Spore Prints
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Squamanita Odorata (Agaricales, Basidiomycota), New Mycoparasitic Fungus for Poland
Polish Botanical Journal 61(1): 181–186, 2016 DOI: 10.1515/pbj-2016-0008 SQUAMANITA ODORATA (AGARICALES, BASIDIOMYCOTA), NEW MYCOPARASITIC FUNGUS FOR POLAND Marek Halama Abstract. The rare and interesting fungus Squamanita odorata (Cool) Imbach, a parasite on Hebeloma species, is reported for the first time from Poland, briefly described and illustrated based on Polish specimens. Its taxonomy, ecology and distribution are discussed. Key words: Coolia, distribution, fungicolous fungi, mycoparasites, Poland, Squamanita Marek Halama, Museum of Natural History, Wrocław University, Sienkiewicza 21, 50-335 Wrocław, Poland; e-mail: [email protected] Introduction The genus Squamanita Imbach is one of the most nita paradoxa (Smith & Singer) Bas, a parasite enigmatic genera of the known fungi. All described on Cystoderma, was reported by Z. Domański species of the genus probably are biotrophs that from one locality in the Lasy Łochowskie forest parasitize and take over the basidiomata of other near Wyszków (valley of the Lower Bug River, agaricoid fungi, including Amanita Pers., Cysto- E Poland) in September 1973 (Domański 1997; derma Fayod, Galerina Earle, Hebeloma (Fr.) cf. Wojewoda 2003). This collection was made P. Kumm., Inocybe (Fr.) Fr., Kuehneromyces Singer in a young forest of Pinus sylvestris L., where & A.H. Sm., Phaeolepiota Konrad & Maubl. and S. paradoxa was found growing on the ground, possibly Mycena (Pers.) Roussel. As a result the among grass, on the edge of the forest. Recently, host is completely suppressed or only more or less another species, Squamanita odorata (Cool) Im- recognizable, and the Squamanita basidioma is bach, was found in northern Poland (Fig. 1). -
Mycoparasitism Between Squamanita Paradoxa and Cystoderma Amianthinum (Cystodermateae, Agaricales)
Mycoscience (2010) 51:456–461 DOI 10.1007/s10267-010-0052-9 SHORT COMMUNICATION Mycoparasitism between Squamanita paradoxa and Cystoderma amianthinum (Cystodermateae, Agaricales) P. Brandon Matheny • Gareth W. Griffith Received: 1 January 2010 / Accepted: 23 March 2010 / Published online: 13 April 2010 Ó The Mycological Society of Japan and Springer 2010 Abstract Circumstantial evidence, mostly morphological from basidiocarps or parasitized galls or tissue of other and ecological, points to ten different mushroom host agarics. On occasion, chimeric fruitbodies appear obvious, species for up to fifteen species of the mycoparasitic genus as in S. paradoxa (A.H. Sm. & Singer) Bas (Fig. 1), but for Squamanita. Here, molecular evidence confirms Cysto- other species, the hosts are unknown (Table 1). It appears derma amianthinum as the host for S. paradoxa, a spo- that in all cases, galls induced by Squamanita mycelium radically occurring and rarely collected mycoparasite with contain chlamydospores, and the term protocarpic tuber has extreme host specificity. This is only the second study to been replaced by the term cecidiocarp (Bas and Thoen use molecular techniques to reveal or confirm the identity 1998). Hosts of Squamanita include distantly related of a cecidiocarp of Squamanita species. Phylogenetic species of Agaricales, such as Galerina Earle, Inocybe (Fr.) analysis of combined nuclear ribosomal RNA genes sug- Fr., Hebeloma (Fr.) P. Kumm., Kuehneromyces Singer & gests the monophyly of Squamanita, Cystoderma, and A.H. Sm., and Amanita Pers. However, Squamanita also Phaeolepiota, a clade referred to as the tribe Cystoder- parasitizes species of Phaeolepiota Maire ex Konrad & mateae. If true, S. paradoxa and C. amianthinum would Maubl. -
Fungi) in Brazilian Mangroves Influenced by Temporal and Spatial Variations
The community structure of macroscopic basidiomycetes (Fungi) in Brazilian mangroves influenced by temporal and spatial variations Georgea Santos Nogueira-Melo1, Paulo Jorge Parreira Santos2 & Tatiana Baptista Gibertoni1 1. Departamento de Micologia, Universidade Federal de Pernambuco, Av. Nelson Chaves s/n, CEP 50760-420, Recife, PE, Brazil; [email protected], [email protected] 2. Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Nelson Chaves s/n, CEP 50760-420, Recife, PE, Brazil; [email protected] Received 12-XII-2013. Corrected 22-V-2014. Accepted 24-VI-2014. Abstract: Mangroves are transitional ecosystems between terrestrial and marine environments, and are dis- tinguished by a high abundance of animals, plants, and fungi. Although macrofungi occur in different types of habitat, including mangroves, little is known about their community structure and dynamic. Therefore the aim of this study was to analyze the diversity of macrofungi in a number of Brazilian mangroves, and the relation- ship between such diversity, precipitation and area of collection. A total of 32 field trips were undertaken from 2009 to 2010, and macrofungi were studied in four 250×40m transects: Timbó and Santa Cruz Channel on the Northern coast, and Maracaípe and Ariquindá on the Southern coast. All basidiomata found along the transects were placed in paper bags, air-dried and identified using existing literature. It was found that Northern areas predominantly featured Avicennia schaueriana mangroves, while Rhizophora mangle dominated in Southern transects. A total of 275 specimens were collected, and 33 species, 28 genera, 14 families and six orders were represented. Overall abundance and species richness did not vary significantly among areas, but varied accord- ing to time, being higher during the rainy season. -
Identification of Three Wood Decay Fungi in Yeoninsan Provincial Park, Korea
Journal240 of Species Research 7(3):240-247, 2018JOURNAL OF SPECIES RESEARCH Vol. 7, No. 3 Identification of three wood decay fungi in Yeoninsan Provincial Park, Korea Sun Lul Kwon1, Seokyoon Jang1, Min-Ji Kim2, Kyeongwon Kim1, Chul-Whan Kim1, Yeongseon Jang3, Young Woon Lim2, Changmu Kim4 and Jae-Jin Kim1,* 1Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Republic of Korea 2School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea 3Division of Wood Chemistry and Microbiology, National Institute of Forest Science, Seoul 02455, Republic of Korea 4Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea *Correspondent: [email protected] Though several wood decay fungi have been reported in the world-wide, only about 600 wood decay fungi have been reported in Korea to date. Thus, the objective of this study was to secure resources for the wood decay fungi in Korea. We investigated wood decay fungi in Yeoninsan Provincial Park, Korea, and the collected specimens were identified based on ITS sequence analysis. Two species were unrecorded species in Korea: Postia hirsuta (Polyporales, Basidiomycota) and Hyphodontia reticulata (Hymenochaetales, Basidiomycota). Another species was previously reported without detailed description: Ceriporia alachuana (Polyporales, Basidiomycota). Here, we provided additional detailed microscopic features and phylogenetic analysis of these species. Keywords: Basidiomycota, ITS, morphology, phylogeny, taxonomy Ⓒ 2018 National Institute of Biological Resources DOI:10.12651/JSR.2018.7.3.240 INTRODUCTION ITS show low species resolution for some fungi (Hong et al., 2015), it is suitable for most wood decay fungi (Jang Wood decay fungi play a significant role in forest eco- et al., 2016b). -
Gymnosperms) of New York State
QK 129 . C667 1992 Pinophyta (Gymnosperms) of New York State Edward A. Cope The L. H. Bailey Hortorium Cornell University Contributions to a Flora of New York State IX Richard S. Mitchell, Editor 1992 Bulletin No. 483 New York State Museum The University of the State of New York THE STATE EDUCATION DEPARTMENT Albany, New York 12230 V A ThL U: ESTHER T. SVIERTZ LIBRARY THI-: ?‘HW YORK BOTANICAL GARDEN THE LuESTHER T. MERTZ LIBRARY THE NEW YORK BOTANICAL GARDEN Pinophyta (Gymnosperms) of New York State Edward A. Cope The L. H. Bailey Hortorium Cornell University Contributions to a Flora of New York State IX Richard S. Mitchell, Editor 1992 Bulletin No. 483 New York State Museum The University of the State of New York THE STATE EDUC ATION DEPARTMENT Albany, New York 12230 THE UNIVERSITY OF THE STATE OF NEW YORK Regents of The University Martin C. Barell, Chancellor, B.A., I.A., LL.B. Muttontown R. Carlos Carballada, Vice Chancellor, B.S. Rochester Willard A. Genrich, LL.B. Buffalo Emlyn I. Griffith. A.B.. J.D. Rome Jorge L. Batista, B.A.. J.D. Bronx Laura Bradley Chodos, B.A., M.A. Vischer Ferry Louise P. Matteoni, B.A., M.A., Ph.D. Bayside J. Edward Meyer, B.A., LL.B. Chappaqua FloydS. Linton, A.B., M.A., M.P.A. Miller Place Mimi Levin Lif.ber, B.A., M.A. Manhattan Shirley C. Brown, B.A., M.A., Ph.D. Albany Norma Gluck, B.A., M.S.W. Manhattan Adelaide L. Sanford, B.A., M.A., P.D. -
Fungal Diversity in the Mediterranean Area
