Limpet Disturbance Effects on Barnacle Recruitment Are Related to Recruitment Intensity but Not Recruit Size
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix 1 Table A1
OIK-00806 Kordas, R. L., Dudgeon, S., Storey, S., and Harley, C. D. G. 2014. Intertidal community responses to field-based experimental warming. – Oikos doi: 10.1111/oik.00806 Appendix 1 Table A1. Thermal information for invertebrate species observed on Salt Spring Island, BC. Species name refers to the species identified in Salt Spring plots. If thermal information was unavailable for that species, information for a congeneric from same region is provided (species in parentheses). Response types were defined as; optimum - the temperature where a functional trait is maximized; critical - the mean temperature at which individuals lose some essential function (e.g. growth); lethal - temperature where a predefined percentage of individuals die after a fixed duration of exposure (e.g., LT50). Population refers to the location where individuals were collected for temperature experiments in the referenced study. Distribution and zonation information retrieved from (Invertebrates of the Salish Sea, EOL) or reference listed in entry below. Other abbreviations are: n/g - not given in paper, n/d - no data for this species (or congeneric from the same geographic region). Invertebrate species Response Type Temp. Medium Exposure Population Zone NE Pacific Distribution Reference (°C) time Amphipods n/d for NE low- many spp. worldwide (Gammaridea) Pacific spp high Balanus glandula max HSP critical 33 air 8.5 hrs Charleston, OR high N. Baja – Aleutian Is, Berger and Emlet 2007 production AK survival lethal 44 air 3 hrs Vancouver, BC Liao & Harley unpub Chthamalus dalli cirri beating optimum 28 water 1hr/ 5°C Puget Sound, WA high S. CA – S. Alaska Southward and Southward 1967 cirri beating lethal 35 water 1hr/ 5°C survival lethal 46 air 3 hrs Vancouver, BC Liao & Harley unpub Emplectonema gracile n/d low- Chile – Aleutian Islands, mid AK Littorina plena n/d high Baja – S. -
JMS 70 1 031-041 Eyh003 FINAL
PHYLOGENY AND HISTORICAL BIOGEOGRAPHY OF LIMPETS OF THE ORDER PATELLOGASTROPODA BASED ON MITOCHONDRIAL DNA SEQUENCES TOMOYUKI NAKANO AND TOMOWO OZAWA Department of Earth and Planetary Sciences, Nagoya University, Nagoya 464-8602,Japan (Received 29 March 2003; accepted 6June 2003) ABSTRACT Using new and previously published sequences of two mitochondrial genes (fragments of 12S and 16S ribosomal RNA; total 700 sites), we constructed a molecular phylogeny for 86 extant species, covering a major part of the order Patellogastropoda. There were 35 lottiid, one acmaeid, five nacellid and two patellid species from the western and northern Pacific; and 34 patellid, six nacellid and three lottiid species from the Atlantic, southern Africa, Antarctica and Australia. Emarginula foveolata fujitai (Fissurellidae) was used as the outgroup. In the resulting phylogenetic trees, the species fall into two major clades with high bootstrap support, designated here as (A) a clade of southern Tethyan origin consisting of superfamily Patelloidea and (B) a clade of tropical Tethyan origin consisting of the Acmaeoidea. Clades A and B were further divided into three and six subclades, respectively, which correspond with geographical distributions of species in the following genus or genera: (AÍ) north eastern Atlantic (Patella ); (A2) southern Africa and Australasia ( Scutellastra , Cymbula-and Helcion)', (A3) Antarctic, western Pacific, Australasia ( Nacella and Cellana); (BÍ) western to northwestern Pacific (.Patelloida); (B2) northern Pacific and northeastern Atlantic ( Lottia); (B3) northern Pacific (Lottia and Yayoiacmea); (B4) northwestern Pacific ( Nipponacmea); (B5) northern Pacific (Acmaea-’ânà Niveotectura) and (B6) northeastern Atlantic ( Tectura). Approximate divergence times were estimated using geo logical events and the fossil record to determine a reference date. -
BMC Biology Biomed Central
