This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G

Total Page:16

File Type:pdf, Size:1020Kb

This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. The biogeographic affinities of the Sri Lankan flora A thesis submitted for the degree of Doctor of Philosophy Lakmini Darshika Kumarage Institute of Molecular Plant Sciences, University of Edinburgh Royal Botanic Gardens, Edinburgh January 2016 Abstract The island of Sri Lanka’s exceptional biodiversity and enigmatic biogeography begs investigation, as the island is key in understanding the evolution of the Asian tropical flora. Since the Jurassic, Sri Lanka has been subjected to remarkable tectonic changes, thus its flora could have been influenced by that of a number of nearby landmasses, as well giving Sri Lanka the potential to have played a wider role in the assemblage of floras elsewhere. Firstly, as Sri Lanka originated as a fragment of the supercontinent Gondwana, part of its flora may contain Gondwanan relict lineages. There is also the potential for immigration from Laurasia after the Deccan Plate collided with it 45-50 Mya. Further, Sri Lanka may harbour floristic elements from nearby land masses such as Africa and Southeast Asia as a result of long distance dispersals, and in situ speciation has the potential to have played an important role in enhancing the endemic Sri Lankan flora. I tested the relative contributions of the above hypotheses for the possible origins of the Sri Lankan flora using three representative families, Begoniaceae, Sapotaceae and Zingiberaceae. These families represent both herbaceous and woody elements, and have high diversity across the tropics. Dated molecular phylogenies were constructed for each family. I used recent analytical developments in geographic range evolution modelling and ancestral area reconstruction, incorporating a parameter J to test for founder event speciation. A fine scale area coding was used in order to obtain a better picture of the biogeography of continental Asia. Amongst all the models compared, a dispersal-extinction cladogenesis model incorporating founder event speciation proved to be the best fit for the data for all three families. The dates of origin for Sri Lankan lineages considerably post-date the Gondwanan break up, instead suggesting a geologically more recent entry followed by diversification of endemics within the island. The majority of Sri Lankan lineages have an origin in the Sunda Shelf (53%). Persistence of warm temperate and perhumid climate conditions in southwestern Sri Lanka resembling those of Peninsular Malaysia and Sumatra could have facilitated suitable habitats for these massive dispersals from the Sunda Shelf region. Some trans-oceanic long distance dispersals from Africa (11%) are also evidenced, again these are too young to accept a hypothesis of dispersal during i the Deccan Plate’s migration close to the African coast during the late Cretaceous, but occurred later during the Miocene. Further, some lineages of Laurasian origin (20%) are evidenced in the Zingiberaceae with ancestral areas of China and Indochina, which is congruent with a post collision invasion. Among the families tested, dispersals have occurred stochastically, one during the Eocene, six during the Oligocene, seven during the Miocene, two during the Pliocene and one during the Pleistocene. The highest number of dispersals occurred during the Miocene when a warm climate was prevailing during the Miocene thermal maximum. My results confirm that in situ speciation is an important contributor to the Sri Lankan flora. More rapid radiation of endemics has occurred during Pliocene-Pleistocene; two endemics in Begoniaceae, ten endemics in Sapotaceae and ten endemics in Zingiberaceae have evolved in situ during this period. Sri Lanka will have been subjected to expansion and contraction of climatic and vegetation zones within the island during glacial and interglacial periods, potentially resulting in allopatric speciation. As a conclusion, long distance dispersals have played a prominent role in the evolution of the Sri Lankan flora. The young ages challenge the vicariant paradigm for the origin and current disjunct distributions of the world’s tropical lineages and provide strong evidence for a youthful tropics at the species level. The thesis contains six chapters; first two are introductory chapters, then there are three analytical chapters, one for each family, and