Solids, Nets, and Cross Sections
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computational Design Framework 3D Graphic Statics
Computational Design Framework for 3D Graphic Statics 3D Graphic for Computational Design Framework Computational Design Framework for 3D Graphic Statics Juney Lee Juney Lee Juney ETH Zurich • PhD Dissertation No. 25526 Diss. ETH No. 25526 DOI: 10.3929/ethz-b-000331210 Computational Design Framework for 3D Graphic Statics A thesis submitted to attain the degree of Doctor of Sciences of ETH Zurich (Dr. sc. ETH Zurich) presented by Juney Lee 2015 ITA Architecture & Technology Fellow Supervisor Prof. Dr. Philippe Block Technical supervisor Dr. Tom Van Mele Co-advisors Hon. D.Sc. William F. Baker Prof. Allan McRobie PhD defended on October 10th, 2018 Degree confirmed at the Department Conference on December 5th, 2018 Printed in June, 2019 For my parents who made me, for Dahmi who raised me, and for Seung-Jin who completed me. Acknowledgements I am forever indebted to the Block Research Group, which is truly greater than the sum of its diverse and talented individuals. The camaraderie, respect and support that every member of the group has for one another were paramount to the completion of this dissertation. I sincerely thank the current and former members of the group who accompanied me through this journey from close and afar. I will cherish the friendships I have made within the group for the rest of my life. I am tremendously thankful to the two leaders of the Block Research Group, Prof. Dr. Philippe Block and Dr. Tom Van Mele. This dissertation would not have been possible without my advisor Prof. Block and his relentless enthusiasm, creative vision and inspiring mentorship. -
Framing Cyclic Revolutionary Emergence of Opposing Symbols of Identity Eppur Si Muove: Biomimetic Embedding of N-Tuple Helices in Spherical Polyhedra - /
Alternative view of segmented documents via Kairos 23 October 2017 | Draft Framing Cyclic Revolutionary Emergence of Opposing Symbols of Identity Eppur si muove: Biomimetic embedding of N-tuple helices in spherical polyhedra - / - Introduction Symbolic stars vs Strategic pillars; Polyhedra vs Helices; Logic vs Comprehension? Dynamic bonding patterns in n-tuple helices engendering n-fold rotating symbols Embedding the triple helix in a spherical octahedron Embedding the quadruple helix in a spherical cube Embedding the quintuple helix in a spherical dodecahedron and a Pentagramma Mirificum Embedding six-fold, eight-fold and ten-fold helices in appropriately encircled polyhedra Embedding twelve-fold, eleven-fold, nine-fold and seven-fold helices in appropriately encircled polyhedra Neglected recognition of logical patterns -- especially of opposition Dynamic relationship between polyhedra engendered by circles -- variously implying forms of unity Symbol rotation as dynamic essential to engaging with value-inversion References Introduction The contrast to the geocentric model of the solar system was framed by the Italian mathematician, physicist and philosopher Galileo Galilei (1564-1642). His much-cited phrase, " And yet it moves" (E pur si muove or Eppur si muove) was allegedly pronounced in 1633 when he was forced to recant his claims that the Earth moves around the immovable Sun rather than the converse -- known as the Galileo affair. Such a shift in perspective might usefully inspire the recognition that the stasis attributed so widely to logos and other much-valued cultural and heraldic symbols obscures the manner in which they imply a fundamental cognitive dynamic. Cultural symbols fundamental to the identity of a group might then be understood as variously moving and transforming in ways which currently elude comprehension. -
Magneto-Luminescence Correlation in the Textbook Dysprosium(III