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by GEO-LEOe-docs BMC Biology BioMed Central Research article Open Access A rapidly evolving secretome builds and patterns a sea shell Daniel J Jackson1,2, Carmel McDougall1,4, Kathryn Green1, Fiona Simpson3, Gert Wörheide2 and Bernard M Degnan*1 Address: 1School of Integrative Biology, University of Queensland, Brisbane Qld 4072, Australia, 2Department of Geobiology, Geoscience Centre, University of Göttingen, Goldschmidtstr.3, 37077 Göttingen, Germany, 3Institute of Molecular Biosciences, University of Queensland, Brisbane Qld 4072, Australia and 4Department of Zoology, University of Oxford, Tinbergen Bldg., South Parks Road, Oxford OX1 3PS, UK Email: Daniel J Jackson - [email protected]; Carmel McDougall - [email protected]; Kathryn Green - [email protected]; Fiona Simpson - [email protected]; Gert Wörheide - [email protected] goettingen.de; Bernard M Degnan* - [email protected] * Corresponding author Published: 22 November 2006 Received: 27 July 2006 Accepted: 22 November 2006 BMC Biology 2006, 4:40 doi:10.1186/1741-7007-4-40 This article is available from: http://www.biomedcentral.com/1741-7007/4/40 © 2006 Jackson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Instructions to fabricate mineralized structures with distinct nanoscale architectures, such as seashells and coral and vertebrate skeletons, are encoded in the genomes of a wide variety of animals. -
ESLO2014-002, "NPDES Receiving Water Monitoring Program: 2013
Pacific Gas and Electric Company Diablo Canyon Power Plant NPDES RECEIVING WATER MONITORING PROGRAM: 2013 ANNUAL REPORT March 31, 2014 Submitted to: Pacific Gas and Electric Company Diablo Canyon Power Plant Avila Beach, CA 93424 Preparedby: 0 TiNiR Environmental 141 Suburban Rd., Suite A2 San Luis Obispo, CA 93401 ESL02014-002 Table of Contents Table of Contents 1.0 INTRODUCTION .................................................................................................................... 1 2.0 TEMPERATURE M ONITORING ............................................................................................. 4 3.0 INTERTIDAL ALGAE AND INVERTEBRATES .................................................................... 9 4.0, INTERTIDAL FISHES ........................................................... 11 5.0 SUBTIDAL ALGAE AND INVERTEBRATES ..................................................................... 12 6.0 SURFACE CANOPY K ELPS ................................................................................................. 14 7.0 SUBTIDAL FISHES ......................................................................................................... 15 8.0 RWMP PROJECT PERSONNEL ...................................................................................... 17 9.0 LITERATURE CITED ...................................................................................................... 18 APPENDIX A. Intertidal Temperatures APPENDIX B. Subtidal Temperatures APPENDIX C. Intertidal Algae, Invertebrates and Substrates -
The Limpet Form in Gastropods: Evolution, Distribution, and Implications for the Comparative Study of History
UC Davis UC Davis Previously Published Works Title The limpet form in gastropods: Evolution, distribution, and implications for the comparative study of history Permalink https://escholarship.org/uc/item/8p93f8z8 Journal Biological Journal of the Linnean Society, 120(1) ISSN 0024-4066 Author Vermeij, GJ Publication Date 2017 DOI 10.1111/bij.12883 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Biological Journal of the Linnean Society, 2016, , – . With 1 figure. Biological Journal of the Linnean Society, 2017, 120 , 22–37. With 1 figures 2 G. J. VERMEIJ A B The limpet form in gastropods: evolution, distribution, and implications for the comparative study of history GEERAT J. VERMEIJ* Department of Earth and Planetary Science, University of California, Davis, Davis, CA,USA C D Received 19 April 2015; revised 30 June 2016; accepted for publication 30 June 2016 The limpet form – a cap-shaped or slipper-shaped univalved shell – convergently evolved in many gastropod lineages, but questions remain about when, how often, and under which circumstances it originated. Except for some predation-resistant limpets in shallow-water marine environments, limpets are not well adapted to intense competition and predation, leading to the prediction that they originated in refugial habitats where exposure to predators and competitors is low. A survey of fossil and living limpets indicates that the limpet form evolved independently in at least 54 lineages, with particularly frequent origins in early-diverging gastropod clades, as well as in Neritimorpha and Heterobranchia. There are at least 14 origins in freshwater and 10 in the deep sea, E F with known times ranging from the Cambrian to the Neogene. -
<I>Scutellastra Flexuosa</I>