finally a summary chapter is provided. Each analytical chapter is written as a stand-alone scientific publication, thus there is some repetition of relevant content in each. ii iii Acknowledgements Firtslty I would like to give my sincere thanks and gratitude to Dr Mark Hughes, Dr James Richardson and Dr Richard Milne for their immense support and advices throughout my project from the beginning to the end. They were always very helpful and have always made the time to discuss my ideas, to answer my questions. A special thank goes to Dr Mark Hughes who was with me in my ups and downs, helping me to face difficult situations and finding solutions. He kept me on trackevery time, encouraged me and was so kind to visit Sri Lanka twice to help me in the thesis work. Without his huge support and guidance this would not have been possible. Also I like to thank Dr Sumudu Rubasinghe, University of Peradeniya, Sri Lanka for helping me in applying for permits in palnt collections in Sri Lanka. Funding for this research came from the Darwin Trust of Edinburgh which covered my tuition fee, lab costs and living expenses. I am immensely grateful to the founder of the schoralship late Prof Kenneth Murray and interview panel for selecting me to offer the shoclarship which provided opportunity for me to pursue a PhD in University of Edinburgh. Funding for field work in Sri Lanka was facilitated by the Davis expedition fund, I am thankful to them to offering me the funds to carry out the field work successfully. Also a big thanks goes to the forest Department and the wildlife department of Sri Lanka for giving the permission to collect plant specimens and Upali, Tharanga, Indika and many other people who helped me in the field. A special thank you goes to Royal Botanic Gardens, Edinburgh which provided me the opportunity to join the Tropical Group and working space in the molecular biology laboratories. Also I am grateful to all members at RBGE for their kindness, smiles, and support throughout the period. More specially, Dr Michelle Hart, Dr Laura Forrest, Ruth Hollands for their help and advice in lab and always willingness to help and Deborah Vaile for her support in the library. I am grateful to everyone who has helped with the collection of plant material, provided silica dried samples, DNA isolations and sequence data during the course of my research. Notable mentions go to Dr Daniel Thomas, Dr Jane Droop for providing the DNA sequence alignments and Dr Mark Newman for his support in Zingiberaceae iv specimen identification and sharing his expertise. Also I am thankful to Dr Sangeetha Rajbhandary, Dr Ching-I-Peng and Koh Nakamura for providing me the Himalayan Begonia DNA samples. Further, I am grateful to all the academic and non academic staff members of the Open University of Sri Lanka for their support in various forms for me to carry out my research very well. Thanks also go to all my collegues and my fellow PhD students for their moral support and humour and for making the PhD room more pleasant. I am thankful to all my family members for their immense support and encouragement in all my achievements. And last but not least I am grateful to Ayon, being so good, allowing me to work freely and Kumari for looking after him very well.More specially thanks goes to Sahan, who looked after Ayon very well giving freedom for me to work on my research. Without his love, encouragement, understanding and support, none of this would have been possible. v TABLE OF CONTENTS CHAPTER 1: Introduction to Biogeography………………..…………….. 1 What is Biogeography?................................................................................................. 1 1.2 The early history of biogeography as a discipline………………………….………..…………. 1 1.3 A review of historical biogeographic methods………………………………………….………. 3 1.3.1 Paradigm shifts key to historical biogeographic analysis………………..…………. 3 1.3.2 The beginnings of a modern synthesis of analytical historical biogeography 8 1.3.3 Approaches to analytical historical biogeography……………………………………. 9 1.4 The current state of the field…………………………………………………………………………….. 15 1.5 Summary…………………………………………………………………………………………………………… 15 CHAPTER 2: Introduction to Sri Lankan biogeography………………. 17 2.1 Current Geology and climate of Sri Lanka………………………….………………………………. 17 2.2 Palaeoclimate, geological changes………………………………….…………………………………. 19 2.3 Flora of Sri Lanka…………………………………………………………………………………..………….