Magnetochemistry 2016, 2, 41; doi:10.3390/magnetochemistry2040041 S1 of S3 Supplementary Materials: Magneto‐Luminescence Correlation in the Textbook Dysprosium(III) Nitrate Single‐Ion Magnet Ekaterina Mamontova, Jérôme Long, Rute A. S. Ferreira, Alexandre M. P. Botas, Dominique Luneau, Yannick Guari, Luis D. Carlos and Joulia Larionova Table S1. Crystal and structure refinement data for compound 1. Compound 1 Formula DyH12N3O15 Formula weight 456.60 Temperature/K 293 Crystal system Triclinic Space group P‐1 a/Å 6.7429(8) b/Å 9.1094(9) c/Å 11.6502(11) α/° 70.369(9) β/° 88.714(9) γ/° 69.113(11) Volume/Å3 625.86(13) Z 2 Dc/g∙cm−3 2.4228 μ(Mo‐Kα)/mm−1 6.054 F(000) 414.2 Crystal size/mm 0.1 × 0.1 × 0.1 Crystal type Colourless plates range 3.25 to 29.29 −9 ≤ h ≤ 9 Index ranges −12 ≤ k ≤ 11 −14 ≤ l ≤ 14 Reflections collected 5351 Independent reflections 2879 (Rint = 0.0424) Data/parameters 2879/171 R1 = 0.0369 Final R indices [I > 2σ(I)]a,b wR2 = 0.0765 R1 = 0.0443 Final R indices (all data)a,b wR2 = 0.0848 Largest diff. peak and hole 1.18 and −1.64 eÅ−3 a b 2222 2 RFFF1 / ; wR2 w F F/ w F oc o oc o Magnetochemistry 2016, 2, 41 S2 of S3 Table S2. SHAPE analysis for compound 1. DP EPY OBPY PPR PAPR JBCCU JPCSAPR JMBIC JATDI JSPC SDD TD HD 33.818 23.117 17.902 9.556 14.372 11.933 4.385 8.791 17.518 2.204 6.675 6.077 10.278 DP, decagon; EPY, ennegonal pyramid; OBPY, octagonal pyramid; PPR, pentagonal prism; PAPR, pentagonal antiprism; JBCCU, bicapped cube; JPCSPAR, bicapped square antiprism; JMBIC, metabidiminished icosahedron; JATDI, augmented tridiminished icosahedron; JSPC, spherocorona; SDD, staggered dodecahedron; TD, tetradecahedron; HD, hexadecahedron. -
Article Published Under an ACS Authorchoice License, Which Permits Copying and Redistribution of the Article Or Any Adaptations for Non-Commercial Purposes
This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Article www.acsnano.org Standardizing Size- and Shape-Controlled Synthesis of Monodisperse Magnetite (Fe3O4) Nanocrystals by Identifying and Exploiting Effects of Organic Impurities † † † ‡ † † † § Liang Qiao, Zheng Fu, Ji Li, , John Ghosen, Ming Zeng, John Stebbins, Paras N. Prasad, † and Mark T. Swihart*, † § Department of Chemical and Biological Engineering and Institute for Lasers, Photonics, Biophotonics, University at Buffalo (SUNY), Buffalo, New York 14260, United States ‡ MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China *S Supporting Information ABSTRACT: Magnetite (Fe3O4) nanocrystals (MNCs) are among the most-studied magnetic nanomaterials, and many reports of solution-phase synthesis of monodisperse MNCs have been published. However, lack of reproducibility of MNC synthesis is a persistent problem, and the keys to producing monodisperse MNCs remain elusive. Here, we define and explore synthesis parameters in this system thoroughly to reveal their effects on the product MNCs. We demonstrate the essential role of benzaldehyde and benzyl benzoate produced by oxidation of benzyl ether, the solvent typically used for MNC synthesis, in producing mono- disperse MNCs. This insight allowed us to develop stable formulas for producing monodisperse MNCs and propose a model to rationalize MNC size and shape evolution. Solvent polarity controls the MNC size, while short ligands shift the morphology from octahedral to cubic. We demonstrate preparation of specific assemblies with these MNCs. -
Pentagonal Pyramid
Chapter 9 Surfaces and Solids Copyright © Cengage Learning. All rights reserved. Pyramids, Area, and 9.2 Volume Copyright © Cengage Learning. All rights reserved. Pyramids, Area, and Volume The solids (space figures) shown in Figure 9.14 below are pyramids. In Figure 9.14(a), point A is noncoplanar with square base BCDE. In Figure 9.14(b), F is noncoplanar with its base, GHJ. (a) (b) Figure 9.14 3 Pyramids, Area, and Volume In each space pyramid, the noncoplanar point is joined to each vertex as well as each point of the base. A solid pyramid results when the noncoplanar point is joined both to points on the polygon as well as to points in its interior. Point A is known as the vertex or apex of the square pyramid; likewise, point F is the vertex or apex of the triangular pyramid. The pyramid of Figure 9.14(b) has four triangular faces; for this reason, it is called a tetrahedron. 4 Pyramids, Area, and Volume The pyramid in Figure 9.15 is a pentagonal pyramid. It has vertex K, pentagon LMNPQ for its base, and lateral edges and Although K is called the vertex of the pyramid, there are actually six vertices: K, L, M, N, P, and Q. Figure 9.15 The sides of the base and are base edges. 5 Pyramids, Area, and Volume All lateral faces of a pyramid are triangles; KLM is one of the five lateral faces of the pentagonal pyramid. Including base LMNPQ, this pyramid has a total of six faces. The altitude of the pyramid, of length h, is the line segment from the vertex K perpendicular to the plane of the base. -