BULLETIN OF MARINE SCIENCE, 81(2): 219–234, 2007 REPRODUCTION, ECOLOGY, AND EVOLUTION OF THE INDO-PACIFIC LIMPET SCUTELLASTRA FLEXUOSA David R. Lindberg ABSTRACT Scutellastra flexuosa (Quoy and Gaimard, 1834) was studied at Temae islet reef on Moorea, Society Islands, French Polynesia between 1998 and 2001 to compare and contrast the respective roles of deep phyletic history with recent adaptations in shaping its current ecological and life history characteristics. Most of the charac- ters examined are consistent with related specialist species and are therefore deter- mined by ancestry. These characteristics include habitat restriction, algal gardening, local distribution, home site fidelity, adult/juvenile differentiation, and protandric hermaphroditism. The only character that appears autapomorphic and a possible adaptation to its proximal setting is its small body size. Large body size is often as- sociated with species that maintain and defend territories. However, the variance in size in clades with and without territorial species presents a more complex picture. The putative size reduction of S. flexuosa has not affected many of the specialized traits shared within its lineage and it remains a classic territorial taxon albeit in miniature. The phyletic pattern that emerges here is one of a clade dominated by specialist species that gave rise to generalist species that in turn gave rise to another group of specialists with identical traits albeit in different habitats. Studies of the evolution of life history characteristics of marine invertebrates have produced a large body of empirical data and theoretical interpretations. Many recent studies of the evolution of life history traits have become grounded in phylogenet- ic analysis (e.g., McHugh and Fong, 2002; Kupriyanova, 2003; Meyer, 2003; Collin, 2004; Kohler et al., 2004; Byrne, 2006; Glenner and Hebsgaard, 2006); a trend that is a welcomed alternative to the former practice of using current taxonomic classi- fications to parse traits. -
Lottia Pelta Class: Gastropoda, Patellogastropoda
Phylum: Mollusca Lottia pelta Class: Gastropoda, Patellogastropoda Order: The shield, or helmet limpet Family: Lottioidea, Lottiidae Taxonomy: A major systematic revision of (Sorensen and Lindberg 1991). May be fouled the northeastern Pacific limpet fauna was with a sabellid (Kuris and Culver 1999). undertaken by MacLean in 1966. Notoac- Interior: Blue gray to white, with mea was at first considered a subgenus and subapical brown spot (fig 3), and horseshoe- then later a full genus (MacLean 1969). Col- shaped muscle scar joined by a thin, faint line lisella was synonymized with Lottia, and lat- (fig. 3) (Keen and Coan 1974). Uses suction er Notoacmea was replaced with Tectura to attach to substratum, as well as a glue that (Lindberg 2007). The current practice in may be helpful in maintaining a seal around The Light and Smith Manual is to use only the edge of their feet on irregular surfaces Acmaea and Lottia to describe Pacific North- (Smith 1991). west species (Lindberg 2007). Possible Misidentifications Description Many species of limpets of the family Size: 25mm (Brusca and Brusca 1978); can Acmaeidae occur on our coast, but only about reach 40 mm farther north (Kozloff 1974b four are found in estuarine conditions. Lottia Yanes and Tyler 2009); illustrated specimen, scutum (=Notoacmaea), which, like Lottia pel- 32.5 mm. ta, have a horseshoe-shaped muscle scar on Color: Extremely variable dependent on the shell interior, joined by a thin curved line, substrata (Sorensen and Lindberg 1991); and various coloration, but not pink-rayed or called the brown and white shield limpet by white. These two genera differ in that L. -
Caracterización Biológica Del Molusco Protegido Patella Ferruginea Gmelin, 1791 (Gastropoda: Patellidae): Bases Para Su Gestión Y Conservación