Recommended publications
  • The Genus Axinandra—Melastomataceae : a Missing Link in Myrtales ?*
    CEYIONJ. SCI. (Bio. Sci.) Vol. 10, No. 1, April 1972 The Genus Axinandra—Melastomataceae : A Missing Link in Myrtales ?* by WIIXEM MEIJER Department oj Botany, University of Kentucky, Lexington, KY, 40506, U.S.A. (With two plates) The flora of Ceylon contains a number of genera and species which are of great impor­ tance for the study of the evolution of the families of Angiosperms. Orie example of this is the genus Axinandra Thwaites with A. zeylanica Thwaites in Hooker, Kew Journal 6: 67, 1854 as type species. Other species are known from Malaya and Borneo (see Bakhuizen van den Brink 1946). They are part of the wet lowland rain forests. Close study of this genus in Borneo and in the wet zone of Ceylon has given me the impression that Axinandra could be a very old genus wh;ch stands somewhere near the roots of the families Lythraceae, Myrtaceae, Melastomatacacac and Rhizophoraceae. The flowers are 5-merous with 10 (12) stamens. The petals drop off in a cap while the flowers open. This character occurs in Eugenia in Myrtaceae. The pollen sacs of the anther join or almost join at the apex of the stamen. The fruits are capsules opening with 5 valves; in each locule there are one or two seeds with wings. The calyx tube is no part of the opening fruit. Similar fruits occur in the Indo-Malesian genus Lagerstrocmia (Lythraceae), in genera of the subfamily Leptosper- moideae of Myrtaceae (see Leptospermum, Tristauia and Metrosideros), and in Macarisia (Rhizo­ phoraceae)—a genus known from Madagascar. If we look for possible links between Rosales and Myrtales among primitive Myrtales then we might also pay attention to the Indo-Malesian genus Crypteronia which has also capsular fruits and winged seeds and similar anthers; however, only 5 stamens and flowers without petals.
    [Show full text]
  • Biological, Chemical and Pharmacological Aspects of Madhuca Longifolia Dhruv Jha, Papiya Mitra Mazumder
    Asian Pacific Journal of Tropical Medicine 2018; 11(1): 9-14 9 IF: 0.925 Asian Pacific Journal of Tropical Medicine journal homepage: www.apjtm.org doi: 10.4103/1995-7645.223528 ©2018 by the Asian Pacific Journal of Tropical Medicine. All rights reserved. Biological, chemical and pharmacological aspects of Madhuca longifolia Dhruv Jha, Papiya Mitra Mazumder Birla Institute of Technology, Mesra 835215, Ranchi, India ARTICLE INFO ABSTRACT Article history: Madhuca longifolia (M. longifolia) is also known as Mahua belonging to the family sapoteace Received 17 July 2017 family. M. longifolia is used in traditional and folklore system of medicine widely across Received in revised form 20 October 2017 India, Nepal, and Sri Lanka for its various pharmacological properties as in snake bites and Accepted 4 December 2017 Available online 2 January 2018 in diabetes. Phytochemicals studies documented the different bioactive constituents, namely, glycosides, flavonoids, terpenes and saponins. The pharmacological studies proved that it possess wide range of biological activities such as antiulcer, antiinflammatory, antioxidant Keywords: Madhuca longifolia and antidiabetic activities. The toxicity studies reveal its non-toxic effect even at larger doses. Phytochemistry Thus M. longifolia can be considered as a therapeutic agent for specific diseases. Scientific Phatmacology investigation on various isolated bioactive components and its efficacy on diseases proved the Medicinal and non-medical uses future usefulness of different species of Madhuca. This review summarizes the phytochemical, pharmacological, medicinal and non-medicinal uses of M. longifolia. Further exploration on M. longifolia for its therapeutic potential is however required for depth traditional knowledge. diabetes, inflammation, bronchitis, ulcer and other diseases[8-10].
    [Show full text]
  • Madhuca Longifolia (J.Koenig Ex L.) J
    REVIEW ARTICLE A Review on Pharmacological Approach of the Therapeutic Property of Madhuca longifolia (J.Koenig ex L.) J. f. Macbr. Flower Bibha Mishra A*, Usha T Post graduate and Research Department of Foods and Nutrition, Ethiraj College for Women, Chennai-600 008, India. *Correspondence: [email protected] ABSTRACT Liver plays an important role in maintaining the metabolic function and excretion of toxins from the body. An injury or liver dysfunction caused by consumption of toxic chemicals, excessive alcohol and microbes result in a challenging condition called hepatotoxicity. Madhuca longifolia belonging to Sapotaceae family is found to possess pharmacological properties in the treatment of various diseases. The present review aims at compiling the hepatoprotective effect of Mahua flower based on various experimental studies. Methanolic extract of Mahua flower exhibited hepatoprotective property when administered at different dosages in rat was found to lower the levels of SGPT, SGOT, ALP and total bilirubin simultaneously increasing serum total proteins and albumin. The ethanolic extract also showed hepatoprotective activity against paracetamol induced hepatotoxicity in albino rats when administered in dosage of 500 and 750 mg/kg body weight by stimulating the healing and regeneration of hepatocytes. Hepatoprotective activity might be due to the effect of extractsagainst the cellular leakage and loss of function of the cell membrane in hepatocytes. The protective effect might be due to the presence of alkaloids, flavonoids and phenolics. Future prospects include purification and characterization of phyto-compounds present in the Madhucalongifolia flower. Further studies on mechanism of action will lead to discovery of novel therapeutic agents for the treatment hepatic diseases.