131 865- EDRS PRICE Technclogy,Liedhanical
..DOCUMENT RASH 131 865- JC 760 420 TITLE- Training Program for Teachers of Technical Mathematics in Two-Year Cutricnla. INSTITUTION Queensborough Community Coll., Bayside, N Y. SPONS AGENCY New York State Education Dept., Albany. D v.of Occupational Education Instruction. PUB DATE Jul 76 GRANT VEA-78-2-132 NOTE 180p. EDRS PRICE MP-$0.83 HC-S10.03 Plus Postage. DESCRIPTORS *College Mathematics; Community Colleges; Curriculum Development; Engineering Technology; *Junior Colleges Mathematics Curriculum; *Mathematics Instruction; *Physics Instruction; Practical ,Mathematics Technical Education; *Technical Mathematics Technology ABSTRACT -This handbook 1 is designed'to.aS ist teachers of techhical'mathematics in:developing practically-oriented-curricula -for their students. The upderlying.assumption is that, while technology students are nOt a breed apartr their: needs-and orientation are_to the concrete, rather than the abstract. It describes the:nature, scope,and dontett,of curricula.. in Electrical, TeChnClogy,liedhanical Technology4 Design DraftingTechnology, and: Technical Physics', ..with-particularreterence to:the mathematical skills which are_important for the students,both.incollege.andot -tle job. SaMple mathematical problemsr-derivationSeand.theories tei be stressed it..each of_these.durricula-are presented, as- ate additional materials from the physics an4 mathematics. areas. A frame ok-reference-is.provided through diScussiotS ofthe\careers,for.which-. technology students-are heing- trained'. There.iS alsO §ion deioted to -
Sonobe Assembly Guide for a Few Polyhedra
Model Shape # of Units Finished Unit to Fold Crease Pattern Toshie Takahama’s 3 Jewel Cube 6 Large Cube 12 Octahedral Assembly 12 Icosahedral Assembly 30 Spiked Pentakis Dodecahedral 60 Assembly Dodecahedral 90 Assembly 2 Sonobe Variations Sonobe Assembly Basics Sonobe assemblies are essentially “pyramidized” constructing a polyhedron, the key thing to re- polyhedra, each pyramid consisting of three So- member is that the diagonal ab of each Sonobe nobe units. The figure below shows a generic So- unit will lie along an edge of the polyhedron. nobe unit and how to form one pyramid. When a Pocket Tab Forming one Tab pyramid Pocket b A generic Sonobe unit representation Sonobe Assembly Guide for a Few Polyhedra 1. Toshie’s Jewel: Crease three finished units as tabs and pockets. This assembly is also sometimes explained in the table on page 2. Form a pyramid known as a Crane Egg. as above. Then turn the assembly upside down 2. Cube Assembly: Crease six finished units as and make another pyramid with the three loose explained in the table on page 2. Each face will be made up of 3 the center square of one unit and the tabs of two other units. 4 Do Steps 1 and 2 to form one face. Do Steps 3 and 4 to form one corner or vertex. Continue 1 2 interlocking in this manner to arrive at the finished cube. Sonobe Variations 3 3. Large Cube Assembly: Crease 12 finished units as explained on page 2. 5 6 3 The 12-unit large cube is the only assembly that does not involve pyramidizing. -
Module-03 / Lecture-01 SOLIDS Introduction- This Chapter Deals with the Orthographic Projections of Three – Dimensional Objects Called Solids
