Sea Level Drop, Palaeoenvironmental Change and Related Biotic Responses Across Guadalupian–Lopingian Boundary in Southwest, North and Central Iran

Total Page:16

File Type:pdf, Size:1020Kb

Sea Level Drop, Palaeoenvironmental Change and Related Biotic Responses Across Guadalupian–Lopingian Boundary in Southwest, North and Central Iran Geol. Mag.: page 1 of 23 c Cambridge University Press 2017 1 doi:10.1017/S0016756816001199 Sea level drop, palaeoenvironmental change and related biotic responses across Guadalupian–Lopingian boundary in southwest, North and Central Iran ∗ SAKINEH AREFIFARD Department of Geology, Faculty of Sciences, Lorestan University, Khorramabad, Lorestan 68151-44316, Iran (Received 16 September 2016; accepted 5 December 2016) Abstract – The Capitanian to Wuchiapingian deposits in Zagros (southwest Iran), Alborz (North Iran) and Central Iran display important information about the end-Guadalupian extinction. According to lithological characteristics in the studied sections, the Guadalupian–Lopingian boundary (G-LB) interval can be subdivided into three units: the Capitanian unit, the latest Capitanian unit or interval unit (i.e. deposits in the topmost portion of the Capitanian strata) and the Wuchiapingian unit. The G- LB horizon is set at the base of Wuchiapingian deposits based on the first appearance datum (FAD) of the Late Permian diagnostic small foraminifers. The Capitanian unit was deposited subtidally, but the latest Capitanian unit was in the intertidal zone. The Wuchiapingian unit shows the return of subtidal conditions. A remarkable subaerial exposure occurs at the top of the Ruteh Formation, in Alborz, which is a laterite/bauxite horizon followed by continental deposits. The overall facies change in the G-L boundary intervals in the sections under study indicates a sea level drop around the G-LB which was at its lowest level in the Ruteh section. The decline and elimination of shallow marine biota in the G-LB interval took place in two steps in the Zagros and Alborz sections and in one step in Central Iran. These are indicative of the appearance of the stressful environment during the late Capitanian shallowing trend before the G-LB. The sea level drop and regression in the late Capitanian can be considered the major causes of end-Guadalupian extinction in the Iranian sections, but in the Alborz area volcanic activity is another feasible cause of this crisis. Keywords: end-Guadalupian extinction, Iran, sea level drop, facies changes, biotic responses. 1. Introduction 1996). Clapham, Shen & Bottjer (2009) demonstrated that the end-Guadalupian extinction was not sharp, and A mass extinction is considered as a globally rapid loss in fact it was a protracted but gradual decline in di- of species diversity in both marine and terrestrial envir- versity from the Wordian to end-Changhsingian. They onments. The big five extinctions of the Phanerozoic also argued that end-Guadalupian extinction shows no are those in which more than 50 % of the biota were peak in extinction rate, and is provoked by a sharp de- eliminated (Raup & Sepkoski, 1982; Sepkoski, 1994, crease in origination rates during the Capitanian and 1996). The end-Capitanian biota losses can also be Wuchiapingian. considered as one of the major extinctions in earth his- Besides the decline in taxonomic diversity, the tory. They comprise decline in diversity, with an elev- Guadalupian–Lopingian boundary (G-LB) interval ated extinction rate. They preceded the Permo-Triassic was associated with an environmental change. An- mass extinction, the largest extinction event in the oxic conditions have been reported both from the mid- Phanerozoic, and some researchers consider the end- oceanic deep sea (Isozaki, 1997) and deeper epicon- Guadalupian biotic losses as a first step in the double- tinental basins (Nielsen & Shen, 2004) as the prelude phased Permo-Triassic mass