography and Anthropology by Nicholas S. Grondin B.S. Meteorology, University of South Alabama, 2016 May 2019 Dedication This thesis is dedicated to my family, especially mom, Mim and Pop, for their love and encouragement every step of the way. This thesis is dedicated to my friends and fraternity brothers, especially Dillon, Sarah, Clay, and Courtney, for their friendship and support. This thesis is dedicated to all of my teachers and college professors, especially Mrs. -
Sensitivity of Numerical Simulation of Early Rapid Intensification of Hurricane Emily (2005) to Cloud Microphysical and Planetary Boundary Layer Parameterizations
Sensitivity of Numerical Simulation of Early Rapid Intensification of Hurricane Emily (2005) to Cloud Microphysical and Planetary Boundary Layer Parameterizations XUANLI LI and ZHAOXIA PU* Department of Meteorology, University of Utah, Salt Lake City, UT Second revision Submitted to Monthly Weather Review March 25, 2008 * Corresponding author: Dr. Zhaoxia Pu, Department of Meteorology, University of Utah, 135 S 1460 E, Rm.819, Salt Lake City, UT 84112-0110. E-mail: [email protected] 0 ABSTRACT An advanced research version of the Weather Research and Forecasting (ARW) model is used to simulate the early rapid intensification of Hurricane Emily (2005) using grids nested to high resolution (3 km). A series of numerical simulations are conducted to examine the sensitivity of the simulation to available cloud microphysical (CM) and planetary boundary layer (PBL) parameterization schemes. Results indicate that the numerical simulations of the early rapid intensification of Hurricane Emily are very sensitive to the choice of CM and PBL schemes in the ARW model. Specifically, with different CM schemes, the simulated minimum central sea level pressure (MSLP) varies by up to 29 hPa, and the use of various PBL schemes has resulted in differences in the simulated MSLP of up to 19 hPa during the 30 h forecast period. Physical processes associated with the above sensitivities are investigated. It is found that the magnitude of the environmental vertical wind shear is not well correlated with simulated hurricane intensities. In contrast, the eyewall convective heating distributions and the latent heat flux and high equivalent potential temperature (θe) feeding from the ocean surface are directly associated with the simulated intensities. -
1858 San Diego Hurricane and Not Be Sur- Documented to Be Real
THE SAN DIEGO HURRICANE OF 2 OCTOBER 1858 BY MICHAEL CHENOWETH AND CHRISTOPHER LANDSEA The discovery of a hurricane that directly impacted San Diego, California, nearly 150 yr ago has implications for residents and risk managers in their planning for extreme events for the region. ropical cyclones forming in the eastern North 10 September 1976 in California and Arizona, and Pacific Ocean are occasional visitors to the Hurricane Nora in September 1997 in Arizona. Only T southwestern United States. By the time these the 1939 tropical storm made a direct landfall in coastal systems travel far enough to the north to bring their California (Smith 1986), because the other three sys- associated moisture to the United States, the tropical tems entered the United States after first making land- cyclones have normally diminished below tropical fall in Mexico. storm strength over Mexico or over the colder waters The 1939 tropical storm caused $2 million in prop- of the California Current that flows southward along erty damage in California, mostly to shipping, shore the California coast. Rain, sometimes locally excessive, structures, power and communication lines, and crops. is frequently observed in many areas of the southwest- Ships in coastal waters of southern California reported ern United States when tropical cyclone remnants en- southeast winds between 34 and 47 kt (Hurd 1939). ter the region (Blake 1935; Smith 1986). However, no tropical cyclones are recorded or esti- Four tropical cyclones have managed to bring tropi- mated to have made landfall in the southwestern cal storm–force winds to the southwestern United United States as a hurricane, with maximum 1-min States during the twentieth century: a tropical storm surface (10 m) winds of at least 64 kt. -
Hurricane & Tropical Storm
5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard. -
Interagency Strategic Research Plan for Tropical Cyclones: the Way Ahead