1 Module-03 / Lecture-01 SOLIDS Introduction- This chapter deals with the orthographic projections of three – dimensional objects called solids. However, only those solids are considered the shape of which can be defined geometrically and are regular in nature. To understand and remember various solids in this subject properly, those are classified & arranged in to two major groups- Polyhedron- A polyhedron is defined as a solid bounded by planes called faces, which meet in straight lines called edges. Regular Polyhedron- It is polyhedron, having all the faces equal and regular. Tetrahedron- It is a solid, having four equal equilateral triangular faces. Cube- It is a solid, having six equal square faces. Octahedron- It is a solid, having eight equal equilateral triangular faces. Dodecahedron- It is a solid, having twelve equal pentagonal faces. Icosahedrons- It is a solid, having twenty equal equilateral triangular faces. Prism- This is a polyhedron, having two equal and similar regular polygons called its ends or bases, parallel to each other and joined by other faces which are rectangles. The imaginary line joining the centre of the bases is called the axis. A right and regular prism has its axis perpendicular to the base. All the faces are equal rectangles. 1 2 Pyramid- This is a polyhedron, having a regular polygon as a base and a number of triangular faces meeting at a point called the vertex or apex. The imaginary line joining the apex with the centre of the base is known as the axis. A right and regular pyramid has its axis perpendicular to the base which is a regular plane. -
900.00 Modelability
986.310 Strategic Use of Min-max Cosmic System Limits 986.311 The maximum limit set of identical facets into which any system can be divided consists of 120 similar spherical right triangles ACB whose three corners are 60 degrees at A, 90 degrees at C, and 36 degrees at B. Sixty of these right spherical triangles are positive (active), and 60 are negative (passive). (See Sec. 901.) 986.312 These 120 right spherical surface triangles are described by three different central angles of 37.37736814 degrees for arc AB, 31.71747441 degrees for arc BC, and 20.90515745 degrees for arc AC__which three central-angle arcs total exactly 90 degrees. These 120 spherical right triangles are self-patterned into producing 30 identical spherical diamond groups bounded by the same central angles and having corresponding flat-faceted diamond groups consisting of four of the 120 angularly identical (60 positive, 60 negative) triangles. Their three surface corners are 90 degrees at C, 31.71747441 degrees at B, and 58.2825256 degrees at A. (See Fig. 986.502.) 986.313 These diamonds, like all diamonds, are rhombic forms. The 30- symmetrical- diamond system is called the rhombic triacontahedron: its 30 mid- diamond faces (right- angle cross points) are approximately tangent to the unit- vector-radius sphere when the volume of the rhombic triacontahedron is exactly tetravolume-5. (See Fig. 986.314.) 986.314 I therefore asked Robert Grip and Chris Kitrick to prepare a graphic comparison of the various radii and their respective polyhedral profiles of all the symmetric polyhedra of tetravolume 5 (or close to 5) existing within the primitive cosmic hierarchy (Sec. -
A Survey of Folding and Unfolding in Computational Geometry
Combinatorial and Computational Geometry MSRI Publications Volume 52, 2005 A Survey of Folding and Unfolding in Computational Geometry ERIK D. DEMAINE AND JOSEPH O’ROURKE Abstract. We survey results in a recent branch of computational geome- try: folding and unfolding of linkages, paper, and polyhedra. Contents 1. Introduction 168 2. Linkages 168 2.1. Definitions and fundamental questions 168 2.2. Fundamental questions in 2D 171 2.3. Fundamental questions in 3D 175 2.4. Fundamental questions in 4D and higher dimensions 181 2.5. Protein folding 181 3. Paper 183 3.1. Categorization 184 3.2. Origami design 185 3.3. Origami foldability 189 3.4. Flattening polyhedra 191 4. Polyhedra 193 4.1. Unfolding polyhedra 193 4.2. Folding polygons into convex polyhedra 196 4.3. Folding nets into nonconvex polyhedra 199 4.4. Continuously folding polyhedra 200 5. Conclusion and Higher Dimensions 201 Acknowledgements 202 References 202 Demaine was supported by NSF CAREER award CCF-0347776. O’Rourke was supported by NSF Distinguished Teaching Scholars award DUE-0123154. 167 168 ERIKD.DEMAINEANDJOSEPHO’ROURKE 1. Introduction Folding and unfolding problems have been implicit since Albrecht D¨urer [1525], but have not been studied extensively in the mathematical literature until re- cently. Over the past few years, there has been a surge of interest in these problems in discrete and computational geometry. This paper gives a brief sur- vey of most of the work in this area. Related, shorter surveys are [Connelly and Demaine 2004; Demaine 2001; Demaine and Demaine 2002; O’Rourke 2000]. We are currently preparing a monograph on the topic [Demaine and O’Rourke ≥ 2005]. -