CARACTERIZACIÓN BIOLÓGICA DEL MOLUSCO PROTEGIDO PATELLA FERRUGINEA GMELIN, 1791 (GASTROPODA: PATELLIDAE): BASES PARA SU GESTIÓN Y CONSERVACIÓN. LABORATORIO DE BIOLOGÍA MARINA- UNIVERSIDAD DE SEVILLA Free Espinosa Torre D. JOSÉ MANUEL GUERRA GARCÍA, PROFESOR AYUDANTE DEL DEPARTAMENTO DE FISIOLOGÍA Y ZOOLOGÍA DE LA UNIVERSIDAD DE SEVILLA, D. DARREN FA, SUBDIRECTOR DEL ‘GIBRALTAR MUSEUM’ Y D. JOSÉ CARLOS GARCÍA GÓMEZ, PROFESOR TITULAR DEL DEPARTAMENTO DE FISIOLOGÍA Y ZOOLOGÍA DE LA UNIVERSIDAD DE SEVILLA CERTIFICAN QUE: D. FREE ESPINOSA TORRE, licenciado en Biología, ha realizado bajo su dirección y en el Departamento de Fisiología y Zoología de la Universidad de Sevilla, la memoria titulada “Caracterización biológica del molusco protegido Patella ferruginea Gmelin, 1791 (Gastropoda: Patellidae): bases para su gestión y conservación”, reuniendo el mismo las condiciones necesarias para optar al grado de doctor. Sevilla, 24 de octubre de 2005 Vº Bº de los directores: Fdo. José Manuel Guerra García Fdo. Darren Fa Fdo. José Carlos García Gómez El interesado: Fdo. Free Espinosa Torre A toda mi familia “Ingenuity and inventiveness in the development of methods have been very successful in finding ways to extract signals from the intrinsic noise of the system.” A. J. UNDERWOOD “Patella ferruginea lineis pullis angulatis undulative cingulique albis picta intus lactea; itriis elevatis nodolis, margine plicato.” GMELIN, 1791 AGRADECIMIENTOS Resulta extraño escribir estas líneas después de todo este tiempo, ya que representa el final de un trabajo que no hubiera sido posible sin la ayuda de todas las personas que a continuación citaré, pido disculpas de antemano si olvidase a alguien, espero que sepa perdonarme. En primer lugar quisiera agradecer a mis directores de tesis José Manuel Guerra García, Darren Fa y José Carlos García Gómez por haberme ayudado a completar este camino, dándome primero la oportunidad de realizar esta tesis y apoyándome en todo momento durante su desarrollo y por ser además unos buenos amigos. -
Patellid Limpets: an Overview of the Biology and Conservation of Keystone Species of the Rocky Shores
Chapter 4 Patellid Limpets: An Overview of the Biology and Conservation of Keystone Species of the Rocky Shores Paulo Henriques, João Delgado and Ricardo Sousa Additional information is available at the end of the chapter http://dx.doi.org/10.5772/67862 Abstract This work reviews a broad spectrum of subjects associated to Patellid limpets’ biology such as growth, reproduction, and recruitment, also the consequences of commercial exploitation on the stocks and the effects of marine protected areas (MPAs) in the biology and populational dynamics of these intertidal grazers. Knowledge of limpets’ biological traits plays an important role in providing proper background for their effective man- agement. This chapter focuses on determining the effect of biotic and abiotic factors that influence these biological characteristics and associated geographical patterns. Human exploitation of limpets is one of the main causes of disturbance in the intertidal ecosys- tem and has occurred since prehistorical times resulting in direct and indirect alterations in the abundance and size structure of the target populations. The implementation of MPAs has been shown to result in greater biomass, abundance, and size of limpets and to counter other negative anthropogenic effects. However, inefficient planning and lack of surveillance hinder the accomplishment of the conservation purpose of MPAs. Inclusive conservation approaches involving all the stakeholders could guarantee future success of conservation strategies and sustainable exploitation. This review also aims to estab- lish how beneficial MPAs are in enhancing recruitment and yield of adjacent exploited populations. Keywords: Patellidae, limpets, fisheries, MPAs, conservation 1. Introduction The Patellidae are one of the most successful families of gastropods that inhabit the rocky shores from the supratidal to the subtidal, a marine habitat subject to some of the most © 2017 The Author(s). -
A Comparison of Intertidal Species Richness and Composition Between Central California and Oahu, Hawaii
Marine Ecology. ISSN 0173-9565 ORIGINAL ARTICLE A comparison of intertidal species richness and composition between Central California and Oahu, Hawaii Chela J. Zabin1,2, Eric M. Danner3, Erin P. Baumgartner4, David Spafford5, Kathy Ann Miller6 & John S. Pearse7 1 Smithsonian Environmental Research Center, Tiburon, CA, USA 2 Department of Environmental Science and Policy, University of California, Davis, CA, USA 3 Southwest Fisheries Science Center, Santa Cruz, CA, USA 4 Department of Biology, Western Oregon University, Monmouth, OR, USA 5 Department of Botany, University of Hawaii, Manoa, HI, USA 6 University Herbarium, University of California, Berkeley, CA, USA 7 Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA Keywords Abstract Climate change; range shifts; rocky shores; temporal comparisons; tropical islands; The intertidal zone of tropical islands is particularly poorly known. In contrast, tropical versus