extinction (Jin, Zhang & to ocean stratification which would finally play a ma- Shang, 1994; Stanley & Yang, 1994; Erwin, Bowring jor role in the end-Permian mass extinction. Clapham, & Yugan, 2002; Bambach, 2006; Bottjer et al. 2008; Shen & Bottjer (2009) suggested that the gradual re- Clapham, Shen & Bottjer, 2009;Alroy,2010). The duction in diversity rather than a sharp (‘sudden’) ex- end-Guadalupian extinction was relatively severe, as tinction in end-Capitanian time eliminates the need to c. 58 % of marine vertebrates were eliminated during find the catastrophic cause of the extinction mechan- the Capitanian (Knoll et al. 1996). This crisis was also isms for the late Capitanian. Indeed it implies that severe for large-test fusulinids with losses at the gen- the main biotic loss at the end of the Palaeozoic was eric level (Sepkoski, 1994; Stanley & Yang, 1994). the end-Changhsingian mass extinction which eradic- The standing marine invertebrate diversity declined ated more than 78 % of marine vertebrates. While sev- >75 % during the end-Guadalupian crisis (Knoll et al. eral biostratigraphic studies have been carried out on Middle and Late Permian deposits in Zagros (SW Iran) ∗ Author for correspondence: sarefi[email protected] (Szabo & Kheradpir, 1978; Baghbani, 1997; Gaillot Downloaded from https:/www.cambridge.org/core. IP address: 91.98.90.48, on 27 Jan 2017 at 06:58:08, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0016756816001199 2 S. AREFIFARD & Vachard, 2007; Davydov & Arefifard, 2013), Cent- cludes some evaporites and is composed of three units: ral Iran (Jenny-Deshusses, 1983; Kobayashi & Ishii, Lower Dalan Member(carbonates), Middle Nar Mem- 2003; Leven & Vaziri Moghaddam, 2004;Arefifard, ber (predominantly anhydrite) and Upper Dalan Mem- unpub. Ph.D. thesis, Shahid Beheshti Univ., 2006) and ber (anhydrite interbedded with carbonate) (Szabo & Alborz (N Iran) (Arefifard, unpub. M.Sc. thesis, Shahid Kheradpir, 1978). Beheshti Univ., 1997; Gaetani et al. 2009) and signi- The section under study for the G-LB analysis in ficantly improved our knowledge of Permian palaeo- Zagros is located in the Ile-Beyk section on Zard biogeography in Iran, they did not address the G-LB Kuh Mountain (270 km west of Shar-e Kurd city) interval and its taxonomic and causal environmental (Fig. 1). The thickness of the Dalan Formation in change. Kolodka et al. (2012) studied the Middle to High Zagros varies from 932 m in the Il-e Beyk Late Permian deposits (Dalan Formation) in the Kuh- section in Zard Kuh Mountain to 332 m in Kuh-e e Gakhum anticline (SE Iran). They documented the Dena. This section was first studied by Setudehnia palaeontological changes in the G-L interval, which (1975), who assigned the Dalan Formation to the include a foraminifera diversity decline (70 %) and Middle to Late Permian according to its fossil con- changes in algal associations such as Gymnocodiaceae tent (smaller foraminifers, few fusulinids and corals) and Dasycladaceae. They proposed that the G-L inter- in the Lower Dalan Member. In this section, due to val records an important environmental change from the missing Lower Permian Faraghan Formation, the a bioclastic ramp in the Guadalupian to a shelf in Dalan Formation unconformably overlies the Ordovi- the Late Permian which is coeval with significant fo- cian shales of the Zard Kuh Formation and conform- raminifer extinction. The top of the Guadalupian de- ably underlies Lower Triassic dolomites of the Kangan posits in the Kuh-e Gahkum section is reported as a Formation. drop in sea level coinciding with global regression at The most detailed fusulinid-based biostratigraphic the end-Capitanian (Kolodka et al. 2012). This study biozonation and microfacies study of the Dalan aims to clarify the detailed stratigraphy and fossil con- Formation in the Il-e Beyk section was carried out tent immediately below and above the