INTERAGENCY STRATEGIC RESEARCH PLAN FOR TROPICAL CYCLONES THE WAY AHEAD FCM-P36-2007 February 2007 Office of the Federal Coordinator for Meteorological Services and Supporting Research THE FEDERAL COMMITTEE FOR METEOROLOGICAL SERVICES AND SUPPORTING RESEARCH (FCMSSR) VADM CONRAD C. LAUTENBACHER, JR., USN (RET.) MR. RANDOLPH LYON Chairman, Department of Commerce Office of Management and Budget DR. SHARON L. HAYS MS. VICTORIA COX Office of Science and Technology Policy Department of Transportation DR. RAYMOND MOTHA MR. DAVID MAURSTAD Department of Agriculture Federal Emergency Management Agency Department of Homeland Security BRIG GEN DAVID L. JOHNSON, USAF (RET.) Department of Commerce DR. MARY L. CLEAVE National Aeronautics and Space MR. ALAN SHAFFER Administration Department of Defense DR. MARGARET S. LEINEN DR. JERRY ELWOOD National Science Foundation Department of Energy MR. PAUL MISENCIK MR. KEVIN “SPANKY” KIRSCH National Transportation Safety Board Science and Technology Directorate Department of Homeland Security MR. JAMES WIGGINS U.S. Nuclear Regulatory Commission DR. MICHAEL SOUKUP Department of the Interior DR. LAWRENCE REITER Environmental Protection Agency MR. RALPH BRAIBANTI Department of State MR. SAMUEL P. WILLIAMSON Federal Coordinator MR. JAMES B. HARRISON, Executive Secretary Office of the Federal Coordinator for Meteorological Services and Supporting Research THE INTERDEPARTMENTAL COMMITTEE FOR METEOROLOGICAL SERVICES AND SUPPORTING RESEARCH (ICMSSR) MR. SAMUEL P. WILLIAMSON, Chairman MR. JAMES H. WILLIAMS Federal Coordinator Federal Aviation Administration Department of Transportation MR. THOMAS PUTERBAUGH Department of Agriculture DR. JONATHAN M. BERKSON United States Coast Guard MR. JOHN E. JONES, JR. Department of Homeland Security Department of Commerce MR. JEFFREY MACLURE RADM FRED BYUS, USN Department of State United States Navy Department of Defense DR. -
Verification of a Storm Surge Modeling System for the New York City – Long Island Region
Verification of a Storm Surge Modeling System for the New York City – Long Island Region A Thesis Presented By Thomas Di Liberto to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Master of Science in Marine and Atmospheric Science Stony Brook University August 2009 Stony Brook University The Graduate School Thomas Di Liberto We, the thesis committee for the above candidate for the Master of Science degree, hereby recommend acceptance of this thesis. Dr. Brian A. Colle, Thesis Advisor Associate Professor School of Marine and Atmospheric Sciences Dr. Malcolm J. Bowman, Thesis Reader Professor School of Marine and Atmospheric Sciences Dr. Edmund K.M. Chang, Thesis Reader Associate Professor School of Marine and Atmospheric Sciences This thesis is accepted by the Graduate School Lawrence Martin Dean of the Graduate School ii Abstract of the Thesis Verification of a Storm Surge Modeling System for the New York City – Long Island Region by Thomas Di Liberto Master of Science in Marine and Atmospheric Science Stony Brook University 2009 Storm surge from tropical cyclones events nor‟ easters can cause significant flooding problems for the New York City (NYC) – Long Island region. However, there have been few studies evaluating the simulated water levels and storm surge during a landfalling hurricane event over NYC-Long Island as well as verifying real-time storm surge forecasting systems for NYC-Long Island over a cool season. Hurricane Gloria was simulated using the Weather Research and Forecasting (WRF) V2.1 model, in which different planetary boundary layer (PBL) and microphysics schemes were used to create an ensemble of hurricane landfalls over Long Island. -
The San Diego Hurricane of 2 October 1858
THE SAN DIEGO HURRICANE OF 2 OCTOBER 1858 BY MICHAEL CHENOWETH AND CHRISTOPHER LANDSEA The discovery of a hurricane that directly impacted San Diego, California, nearly 150 yr ago has implications for residents and risk managers in their planning for extreme events for the region. ropical cyclones forming in the eastern North 10 September 1976 in California and Arizona, and Pacific Ocean are occasional visitors to the Hurricane Nora in September 1997 in Arizona. Only Tsouthwestern United States. By the time these the 1939 tropical storm made a direct landfall in coastal systems travel far enough to the north to bring their California (Smith 1986), because the other three sys- associated moisture to the United States, the tropical tems entered the United States after first making land- cyclones have normally diminished below tropical fall in Mexico. storm strength over Mexico or over the colder waters The 1939 tropical storm caused $2 million in prop- of the California Current that flows southward along erty damage in California, mostly to shipping, shore the California coast. Rain, sometimes locally excessive, structures, power and communication lines, and crops. is frequently observed in many areas of the southwest- Ships in coastal waters of southern California reported ern United States when tropical cyclone remnants en- southeast winds between 34 and 47 kt (Hurd 1939). ter the region (Blake 1935; Smith 1986). However, no tropical cyclones are recorded or esti- Four tropical cyclones have managed to bring tropi- mated to have made landfall in the southwestern cal storm-force winds to the southwestern United United States as a hurricane, with maximum 1-min States during the twentieth century: a tropical storm surface (10 m) winds of at least 64 kt. -
62Nd Book Cover.Cdr:Coreldraw