    [Show full text]
  • Ekspedisi Saintifik Biodiversiti Hutan Paya Gambut Selangor Utara 28 November 2013 Hotel Quality, Shah Alam SELANGOR D
    Prosiding Ekspedisi Saintifik Biodiversiti Hutan Paya Gambut Selangor Utara 28 November 2013 Hotel Quality, Shah Alam SELANGOR D. E. Seminar Ekspedisi Saintifik Biodiversiti Hutan Paya Gambut Selangor Utara 2013 Dianjurkan oleh Jabatan Perhutanan Semenanjung Malaysia Jabatan Perhutanan Negeri Selangor Malaysian Nature Society Ditaja oleh ASEAN Peatland Forest Programme (APFP) Dengan Kerjasama Kementerian Sumber Asli and Alam Sekitar (NRE) Jabatan Perlindungan Hidupan Liar dan Taman Negara (PERHILITAN) Semenanjung Malaysia PROSIDING 1 SEMINAR EKSPEDISI SAINTIFIK BIODIVERSITI HUTAN PAYA GAMBUT SELANGOR UTARA 2013 ISI KANDUNGAN PENGENALAN North Selangor Peat Swamp Forest .................................................................................................. 2 North Selangor Peat Swamp Forest Scientific Biodiversity Expedition 2013...................................... 3 ATURCARA SEMINAR ........................................................................................................................... 5 KERTAS PERBENTANGAN The Socio-Economic Survey on Importance of Peat Swamp Forest Ecosystem to Local Communities Adjacent to Raja Musa Forest Reserve ........................................................................................ 9 Assessment of North Selangor Peat Swamp Forest for Forest Tourism ........................................... 34 Developing a Preliminary Checklist of Birds at NSPSF ..................................................................... 41 The Southern Pied Hornbill of Sungai Panjang, Sabak
    [Show full text]
  • Bulletin of Natural History ®
    FLORI'IDA MUSEUM BULLETIN OF NATURAL HISTORY ® A MIDDLE EOCENE FOSSIL PLANT ASSEMBLAGE (POWERS CLAY PIT) FROM WESTERN TENNESSEE DavidL. Dilcher and Terry A. Lott Vol. 45, No. 1, pp. 1-43 2005 UNIVERSITY OF FLORIDA GAINESVILLE - The FLORIDA MUSEUM OF NATURAL HiSTORY is Florida«'s state museum of natural history, dedicated to understanding, preser¥ingrand interpreting].biologica[1 diversity and culturafheritage. The BULLETIN OF THE FLORIDA- MUSEUM OF NATURAL HISTORY is a peer-reviewed publication thatpziblishes.the result5 of origifial reseafchin zodlogy, botany, paleontology, and archaeology. Address all inquiries t6 the Managing Editor ofthe Bulletin. Numbers,ofthe Bulletin,afe,published,at itregular intervals. Specific volumes are not'necessarily completed in anyone year. The end of a volume willl·be noted at the foot of the first page ofthe last issue in that volume. Richard Franz, Managing Editor Erika H. Simons, Production BulletinCommittee Richard Franz,,Chairperson Ann Cordell Sarah Fazenbaker Richard Hulbert WilliamMarquardt Susan Milbrath Irvy R. Quitmyer - Scott Robinson, Ex 01#cio Afember ISSN: 0071-6154 Publication Date: October 31,2005 Send communications concerning purchase or exchange of the publication and manustfipt queries to: Managing Editor of the BULLETIN Florida MuseumofNatural-History University offlorida PO Box 117800 Gainesville, FL 32611 -7800 U.S.A. Phone: 352-392-1721 Fax: 352-846-0287 e-mail: [email protected] A MIDDLE EOCENE FOSSIL PLANT ASSEMBLAGE (POWERS CLAY PIT) FROM WESTERN TENNESSEE David L. Dilcher and Terry A. Lottl ABSTRACT Plant megafossils are described, illustrated and discussed from Powers Clay Pit, occurring in the middle Eocene, Claiborne Group of the Mississippi Embayment in western Tennessee.