G-LB interval by Davydov & Arefifard (2013). The lower part and analyse the trend of the faunal and palaeoenviron- of the Dalan Formation (484.5 m thick, including mental changes characterizing end-Gudalupian extinc- units 1–18, Fig. 2) mainly consists of medium- to tion in Iranian sections. thick-bedded, partly cliff-forming wackestone, pack- stone and grainstones with few horizons of mud- stone (Davydov & Arefifard, 2013). Four fusulinid 2. Materials biozones are identified in the Lower Dalan Mem- The database for this contribution originates from the ber which are, in ascending order, Praeskinnerella author’s many years’ field work in different parts of parviflucta – Chusenella? pseudocompacta, Eopoly- Iran, and also published literature. The sections in diexodina persica, Chusenella schwagerinaeformis – this study have been revisited for detailed sampling Rugososchwagerina zagroensis and Monodiexodina and more field information. This study deals with kattaensis. The age of the Lower Dalan Member, based detailed lithostratigraphy, biostratigraphy, microfacies on these fusulinid biozones, is referred to the Road- and fossil record change in the G-LB interval in the ian to early Capitanian. Cream-coloured thickly bed- Middle to Late Permian Dalan Formation, Zagros; ded dolomite and dolomitic limestones with occasional Middle to Late Permian Jamal Formation, Central Iran; chert nodules form the main lithological components and Middle Permian Ruteh Formation and Late Per- of the upper part of the Dalan Formation (442.5 m mian Nesen Formation, Alborz, to provide plausible thick, including units 19–28, Fig. 2). The only fu- lines of evidence for end-Guadalupian extinction in Ir- sulinid biozone recognized in the Upper Dalan Mem- anian sections and their geological implications. ber is Afghanella schencki – Sumatrina brevis.Rare small foraminifers are found, including Paraglobivalv- ulina sp. and Dagmarita sp. in the uppermost part of 3. Lithostratigraphy and biostratigraphy of the G-L the Upper Dalan Member. Therefore, the
Recommended publications
  • The Capitanian (Permian) Kamura Cooling Event
    Palaeoworld 16 (2007) 16–30 Research paper The Capitanian (Permian) Kamura cooling event: The beginning of the Paleozoic–Mesozoic transition Yukio Isozaki a,∗, Hodaka Kawahata b, Kayo Minoshima c a Department of Earth Science and Astronomy, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan b Graduate School of Frontier Sciences and Ocean Research Institute, The University of Tokyo, Minamidai, Nakano, Tokyo 164-8639, Japan c Geological Survey of Japan, AIST, Tsukuba 305-8567, Japan Received 4 January 2007; received in revised form 12 May 2007; accepted 15 May 2007 Available online 25 May 2007 Abstract 13 The Capitanian (late Guadalupian) high positive plateau interval of carbonate carbon isotope ratio (␦ Ccarb) was recognized lately in a mid-Panthalassan paleo-atoll limestone in Japan as the Kamura event. This unique episode in the late-middle Permian indicates high productivity in the low-latitude superocean likely coupled with resultant global cooling. This event ended shortly before the Guadalupian–Lopingian (middle-late Permian) boundary (ca. 260 Ma); however, its onset time has not been ascertained previously. Through a further analysis of the Wordian (middle Guadalupian) to lower Capitanian interval in the same limestone at 13 Kamura in Kyushu, we have found that the ␦ Ccarb values started to rise over +4.5‰ and reached the maximum of +7.0‰ within the Yabeina (fusuline) Zone of the early-middle Capitanian. Thus the total duration of the Kamura event is estimated over 3–4 million years, given the whole Capitanian ranging for 5.4 million years. This 3–4 million years long unique cooling event occurred clearly after the Gondwana glaciation period (late Carboniferous to early Permian) in the middle of the long-term warming trend toward the Mesozoic.
