Hogback Is Ridge Formed by Near- Vertical, Resistant Sedimentary Rock

Total Page:16

File Type:pdf, Size:1020Kb

Hogback Is Ridge Formed by Near- Vertical, Resistant Sedimentary Rock Chapter 16 Landscape Evolution: Geomorphology Topography is a Balance Between Erosion and Tectonic Uplift 1 Topography is a Balance Between Erosion and Tectonic Uplift 2 Relief • The relief in an area is the maximum difference between the highest and lowest elevation. – We have about 7000 feet of relief between Boulder and the Continental divide. Relief 3 Mountains and Valleys • A mountain is a large mass of rock that projects above surrounding terrain. • A mountain range is a continuous area of high elevation and high relief. • A valley is an area of low relief typically formed by and drained by a single stream. • A basin is a large low-lying area of low relief. In arid areas basins commonly have closed topography (no river outlet to the sea). Mountains • Typically occur in ranges. • Glaciated forms –Horn –Arête • Desert Mountains – Vertical Cliffs – Alluvial Fans 4 Mountain Landforms: Horn Deserts: Vertical Cliffs and Alluvial Fans 5 Valleys and Basins • River Valleys – U-shape (Glacial) – V-shape (Active Water erosion) – Flat-floored (depositional flood plain) • Tectonic (Fault) Valleys (Basins) – Tectonic origin – San Luis Valley – Jackson Hole – Great Basin U-shaped Valley: Glacial Erosion 6 V-shaped Valley: Active water erosion Flat-floored Valley: Depositional Flood Plain 7 Desert and Semi-arid Landforms • A plateau is a broad area of uplift with relatively little internal relief. • A mesa is a small (<10 km2)plateau bounded by cliffs, commonly in an area of flat-lying sedimentary rocks. • A butte is a small (<1000m2) hill bounded by cliffs Plateau, Mesa, Butte 8 Colorado National Monument Canyonlands 9 Desert and Semi-arid Landforms • A cuesta is an asymmetric ridge in dipping sedimentary rocks as the Flatirons. • A hogback is ridge formed by near- vertical, resistant sedimentary rock. (Dakota Ridge) • Badlands are areas of deeply gullied topography unsuitable for agriculture. Cuesta 10 Hogback Bad- lands 11 Landform Terms • Relief • U-shaped • Mountain Valley • Mountain • V-shaped Range Valley • Valley • Plateau • Basin • Mesa • Horn • Butte • Arête • Cuesta • Alluvial Fan • Hogback • Badlands 12.
Recommended publications
  • Physical Geography of Southeast Asia
    Physical Geography of Southeast Asia Creating an Annotated Sketch Map of Southeast Asia By Michelle Crane Teacher Consultant for the Texas Alliance for Geographic Education Texas Alliance for Geographic Education; http://www.geo.txstate.edu/tage/ September 2013 Guiding Question (5 min.) . What processes are responsible for the creation and distribution of the landforms and climates found in Southeast Asia? Texas Alliance for Geographic Education; http://www.geo.txstate.edu/tage/ September 2013 2 Draw a sketch map (10 min.) . This should be a general sketch . do not try to make your map exactly match the book. Just draw the outline of the region . do not add any features at this time. Use a regular pencil first, so you can erase. Once you are done, trace over it with a black colored pencil. Leave a 1” border around your page. Texas Alliance for Geographic Education; http://www.geo.txstate.edu/tage/ September 2013 3 Texas Alliance for Geographic Education; http://www.geo.txstate.edu/tage/ September 2013 4 Looking at your outline map, what two landforms do you see that seem to dominate this region? Predict how these two landforms would affect the people who live in this region? Texas Alliance for Geographic Education; http://www.geo.txstate.edu/tage/ September 2013 5 Peninsulas & Islands . Mainland SE Asia consists of . Insular SE Asia consists of two large peninsulas thousands of islands . Malay Peninsula . Label these islands in black: . Indochina Peninsula . Sumatra . Label these peninsulas in . Java brown . Sulawesi (Celebes) . Borneo (Kalimantan) . Luzon Texas Alliance for Geographic Education; http://www.geo.txstate.edu/tage/ September 2013 6 Draw a line on your map to indicate the division between insular and mainland SE Asia.