    [Show full text]
  • Phylogeny and Classification of the Melastomataceae and Memecylaceae
    Nord. J. Bot. - Section of tropical taxonomy Phylogeny and classification of the Melastomataceae and Memecy laceae Susanne S. Renner Renner, S. S. 1993. Phylogeny and classification of the Melastomataceae and Memecy- laceae. - Nord. J. Bot. 13: 519-540. Copenhagen. ISSN 0107-055X. A systematic analysis of the Melastomataceae, a pantropical family of about 4200- 4500 species in c. 166 genera, and their traditional allies, the Memecylaceae, with c. 430 species in six genera, suggests a phylogeny in which there are two major lineages in the Melastomataceae and a clearly distinct Memecylaceae. Melastomataceae have close affinities with Crypteroniaceae and Lythraceae, while Memecylaceae seem closer to Myrtaceae, all of which were considered as possible outgroups, but sister group relationships in this plexus could not be resolved. Based on an analysis of all morph- ological and anatomical characters useful for higher level grouping in the Melastoma- taceae and Memecylaceae a cladistic analysis of the evolutionary relationships of the tribes of the Melastomataceae was performed, employing part of the ingroup as outgroup. Using 7 of the 21 characters scored for all genera, the maximum parsimony program PAUP in an exhaustive search found four 8-step trees with a consistency index of 0.86. Because of the limited number of characters used and the uncertain monophyly of some of the tribes, however, all presented phylogenetic hypotheses are weak. A synapomorphy of the Memecylaceae is the presence of a dorsal terpenoid-producing connective gland, a synapomorphy of the Melastomataceae is the perfectly acrodro- mous leaf venation. Within the Melastomataceae, a basal monophyletic group consists of the Kibessioideae (Prernandra) characterized by fiber tracheids, radially and axially included phloem, and median-parietal placentation (placentas along the mid-veins of the locule walls).
    [Show full text]
  • Growth-Ring Analysis of Diploknema Butyracea Is a Potential Tool for Revealing Indigenous Land Use History in the Lower Himalayan Foothills of Nepal
    Article Growth-Ring Analysis of Diploknema butyracea Is a Potential Tool for Revealing Indigenous Land Use History in the Lower Himalayan Foothills of Nepal Md. Qumruzzaman Chowdhury 1,2,* , Teeka Ram Bhattarai 3, Maaike De Ridder 1 and Hans Beeckman 1 1 Wood Biology Service, Royal Museum for Central Africa (RMCA), Leuvensesteenweg 13, 3080 Tervuren, Belgium; [email protected] (M.D.R.); [email protected] (H.B.) 2 Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh 3 Campaigns and Consultations; Education, Livelihood and Social Justice, Post Box 4555 Kathmandu, Nepal; [email protected] * Correspondence: [email protected] Received: 24 December 2019; Accepted: 19 February 2020; Published: 22 February 2020 Abstract: Slash-and-burn is a farming practice of the indigenous communities in the Himalayan foothills of Nepal. The traditional land-tenure system is based on a customary oral tradition. However, the government’s persistent denial of land rights has fueled the indigenous conflicts in the last few decades. Deliverance of scientific evidence-based arguments may underpin the ongoing conflict-resolution dialogues between the authorities and the indigenous communities. Dating growth rings of trees in a slash-and-burn system might help the indigenous people to find evidence of their historic land uses in the mountainous landscape. In this pilot study, we examined the potential of Diploknema butyracea (Roxb.) H. J. Lam growth rings for documenting land use history of Nepalese indigenous farming practices, as this species is being preserved during the slash-and-burn practices. The species is an economically important and ecologically interesting (as it flushes leaves when everything is dry, and sheds leaves while everything is green) deciduous tree species belonging to Sapotaceae family and widely distributed in Sub-Himalayan tracts.