62nd Interdepartmental Hurricane Conference Theme: Tropical Cyclone Operations and Research: Priorities for the Future AGENDA Monday, March 3, 2008 9:00 AM Early Registration (9:00 AM-12:30 PM) Opening Session 12:30 PM Conference Opening Mr. Samuel P. Williamson Federal Coordinator for Meteorology 12:35 PM Introduction of Mayor Mr. Howard Chapman Executive Director, Charleston Area Regional Transportation Authority 12:40 PM Welcome/Opening Remarks The Honorable Joseph P. Riley, Jr. Mayor, Charleston, South Carolina 12:55 PM Introductory Comments Mr. Samuel P. Williamson Federal Coordinator for Meteorology 1:15 PM Keynote Address Ms. Mary M. Glackin Deputy Under Secretary for Oceans and Atmosphere (NOAA) 1:30 PM Panel Introduction Mr. Samuel P. Williamson Federal Coordinator for Meteorology 1:35 PM Panel: Priorities for Tropical Cyclone Research: A Senior Leader Perspective Moderator: Dr. Elbert W. (Joe) Friday, Professor Emeritus, University of Oklahoma Panelists: Dr. Alexander “Sandy” MacDonald, Deputy Assistant Administrator for NOAA Research Laboratories and Cooperative Institutes Mr. Robert Winokur, Technical Director, Office of the Oceanographer and Navigator of the Navy Dr. Jack Kaye, Associate Director for Research, Earth Science Division, NASA Dr. Fred Lewis, Air Force Director of Weather RDML (sel) David Titley, Commander, Naval Meteorology and Oceanography Command Dr. John “Jack” Hayes, Assistant Administrator for Weather Services, NOAA 3:00 PM Introduction of Federal Agency Lead Mr. Samuel P. Williamson Representatives Federal Coordinator for Meteorology 3:15 PM Afternoon Coffee/Soda Break (3:15-3:45 PM) 1 Session 1 Coordinator: Mr. Mark Welshinger (OFCM) Session 1: The 2007 Tropical Cyclone Season in Review Session Leaders Dr. -
Edward Petry 84 Co., Inc. Sers 0 111S
35 Cents 'V3!`t B Giorr.lrig9lde :walicge Linrary Y lOD Sioax City 6 lama 7J1 THE BUSIN D2H ma+yD RADIO NEWSPAPER __EMBER 17, 1962 Tv's biggest customers will spend even more Code board bucks cigarette ad controversy in 1963 27 to tv board 30 Radio -tv homes: county -by- county breakdown Cox appointment to FCC may bring an even released by Nielsen 85 tougher era of regulation 58 COMPLETE INDEX PAGE 7 MORiVINGSfDE E.OL.LE+A. LIBRARY IIILIUx CITY IOWA EDWARD PETRY 84 CO., INC. SERS 0 111S GREETIflBS BIG AGGIE LAND from BIG AGGIE LAND AMERICA'S 40'" ß11D10 MARKET Season's greetings from the management and staff or WNAX -570 and from the 2v4 million residents of Big Aggie Land who have been listen- ing to the reliable voice of WNAX -570 regularly for over 40 years. ',THE KATZ AGENTS', ,.c PEOPLES BROADCASTING CORPORATION 0 WNAX-570 CBS RADIO WNAX, Yankton, S. Dak KVTV, Sioux City. Iowa PROGRAMMING FOR ADULTS OF ALL AGES WGAR, Cleveland. Ohio WRFD, Columbus - PEOPLES BROADCASTING CORPORATION Worthington. Ohio WTTM, Trenton, N I. Sioux City, Iowa, Sioux Falls and Yankton, South Dakota WMMN, Fairmont, W.Va. Represented by Katz Pon II o n k TORONTO L I e ORLEANS N I AGAR A oAlb:n HAMILTON olra,d.auir (mimed O ',Medina Te.nTom. W nNord Sc Ca,Aann..r Mugu. Falls Magma Falla New G E N ESE E M O N R O E O N A R I O We.nd o I.I. .+ N L. Rey oann.abo Karr calbo BUFFALO C.n.nd.ó . -
The Contribution of Eastern North Pacific Tropical Cyclones to The
AUGUST 2009 C O R B O S I E R O E T A L . 2415 The Contribution of Eastern North Pacific Tropical Cyclones to the Rainfall Climatology of the Southwest United States KRISTEN L. CORBOSIERO Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California MICHAEL J. DICKINSON Weather Predict Consulting, Inc., Narragansett, Rhode Island LANCE F. BOSART Department of Earth and Atmospheric Sciences, University at Albany, State University of New York, Albany, New York (Manuscript received 26 August 2008, in final form 6 March 2009) ABSTRACT Forty-six years of summer rainfall and tropical cyclone data are used to explore the role that eastern North Pacific tropical cyclones (TCs) play in the rainfall climatology of the summer monsoon over the southwestern United States. Thirty-five TCs and their remnants were found to bring significant rainfall to the region, representing less than 10% of the total number of TCs that formed within the basin. The month of September was the most common time for TC rainfall to occur in the monsoon region as midlatitude troughs become more likely to penetrate far enough south to interact with the TCs and steer them toward the north and east. On average, the contribution of TCs to the warm-season precipitation increased from east to west, accounting for less than 5% of the rainfall in New Mexico and increasing to more than 20% in southern California and northern Baja California, with individual storms accounting for as much as 95% of the summer rainfall. The distribution of rainfall for TC events over the southwest United States reveals three main categories: 1) a direct northward track from the eastern Pacific into southern California and Nevada, 2) a distinct swath northeastward from southwestern Arizona through northwestern New Mexico and into southwestern Col- orado, and 3) a broad area of precipitation over the southwest United States with embedded maxima tied to terrain features.