    [Show full text]
  • Geology and Ground-Water Resources of San Miguel County, New Mexico
    GEOLOGY AND GROUND - WATER RESOURCES OF SAN MIGUEL COUNTY, NEW MEXICO GROUND-WATER REPORT 2 Geology and Ground-Water Resources of San Miguel County, New Mexico BY R. L. GRIGGS AND G. E. HENDRICKSON Prepared in cooperation with The United States Bureau of Reclamation New Mexico Bureau of Mines & Mineral Resources and the New Mexico State Engineer NEW MEXICO BUREAU OF MINES AND MINERAL RESOURCES SOCORRO 1951 NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY E. J. Workman, President STATE BUREAU OF MINES AND MINERAL RESOURCES Eugene Callaghan, Director THE REGENTS MEMBERS EX-OFFICIO The Honorable Edwin L. Mechem ...................... Governor of New Mexico Tom Wiley ............................................... Superintendent of Public Instruction APPOINTED MEMBERS Thomas M. Cramer, President ...................................................... Carlsbad Holm 0. Bursum, Jr., Secretary-Treasurer ........................................ Socorro Frank C. DiLuzio ..................................................................... Los Alamos A. A. Kemnitz .................................................................................... Hobbs Cooper Shapley ............................................................................... Deming Contents Page ABSTRACT .............................................................................................................. 9 INTRODUCTION ............................................................................................... 11 Location, area, and accessibility 11 Previous investigations
    [Show full text]
  • S-1/GEOH/CC-1/19 (Honours)
    S-1/GEOH/CC-1/19 TDP (Honours) 1st Semester Exam., 2019 GEOGRAPHY (Honours) FIRST PAPER (CC-1) (Physical Geography) Full Marks : 60 Time:3 Hours The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. Section A 1. Answer any sir ofthe following questions: 2x6-12 : (a) Mention any two causes of earthquake. b) Distinguish between cuesta and hogback. (c) Differentiate between Sial and Sima. (d) Distinguish between earth flow and mud flow. (e)What do you understand by line of compensation'? [ Turn Over ] B1/23-150 (2) What is tombolo? (3 Or, Define the tem 'cycle of erosion'. b) What is the difference between magma and lava? between Write the h) Distinguish corrasion and attrition. characteristics of the of volcanoes with sketches. following types Section - B 3+(3+3+3)=12 Hawaiian type Answer the following questions 12x4-48 G) Vulcanian type 2. (a) Discuss the interior structure of the earth according to Suess. What are the characteristics i) Fissure type. of Igneous rocks? Describe the landformns 4. (a) Detfine in produced by intrusive Ilgneous rocks with neat Geomorphology. "Complexity landforms is more common than simplicity" - Explain the sketches. 4+4+4-12 statement. What are the different erosional processes of river and glacier? Or 2+5+5-12 (6) Write the concept of Isostasy. Explain Airy's Or, concept on Isostasy. Write a note on global (6) What do you mean by slope development? Write Isostatic adjustment. 2+5+5=12 the concept of slope development proposed by L.C.
    [Show full text]
  • Spatial Variability of Levees As Measured Using the CPT
    2nd International Symposium on Cone Penetration Testing, Huntington Beach, CA, USA, May 2010 Spatial Variability of Levees as Measured Using the CPT R.E.S. Moss Assistant Professor, Cal Poly, San Luis Obispo J. C. Hollenback Graduate Researcher, U.C. Berkeley J. Ng Undergraduate Researcher, Cal Poly, San Luis Obispo ABSTRACT: The spatial variability of a soil deposit is something that is commonly discussed but difficult to quantify. The heterogeneity as a function of lateral distance can be critical to the design of long engineered structures such as highways, bridges, levees, and other lifelines. This paper presents a methodology for using CPT mea- surements to quantifying the spatial variability of cone tip resistance along a levee in the California Bay Delta. The results, presented in the form of a general relative va- riogram, identify the distance at which the maximum spatial variability is achieved for a given soil strata. This information helps define minimally correlated stretches of levee for proper failure and risk analysis. Presented herein are methods of interpret- ing, calculating, and analyzing CPT data to arrive at the quantified spatial variability with respect to different static and seismic failure modes common to levee systems. 1 INTRODUCTION Spatial variability of engineering properties in soil strata is inherent to the nature of soil. Spatial variability is controlled primarily by the depositional environment where high energy systems usually deposit materials with high spatial variability (e.g. al- luvial gravels) and low energy systems usually deposit materials with low spatial va- riability (e.g. lacustrine clays). This spatial variability is generally taken into account in geotechnical design in a qualitative empirical manner through appropriately spaced borings to assess the changing subsurface conditions.