    [Show full text]
  • The Salient Features of Floristic Wealth and Diversity of Sacred Groves of Kerala, India
    International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583 The Salient Features of Floristic Wealth and Diversity of Sacred Groves of Kerala, India M. Rajendraprasad1, T. Shaju2, G. Thulasidas3 Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram, Kerala, India rajendraprasadvkm[at]gmail.com Abstract: Sacred Groves are the tracts of virgin forests; the vestiges of an ancient practice in which people has been protecting forest patches associated with home, temple, agricultural fields or in public places to avoid the perceived wrath of its resident God. In such groves all life forms including microbes are belong to deity and it is believed that, any harm to them invites the displeasure of deity in the form of disease or decease. These terrestrial forest ecosystems are usually in association with fresh water conservatory and this together extent a number of ecological, edaphological and conservational services in the landscape of Kerala. In Kerala the natural forests are extended in the high ranges and highland area (Altitude above 100 m MSL), the sacred groves are distributed in midland or lowland regions (Altitude below 100 m MSL) where the natural forests are not seen. The sacred groves have a comprehensive environmental role in the track of urbanized landscape ecology of the state by protecting flora and fauna. The investigation divulges the unparallel and unique floristic accounts, distinct ecological and conservational values of vegetation, which are extended to the traditional landscape of the state which are succumbed to various anthropogenic pressures. Keywords: Conservation, Floristic Wealth and Diversity, Sacred Grove of Kerala, Traditional Landscape 1.
    [Show full text]
  • REPORT Conservation Assessment and Management Plan Workshop
    REPORT Conservation Assessment and Management Plan Workshop (C.A.M.P. III) for Selected Species of Medicinal Plants of Southern India Bangalore, 16-18 January 1997 Produced by the Participants Edited by Sanjay Molur and Sally Walker with assistance from B. V. Shetty, C. G. Kushalappa, S. Armougame, P. S. Udayan, Purshottam Singh, S. N. Yoganarasimhan, Keshava Murthy, V. S. Ramachandran, M D. Subash Chandran, K. Ravikumar, A. E. Shanawaz Khan June 1997 Foundation for Revitalisation of Local Health Traditions ZOO/ Conservation Breeding Specialist Group, India Medicinal Plants Specialist Group, SSC, IUCN CONTENTS Section I Executive Summary Summary Data Tables List of Participants Activities of FRLHT using 1995 and 1996 CAMP species results Commitments : suggested species for further assessment CAMP Definition FRLHT's Priority List of Plants Role of collaborating organisations Section II Report and Discussion Definitions of Taxon Data Sheet terminology Appendix I Taxon Data Sheets IUCN Guidelines Section I Executive Summary, Summary Data Table, and Related material Executive Summary The Convention on Biological Diversity signed by 150 states in Rio de Janerio in 1992 calls on signatories to identify and components of their state biodiversity and prioritise ecosystems and habitats, species and communities and genomes of social, scientific and economic value. The new IUCN Red List criteria have been revised by IUCN to reflect the need for greater objectivity and precision when categorising species for conservation action. The CAMP process, developed by the Conservation Breeding Specialist Group, has emerged as an effective, flexible, participatory and scientific methodology for conducting species prioritisation exercises using the IUCN criteria. Since 1995, the Foundation for Revitalisation of Local Health Traditions has been con- ducting CAMP Workshops for one of the major groups of conservation concern, medici- nal plants.