temperate. temperate locations such as California’s Monterey Bay are fairly well studied. However, even in these locations, studies have tended to focus on a few species Correspondence or locations. Here we present the results of the first broadscale surveys of Chela J. Zabin, Smithsonian Environmental invertebrate, fish and algal species richness from a tropical island, Oahu, Research Center, 3152 Paradise Drive, Hawaii, and a temperate mainland coast, Central California. Data were gath- Tiburon, CA 94920, USA. ered through surveys of 10 sites in the early 1970s and again in the mid-1990s E-mail: [email protected] in San Mateo and Santa Cruz counties, California, and of nine sites in 2001– Accepted: 18 August 2012 2005 on Oahu. Surveys were conducted in a similar manner allowing for a comparison between Oahu and Central California and, for California, a com- doi: 10.1111/maec.12007 parison between time periods 24 years apart. -
Status and Trends of the Rocky Intertidal Community of the Farallon
Monographs of the Western North American Naturalist 7, © 2014, pp. 260–275 STATUS AND TRENDS OF THE ROCKY INTERTIDAL COMMUNITY ON THE FARALLON ISLANDS Jan Roletto1, Scott Kimura2, Natalie Cosentino-Manning3, Ryan Berger4, and Russell Bradley4 ABSTRACT.—The Farallon Islands in the Gulf of the Farallones National Marine Sanctuary (GFNMS) is a 7-island chain located 48 km west of San Francisco, California. Since 1993, GFNMS biologists and associates have monitored algal and invertebrate species abundances on the intertidal shores of the 2 South Farallon Islands. The monitoring occurred 1–3 times yearly in 6 study areas. In each study area, 3–4 permanent, 0.15-m2 quadrats located between the upper and midintertidal zones were sampled for algal and sessile invertebrate cover and invertebrate counts. Taxonomic surveys were also completed to document other species in the vicinity of the sampling quadrats and to further charac- terize the sampling areas. Here we report monitoring results for the period 1993 to 2011. While species richness has remained relatively stable and high compared to the nearest mainland sites (Sonoma County through San Mateo County), there has been a slow, long-term net decline in the abundance of algal species and mussels at various sites on the islands. Causes for the declines remain unknown, but increased trampling from rising numbers of pinnipeds and increased waste from pinnipeds and seabirds are among the influences suspected to be important. RESUMEN.—Las Islas Farallon en el Santuario Nacional Marino Golfo de Farallones (SNMGF) es un archipiélago de siete islas situado a 48 km al oeste de San Francisco, California. -
Download The
Community ecology in a warmer world: direct and indirect effects of temperature on community dynamics by Rebecca Lee Kordas B.A., The University of Chicago 2002 M.Sc., California State University Northridge 2006 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate and Postdoctoral Studies (Zoology) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) September 2014 © Rebecca Lee Kordas 2014 Abstract As the Earth’s climate changes so too do its ecosystems, due to shifts in abundance, biodiversity and interaction strengths among their constituent species. Although warming will simultaneously affect many aspects of ecological communities, disentangling the abiotic and biotic contributions will improve our understanding of how assemblages of interacting species will respond to climate change. My goal was to determine how warming affects community assemblages via direct (mediated by organismal physiology) vs. indirect effects (mediated by species interactions). I addressed this with 12-16 month-long manipulative experiments in the rocky intertidal zone of Salt Spring Island, Canada. I created a novel in situ method for increasing substratum temperature for settling benthic organisms, using black- and white-bordered settlement plates. In the first experiment (Chapter 3), I monitored the response of functional groups and diversity to warmed treatments. Results from this experiment suggest that communities in thermally stressful habitats respond to warming via the interplay between species-specific physiological responses and secondary adaptive strategies such as behavioral microhabitat selection. In Chapter 4, I concentrated on the direct effects of warming. As a case study, I monitored the direct effects of in situ warming on the vital rates of two competing barnacle species.