    [Show full text]
  • Geology and Stratigraphy Column
    Capitol Reef National Park National Park Service U.S. Department of the Interior Geology “Geology knows no such word as forever.” —Wallace Stegner Capitol Reef National Park’s geologic story reveals a nearly complete set of Mesozoic-era sedimentary layers. For 200 million years, rock layers formed at or near sea level. About 75-35 million years ago tectonic forces uplifted them, forming the Waterpocket Fold. Forces of erosion have been sculpting this spectacular landscape ever since. Deposition If you could travel in time and visit Capitol Visiting Capitol Reef 180 million years ago, Reef 245 million years ago, you would not when the Navajo Sandstone was deposited, recognize the landscape. Imagine a coastal you would have been surrounded by a giant park, with beaches and tidal flats; the water sand sea, the largest in Earth’s history. In this moves in and out gently, shaping ripple marks hot, dry climate, wind blew over sand dunes, in the wet sand. This is the environment creating large, sweeping crossbeds now in which the sediments of the Moenkopi preserved in the sandstone of Capitol Dome Formation were deposited. and Fern’s Nipple. Now jump ahead 20 million years, to 225 All the sedimentary rock layers were laid million years ago. The tidal flats are gone and down at or near sea level. Younger layers were the climate supports a tropical jungle, filled deposited on top of older layers. The Moenkopi with swamps, primitive trees, and giant ferns. is the oldest layer visible from the visitor center, The water is stagnant and a humid breeze with the younger Chinle Formation above it.
    [Show full text]
  • LIESSE Où Klaxonner Pour Faire Chier P. 17 LA POSTE Schwaller De Rien P. 16 DÉCROISSANCE Un Art Consommé P. 7 FOOT Bilan Et P
    Vendredi 22 juin 2018 // No 369 // 9e année CHF 4.– // Abonnement annuel CHF 160.– // www.vigousse.ch FOOT DÉCROISSANCE LA POSTE LIESSE Bilan et perspectives Un art consommé Schwaller Où klaxonner pour PP. 2, 3, 4, 14 P. 7 de rien P. 16 faire chier P. 17 JAA – 1001 Lausanne P.P./Journal – Poste CH SA – Poste Lausanne P.P./Journal JAA – 1001 2 C’EST PAS POUR DIRE ! POINT V 3 opposants se font mystérieusement empoisonner, un Etat qui inonde le Y a faute, ou bien ? reste du monde de fake news, de faits Parité bien alternatifs, de théories du complot et FOOT NEWS On nous cache tout, on nous dit rien ! La vérité est de désinformation stupide, une clique malmenée de partout, sauf, heureusement, dans le seul domaine qui truque toutes les élections depuis qui compte : le football. des années, bref, le royaume du faux ordonnée… et de la magouille. Mais pour le foot, faut pas déconner quand même : on Séverine André Ce lundi, tandis que les petits Suisses mais y a hors-jeu là ! » ; « Hé ! Quel peut parfaitement faire confiance à se remettaient à peine de la nuit de connard, il l’a poussé ! » ; ou « Quel ces mythos. Car le football, c’est la t soudain, dimanche 17 juin, après des folie faisant suite au glorieux match enculé, il s’est laissé tomber ! » Très vérité. nul contre le Brésil, les élèves fran- clairement, c’est le cas que p si, et siècles d’iniquité, la Suisse s’enthousiasme çais gambergeaient sec devant leur seulement si, il y a effectivement Autre preuve que la vérité, c’est pour l’égalité.