    [Show full text]
  • Reader 19 05 19 V75 Timeline Pagination
    Plant Trivia TimeLine A Chronology of Plants and People The TimeLine presents world history from a botanical viewpoint. It includes brief stories of plant discovery and use that describe the roles of plants and plant science in human civilization. The Time- Line also provides you as an individual the opportunity to reflect on how the history of human interaction with the plant world has shaped and impacted your own life and heritage. Information included comes from secondary sources and compila- tions, which are cited. The author continues to chart events for the TimeLine and appreciates your critique of the many entries as well as suggestions for additions and improvements to the topics cov- ered. Send comments to planted[at]huntington.org 345 Million. This time marks the beginning of the Mississippian period. Together with the Pennsylvanian which followed (through to 225 million years BP), the two periods consti- BP tute the age of coal - often called the Carboniferous. 136 Million. With deposits from the Cretaceous period we see the first evidence of flower- 5-15 Billion+ 6 December. Carbon (the basis of organic life), oxygen, and other elements ing plants. (Bold, Alexopoulos, & Delevoryas, 1980) were created from hydrogen and helium in the fury of burning supernovae. Having arisen when the stars were formed, the elements of which life is built, and thus we ourselves, 49 Million. The Azolla Event (AE). Hypothetically, Earth experienced a melting of Arctic might be thought of as stardust. (Dauber & Muller, 1996) ice and consequent formation of a layered freshwater ocean which supported massive prolif- eration of the fern Azolla.
    [Show full text]
  • Distribution Patterns and Diversity Centres of Zingiberaceae in SE Asia
    BS 55 219 Distribution patterns and diversity centres of Zingiberaceae in SE Asia Kai Larsen Larsen, K. 2005. Distribution patterns and diversity centres of Zingiberaceae in SE Asia. Biol. Skr. 55: 219-228. ISSN 0366-3612. ISBN 87-7304-304-4. A revised classification, based on molecular and morphological data, has recently been proposed. The new classification divides the family into four subfamilies. 1: The Tamijioideae including the recently discovered monotypic genus Tamijia from N Borneo. 2: The Siphonochiloideae includ­ ing the genus Siphonochilus (15) restricted to tropical Africa. The remaining c. 50 genera, with c. 1300 species are classified in two subfamilies: 3: The Alpinioideae, the most widespread, is repre­ sented by Renealmia (100) in the Neotropics and Africa, Aframomum (50) and Aulotandra (5) in Africa while the remaining c. 20 genera with some 700 species are all from the Asian tropics. 4: The Zingiberoideae, a far more diverse group with c. 30 genera comprising c. 600 species. They are only represented in Asia. The main centre of distribution for the two large subfamilies is SE Asia. The biogeography of all genera from this region is presented and it is shown that the Alpin­ ioideae have their main centre of diversity in the Malesian region while the Zingiberoideae are centred in the northern monsoon region with Indochina having the highest diversity. In the light of the many recent discoveries of new genera and species it is also stressed that, besides continued studies on the molecular based phylogeny, basic field-work is still highly needed. Kai Larsen, Department of Systematic Botany, Aarhus University.
    [Show full text]
  • Accounting for Variation of Substitution Rates Through Time in Bayesian Phylogeny Reconstruction of Sapotoideae (Sapotaceae)
    Molecular Phylogenetics and Evolution 39 (2006) 706–721 www.elsevier.com/locate/ympev Accounting for variation of substitution rates through time in Bayesian phylogeny reconstruction of Sapotoideae (Sapotaceae) Jenny E.E. Smedmark ¤, Ulf Swenson, Arne A. Anderberg Department of Phanerogamic Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden Received 9 September 2005; revised 4 January 2006; accepted 12 January 2006 Available online 21 February 2006 Abstract We used Bayesian phylogenetic analysis of 5 kb of chloroplast DNA data from 68 Sapotaceae species to clarify phylogenetic relation- ships within Sapotoideae, one of the two major clades within Sapotaceae. Variation in substitution rates through time was shown to be a very important aspect of molecular evolution for this data set. Relative rates tests indicated that changes in overall rate have taken place in several lineages during the history of the group and Bayes factors strongly supported a covarion model, which allows the rate of a site to vary over time, over commonly used models that only allow rates to vary across sites. Rate variation over time was actually found to be a more important model component than rate variation across sites. The covarion model was originally developed for coding gene sequences and has so far only been tested for this type of data. The fact that it performed so well with the present data set, consisting mainly of data from noncoding spacer regions, suggests that it deserves a wider consideration in model based phylogenetic inference. Repeatability of phylogenetic results was very diYcult to obtain with the more parameter rich models, and analyses with identical settings often supported diVerent topologies.
    [Show full text]