Fungal Diversity in the Mediterranean Area • Giuseppe Venturella Fungal Diversity in the Mediterranean Area Edited by Giuseppe Venturella Printed Edition of the Special Issue Published in Diversity www.mdpi.com/journal/diversity Fungal Diversity in the Mediterranean Area Fungal Diversity in the Mediterranean Area Editor Giuseppe Venturella MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editor Giuseppe Venturella University of Palermo Italy Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Diversity (ISSN 1424-2818) (available at: https://www.mdpi.com/journal/diversity/special issues/ fungal diversity). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03936-978-2 (Hbk) ISBN 978-3-03936-979-9 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editor .............................................. vii Giuseppe Venturella Fungal Diversity in the Mediterranean Area Reprinted from: Diversity 2020, 12, 253, doi:10.3390/d12060253 .................... 1 Elias Polemis, Vassiliki Fryssouli, Vassileios Daskalopoulos and Georgios I. -
A Preliminary Checklist of Arizona Macrofungi
A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona. -
Polypore Diversity in North America with an Annotated Checklist
Mycol Progress (2016) 15:771–790 DOI 10.1007/s11557-016-1207-7 ORIGINAL ARTICLE Polypore diversity in North America with an annotated checklist Li-Wei Zhou1 & Karen K. Nakasone2 & Harold H. Burdsall Jr.2 & James Ginns3 & Josef Vlasák4 & Otto Miettinen5 & Viacheslav Spirin5 & Tuomo Niemelä 5 & Hai-Sheng Yuan1 & Shuang-Hui He6 & Bao-Kai Cui6 & Jia-Hui Xing6 & Yu-Cheng Dai6 Received: 20 May 2016 /Accepted: 9 June 2016 /Published online: 30 June 2016 # German Mycological Society and Springer-Verlag Berlin Heidelberg 2016 Abstract Profound changes to the taxonomy and classifica- 11 orders, while six other species from three genera have tion of polypores have occurred since the advent of molecular uncertain taxonomic position at the order level. Three orders, phylogenetics in the 1990s. The last major monograph of viz. Polyporales, Hymenochaetales and Russulales, accom- North American polypores was published by Gilbertson and modate most of polypore species (93.7 %) and genera Ryvarden in 1986–1987. In the intervening 30 years, new (88.8 %). We hope that this updated checklist will inspire species, new combinations, and new records of polypores future studies in the polypore mycota of North America and were reported from North America. As a result, an updated contribute to the diversity and systematics of polypores checklist of North American polypores is needed to reflect the worldwide. polypore diversity in there. We recognize 492 species of polypores from 146 genera in North America. Of these, 232 Keywords Basidiomycota . Phylogeny . Taxonomy . species are unchanged from Gilbertson and Ryvarden’smono- Wood-decaying fungus graph, and 175 species required name or authority changes. -
Parasitism of Cystoderma Amianthinum by Squamanita Paradoxa and S.&Nbsp
Aberystwyth University Strangler unmasked Griffith, Gareth; Gajda, Krzysztof Piotr; Detheridge, Andrew; Douglas, Brian; Bingham, John; Turner, Alex; Bowmaker, Victoria; Evans, Debbie; McAdoo, William G.; Dentinger, Bryn Published in: Fungal Ecology DOI: 10.1016/j.funeco.2018.11.012 Publication date: 2019 Citation for published version (APA): Griffith, G., Gajda, K. P., Detheridge, A., Douglas, B., Bingham, J., Turner, A., Bowmaker, V., Evans, D., McAdoo, W. G., & Dentinger, B. (2019). Strangler unmasked: Parasitism of Cystoderma amianthinum by Squamanita paradoxa and S. pearsonii. Fungal Ecology, 39, 131-141. https://doi.org/10.1016/j.funeco.2018.11.012 Document License CC BY-NC-ND General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 05. Oct. 2021 Fungal Ecology 39 (2019) 131e141 Contents lists available at ScienceDirect Fungal Ecology journal homepage: www.elsevier.com/locate/funeco Strangler unmasked: Parasitism of Cystoderma amianthinum by Squamanita paradoxa and S. -
New Data on Aphyllophoroid Fungi (Basidiomycota) in Forest-Steppe Introduction Communities of the Lipetsk Region, European Russia
Acta Mycologica DOI: 10.5586/am.1112 ORIGINAL RESEARCH PAPER Publication history Received: 2018-06-05 Accepted: 2018-09-30 New data on aphyllophoroid fungi Published: 2018-12-28 (Basidiomycota) in forest-steppe Handling editor Anna Kujawa, Institute for Agricultural and Forest communities of the Lipetsk region, Environment, Polish Academy of Sciences, Poland European Russia Authors’ contributions SV designed the research, 1 2 1 collected and identifed the Sergey Volobuev *, Alexandra Arzhenenko , Sergey Bolshakov , material; AA collected and Nataliya Shakhova3, Lyudmila Sarycheva4 identifed the material; SB 1 Laboratory of Systematics and Geography of Fungi, Komarov Botanical Institute, Russian identifed the material; NS and Academy of Sciences, Professor Popov Str. 