    [Show full text]
  • The Autogenic Landform Change in a Fluvial-Aeolian Interacting Field
    Fifth Intl Planetary Dunes Workshop 2017 (LPI Contrib. No. 1961) 3001.pdf IN DYNAMIC EQUILIBRIUM: THE AUTOGENIC LANDFORM CHANGE IN A FLUVIAL-AEOLIAN INTERACTING FIELD. B. Liu 1 and T. Coulthard 2, 1 College of the Environment and Ecology, Xiamen Univer- sity, Xiamen, Xiang’an South Road, 361102 China, [email protected], 2 School of Environmental Sciences, University of Hull, Cottingham Road, HU6 7SR United Kingdom, [email protected]. Aeolian and fluvial systems are usually studied in- doubtedly due to the influence of climatic change, tec- dependently which leaves many questions unresolved tonics or even human activities. Nevertheless, this as- in terms of how they interact. When sand dunes and sumption could has prevented researchers from consid- rivers coincide with each other, the interaction of sedi- ering that large scale of landform instability may be ment transport fluxes between the two systems may inherent and driven by internal forces in the system in lead to change in either or both systems therefore can dynamic equilibrium. Hence, a sudden landscape significantly change surface morphology. An inventory change may be inherent in the normal development of a is presented from 230 globally distributed study sites fluvial-aeolian interacting field and that a change in an from locations where fluvial and aeolian systems inter- external variable is not always required for a signifi- act with each other. At each location key attributes, cant geomorphic event to occur but depends on the wind/river direction, net sand transport direction, dune system intrinsic geomorphic threshold. If this geo- morphology, river channel pattern were identified and morphic threshold condition can be identified, not only relationships between each factors were analyzed.
    [Show full text]
  • Groundwater Issues in the Paleozoic Plateau a Taste of Karst, a Modicum of Geology, and a Whole Lot of Scenery
    GGroundwaterroundwater IssuesIssues inin tthehe PaleozoicPaleozoic PlateauPlateau A Taste of Karst, a Modicum of Geology, and a Whole Lot of Scenery Iowa Groundwater Association Field Trip Guidebook No. 1 Iowa Geological and Water Survey Guidebook Series No. 27 Dunning Spring, near Decorah in Winneshiek County, Iowa September 29, 2008 In Conjunction with the 53rd Annual Midwest Ground Water Conference Grand River Center, Dubuque, Iowa, September 30 – October 2, 2008 Groundwater Issues in the Paleozoic Plateau A Taste of Karst, a Modicum of Geology, and a Whole Lot of Scenery Iowa Groundwater Association Field Trip Guidebook No. 1 Iowa Geological and Water Survey Guidebook Series No. 27 In Conjunction with the 53rd Annual Midwest Ground Water Conference Grand River Center, Dubuque, Iowa, September 30 – October 2, 2008 With contributions by M.K. Anderson Robert McKay Iowa DNR-Water Supply Engineering Iowa DNR-Geological and Water Survey Bruce Blair Jeff Myrom Iowa DNR-Forestry Iowa DNR-Solid Waste Michael Bounk Eric O’Brien Iowa DNR-Geological and Water Survey Iowa DNR-Geological and Water Survey Karen Osterkamp Lora Friest Iowa DNR-Fisheries Northeast Iowa Resource Conservation and Development Jean C. Prior Iowa DNR-Geological and Water Survey James Hedges Luther College James Ranum Natural Resources Conservation Service John Hogeman Winneshiek County Landfi ll Operator Robert Rowden Iowa DNR-Geological and Water Survey Claire Hruby Iowa DNR-Geographic Information Systems Joe Sanfi lippo Iowa DNR-Manchester Field Offi ce Bill Kalishek Gary Siegwarth Iowa DNR-Fisheries Iowa DNR-Fisheries George E. Knudson Mary Skopec Luther College Iowa DNR-Geological and Water Survey Bob Libra Stephanie Surine Iowa DNR-Geological and Water Survey Iowa DNR-Geological and Water Survey Huaibao Liu Paul VanDorpe Iowa DNR-Geological and Water Survey Iowa DNR-Geological and Water Survey Iowa Department of Natural Resources Richard Leopold, Director September 2008 CONTENTS INTRODUCTION .