Arxiv:2105.14305V1 [Cs.CG] 29 May 2021
Efficient Folding Algorithms for Regular Polyhedra ∗ Tonan Kamata1 Akira Kadoguchi2 Takashi Horiyama3 Ryuhei Uehara1 1 School of Information Science, Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Japan fkamata,[email protected] 2 Intelligent Vision & Image Systems (IVIS), Tokyo, Japan [email protected] 3 Faculty of Information Science and Technology, Hokkaido University, Hokkaido, Japan [email protected] Abstract We investigate the folding problem that asks if a polygon P can be folded to a polyhedron Q for given P and Q. Recently, an efficient algorithm for this problem has been developed when Q is a box. We extend this idea to regular polyhedra, also known as Platonic solids. The basic idea of our algorithms is common, which is called stamping. However, the computational complexities of them are different depending on their geometric properties. We developed four algorithms for the problem as follows. (1) An algorithm for a regular tetrahedron, which can be extended to a tetramonohedron. (2) An algorithm for a regular hexahedron (or a cube), which is much efficient than the previously known one. (3) An algorithm for a general deltahedron, which contains the cases that Q is a regular octahedron or a regular icosahedron. (4) An algorithm for a regular dodecahedron. Combining these algorithms, we can conclude that the folding problem can be solved pseudo-polynomial time when Q is a regular polyhedron and other related solid. Keywords: Computational origami folding problem pseudo-polynomial time algorithm regular poly- hedron (Platonic solids) stamping 1 Introduction In 1525, the German painter Albrecht D¨urerpublished his masterwork on geometry [5], whose title translates as \On Teaching Measurement with a Compass and Straightedge for lines, planes, and whole bodies." In the book, he presented each polyhedron by drawing a net, which is an unfolding of the surface of the polyhedron to a planar layout without overlapping by cutting along its edges. -
Computer-Aided Design Disjointed Force Polyhedra
Computer-Aided Design 99 (2018) 11–28 Contents lists available at ScienceDirect Computer-Aided Design journal homepage: www.elsevier.com/locate/cad Disjointed force polyhedraI Juney Lee *, Tom Van Mele, Philippe Block ETH Zurich, Institute of Technology in Architecture, Block Research Group, Stefano-Franscini-Platz 1, HIB E 45, CH-8093 Zurich, Switzerland article info a b s t r a c t Article history: This paper presents a new computational framework for 3D graphic statics based on the concept of Received 3 November 2017 disjointed force polyhedra. At the core of this framework are the Extended Gaussian Image and area- Accepted 10 February 2018 pursuit algorithms, which allow more precise control of the face areas of force polyhedra, and conse- quently of the magnitudes and distributions of the forces within the structure. The explicit control of the Keywords: polyhedral face areas enables designers to implement more quantitative, force-driven constraints and it Three-dimensional graphic statics expands the range of 3D graphic statics applications beyond just shape explorations. The significance and Polyhedral reciprocal diagrams Extended Gaussian image potential of this new computational approach to 3D graphic statics is demonstrated through numerous Polyhedral reconstruction examples, which illustrate how the disjointed force polyhedra enable force-driven design explorations of Spatial equilibrium new structural typologies that were simply not realisable with previous implementations of 3D graphic Constrained form finding statics. ' 2018 Elsevier Ltd. All rights reserved. 1. Introduction such as constant-force trusses [6]. However, in 3D graphic statics using polyhedral reciprocal diagrams, the influence of changing Recent extensions of graphic statics to three dimensions have the geometry of the force polyhedra on the force magnitudes is shown how the static equilibrium of spatial systems of forces not as direct or intuitive.