2, St. Petersburg 197376, Russia LS collected the material; all 2 Botany Chair, Biological Department, Saint Petersburg State University, Universitetskaya authors contributed to the Embankment 7–9 Str., Petersburg 199034, Russia manuscript preparation 3 Laboratory of Biochemistry of Fungi, Komarov Botanical Institute, Russian Academy of Sciences, Professor Popov Str. 2, St. Petersburg 197376, Russia Funding 4 Laboratory of Mycology, Galichya Gora Nature Reserve, Voronezh State University, Donskoye The work was supported by the village, Zadonsky District, Lipetsk region 399240, Russia program of basic research of the Russian Academy of Sciences, * Corresponding author. Email: [email protected] project “Biological diversity and dynamics of the fora and vegetation of Russia”, using equipment of the Core Facility Abstract Center of the Komarov Botanical Te data on 150 species of aphyllophoroid fungi from the Lipetsk region, Central Institute “Cell and Molecular Russian Upland, European Russia, are presented. Te annotated species list based Technologies in Plant Science”. -
3. Overview of Existing Fungus Monitoring Protocols
Version 2.9, 20.12.2004 Monitoring protocol for wood-inhabiting fungi in the Alberta Biodiversity Monitoring Program for the Alberta Biodiversity Monitoring Program Jogeir N. Stokland 1 Anna-Liisa Sippola 2 December 2004 1Norwegian Institute of Land Inventory, Norway 2University of Lapland, Arctic Centre, Finland 1 Disclaimer The views, statements, and conclusions expressed in this report are those of the authors and should not be construed as conclusions or opinions of the ABMP. Development of the ABMP has continued since this report was produced. Thus, the report may not accurately reflect current ideas. 2 1. INTRODUCTION ...................................................................................................................... 4 1.1 Brief introduction to biodiversity in dead wood................................................................... 4 1.2 Knowledge about fungus diversity in Alberta and Canada .................................................. 5 2. FUNGAL DIVERSITY ON DEAD WOOD IN BOREAL FORESTS...................................... 5 2.1. Different fungus groups - their strengths and weaknesses for long-term monitoring ......... 5 2.2 Dead wood attributes that are important to fungal diversity............................................... 12 2.3 Brief comparison of fungi on dead wood in Scandinavia and Canada............................... 14 2.4 Brief description of Alberta forest types and expected fungus diversity patterns .............. 15 2.5 Polypore species diversity at local and regional levels...................................................... -
Sequencing Abstracts Msa Annual Meeting Berkeley, California 7-11 August 2016
M S A 2 0 1 6 SEQUENCING ABSTRACTS MSA ANNUAL MEETING BERKELEY, CALIFORNIA 7-11 AUGUST 2016 MSA Special Addresses Presidential Address Kerry O’Donnell MSA President 2015–2016 Who do you love? Karling Lecture Arturo Casadevall Johns Hopkins Bloomberg School of Public Health Thoughts on virulence, melanin and the rise of mammals Workshops Nomenclature UNITE Student Workshop on Professional Development Abstracts for Symposia, Contributed formats for downloading and using locally or in a Talks, and Poster Sessions arranged by range of applications (e.g. QIIME, Mothur, SCATA). 4. Analysis tools - UNITE provides variety of analysis last name of primary author. Presenting tools including, for example, massBLASTer for author in *bold. blasting hundreds of sequences in one batch, ITSx for detecting and extracting ITS1 and ITS2 regions of ITS 1. UNITE - Unified system for the DNA based sequences from environmental communities, or fungal species linked to the classification ATOSH for assigning your unknown sequences to *Abarenkov, Kessy (1), Kõljalg, Urmas (1,2), SHs. 5. Custom search functions and unique views to Nilsson, R. Henrik (3), Taylor, Andy F. S. (4), fungal barcode sequences - these include extended Larsson, Karl-Hnerik (5), UNITE Community (6) search filters (e.g. source, locality, habitat, traits) for 1.Natural History Museum, University of Tartu, sequences and SHs, interactive maps and graphs, and Vanemuise 46, Tartu 51014; 2.Institute of Ecology views to the largest unidentified sequence clusters and Earth Sciences, University of Tartu, Lai 40, Tartu formed by sequences from multiple independent 51005, Estonia; 3.Department of Biological and ecological studies, and for which no metadata Environmental Sciences, University of Gothenburg, currently exists.