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Landform Geography (4 Credit Hours) Course Description: Hydrolo
    GEOGRAPHY 201 LANDFORM GEOGRAPHY BULLETIN INFORMATION GEOG 201 - Landform Geography (4 credit hours) Course Description: Hydrology, soil science, and interpretation of physical features formed by water, wind, and ice, with emphasis on environmental change Note: Three hours of lecture and one two-hour laboratory per week. Instructor Contact Information: SAMPLE COURSE OVERVIEW This course is an introduction to landforms; that is, the physical features on the Earth's surface such as valleys, hill-slopes, beaches, sand dunes, and stream channels. Students will learn, from the study of landforms, of past environmental conditions, how they have changed, and the processes involved, including human actions and natural agents. Students also will learn about soils, hydrology, and processes of landform creation by water, wind, ice, and gravity. ITEMIZED LEARNING OUTCOMES Upon successful completion of Geography 201 students will be able to: 1. Explain scientific methods and terminology including hypothesis formulation and testing, experimental design, the method of multiple working hypotheses, and opposite concepts such as inductive vs. deductive reasoning and empirical vs. theoretical methods. 2. Interpret topographic maps and geospatial data such as remote sensing and Geographic Information Systems (GIS). 3. Collect and analyze laboratory and field measurement data to describe Earth materials, soil properties, sediment grain-size distributions, and landform features. 4. Evaluate the merits of various theories of landscape change, such as catastrophism, uniformitarianism, and neo-catastrophism, and to explain how landforms are created and change over various time scales. 5. Comprehend the environmental history of Earth’s surface from the recent geologic past to present with an emphasis on Quaternary processes and changes (the Quaternary is the current geological period that began ~2 million years ago), and interactions between climate, humans, and environmental response during and after the Neolithic period of human culture.
    [Show full text]
  • Economic Impact of Mountain Biking in the Grand Mesa, Uncompahgre & Gunnison National Forests
    Economic Impact of Mountain Biking in the Grand Mesa, Uncompahgre & Gunnison National Forests JAMES N. MAPLES, PhD MICHAEL J. BRADLEY, PhD Report submitted to Outdoor Alliance: November 2018 Study funded by Outdoor Alliance Image Credit: Carl Zoch 1 Executive Summary of Study Grand Mesa, Uncompahgre and Gunnison National Forest (GMUG) is an important American mountain biking destination. Mountain bikers visited the GMUG over 150,000 times per year. An estimated 70% of these visits were from persons living outside the GMUG and surrounding region. Over 576 mountain bikers from around the nation responded to our survey collecting their economic expenditures on their most recent trip to the GMUG. Based on the economic impact analysis and NVUM visitation figures, the research team estimates: 1. Mountain bike visitors who are not local residents annually spend $24 million in the GMUG. 2. Mountain bike visitors’ expenditures in the GMUG support 315 jobs and $7.9 million in job income within the region. REPORT CONTENTS Meet Your Research Team 2 Methodological Notes 3 Study Regions 4 Visitor Mean Expenditures 5 Economic Impact Terminology 8 Economic Impact Modeling 9 Taxation Generation within the Study Areas 10 Visitor Expenditures beyond Study Area but in State 11 Local Resident Expenditures by Study Area 12 Local Resident Expenditures beyond Study Area but Inside State 15 Omissions, Considerations 16 1 Meet Your Research Team DR. JAMES N. MAPLES is an associate professor of sociology at Eastern Kentucky University, where he examines the political economy of renewable tourism. His research interests include the economic impact of outdoor recreation and social change in rural areas.
    [Show full text]
  • Geology and Groun D Water Features of the Butte Valley Region Siskiyou County California
    Geology and Groun d Water Features of the Butte Valley Region Siskiyou County California By P. R. WOOD GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1491 Prepared in cooperation with the California Department offf^ater Resources UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1960 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library catalog card for this publication appears after page 151. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Abstract___.__-_-____________-____________-_____----_----------- 1 Introduction.___---____-______________________--_----------------- 3 Purpose and scope of the work._..._____________________----.._-- 3 Location of area.-_-___-_____________-______--_------_--------- 4 Culture and accessibility. ________-___.___-______-----_--------- 4 Previous investigations.________-_____-______-_-_---_----------- 4 Acknowledgments _________________-___-____-__------_--------- 6 Well-numbering system____-______________-______------_------- 6 Method of investigation._____-______________-__-----_---------- 7 Physical features of the area..___________________._____-___-.---_--- 10 Topography and drainage. __________________-____----_-----_--- 10 Cascade Range.--___________-__________-_-_---_-_--------- 10 Butte Valley_-___----._-_----_---_--_---_----------------- 11 Red Rock Valley area________-_--__---_-------------------- H Oklahoma district. _____________________-___---------------
    [Show full text]