    [Show full text]
  • Guadalupian, Middle Permian) Mass Extinction in NW Pangea (Borup Fiord, Arctic Canada): a Global Crisis Driven by Volcanism and Anoxia
    The Capitanian (Guadalupian, Middle Permian) mass extinction in NW Pangea (Borup Fiord, Arctic Canada): A global crisis driven by volcanism and anoxia David P.G. Bond1†, Paul B. Wignall2, and Stephen E. Grasby3,4 1Department of Geography, Geology and Environment, University of Hull, Hull, HU6 7RX, UK 2School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK 3Geological Survey of Canada, 3303 33rd Street N.W., Calgary, Alberta, T2L 2A7, Canada 4Department of Geoscience, University of Calgary, 2500 University Drive N.W., Calgary Alberta, T2N 1N4, Canada ABSTRACT ing gun of eruptions in the distant Emeishan 2009; Wignall et al., 2009a, 2009b; Bond et al., large igneous province, which drove high- 2010a, 2010b), making this a mid-Capitanian Until recently, the biotic crisis that oc- latitude anoxia via global warming. Although crisis of short duration, fulfilling the second cri- curred within the Capitanian Stage (Middle the global Capitanian extinction might have terion. Several other marine groups were badly Permian, ca. 262 Ma) was known only from had different regional mechanisms, like the affected in equatorial eastern Tethys Ocean, in- equatorial (Tethyan) latitudes, and its global more famous extinction at the end of the cluding corals, bryozoans, and giant alatocon- extent was poorly resolved. The discovery of Permian, each had its roots in large igneous chid bivalves (e.g., Wang and Sugiyama, 2000; a Boreal Capitanian crisis in Spitsbergen, province volcanism. Weidlich, 2002; Bond et al., 2010a; Chen et al., with losses of similar magnitude to those in 2018). In contrast, pelagic elements of the fauna low latitudes, indicated that the event was INTRODUCTION (ammonoids and conodonts) suffered a later, geographically widespread, but further non- ecologically distinct, extinction crisis in the ear- Tethyan records are needed to confirm this as The Capitanian (Guadalupian Series, Middle liest Lopingian (Huang et al., 2019).
    [Show full text]
  • Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships
    438 Article 438 by Saswati Bandyopadhyay1* and Sanghamitra Ray2 Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships 1Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; email: [email protected] 2Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India; email: [email protected] *Corresponding author (Received : 23/12/2018; Revised accepted : 11/09/2019) https://doi.org/10.18814/epiiugs/2020/020028 The twelve Gondwanan stratigraphic horizons of many extant lineages, producing highly diverse terrestrial vertebrates India have yielded varied vertebrate fossils. The oldest in the vacant niches created throughout the world due to the end- Permian extinction event. Diapsids diversified rapidly by the Middle fossil record is the Endothiodon-dominated multitaxic Triassic in to many communities of continental tetrapods, whereas Kundaram fauna, which correlates the Kundaram the non-mammalian synapsids became a minor components for the Formation with several other coeval Late Permian remainder of the Mesozoic Era. The Gondwana basins of peninsular horizons of South Africa, Zambia, Tanzania, India (Fig. 1A) aptly exemplify the diverse vertebrate faunas found Mozambique, Malawi, Madagascar and Brazil. The from the Late Palaeozoic and Mesozoic. During the last few decades much emphasis was given on explorations and excavations of Permian-Triassic transition in India is marked by vertebrate fossils in these basins which have yielded many new fossil distinct taxonomic shift and faunal characteristics and vertebrates, significant both in numbers and diversity of genera, and represented by small-sized holdover fauna of the providing information on their taphonomy, taxonomy, phylogeny, Early Triassic Panchet and Kamthi fauna.
    [Show full text]
  • Late Permian to Middle Triassic Palaeogeographic Differentiation of Key Ammonoid Groups: Evidence from the Former USSR Yuri D
    Late Permian to Middle Triassic palaeogeographic differentiation of key ammonoid groups: evidence from the former USSR Yuri D. Zakharov1, Alexander M. Popov1 & Alexander S. Biakov2 1 Far-Eastern Geological Institute, Russian Academy of Sciences (Far Eastern Branch), Stoletija Prospect 159, Vladivostok, RU-690022, Russia 2 North-East Interdisciplinary Scientific Research Institute, Russian Academy of Sciences (Far Eastern Branch), Portovaja 16, Magadan, RU-685000, Russia Keywords Abstract Ammonoids; palaeobiogeography; palaeoclimatology; Permian; Triassic. Palaeontological characteristics of the Upper Permian and upper Olenekian to lowermost Anisian sequences in the Tethys and the Boreal realm are reviewed Correspondence in the context of global correlation. Data from key Wuchiapingian and Chang- Yuri D. Zakharov, Far-Eastern Geological hsingian sections in Transcaucasia, Lower and Middle Triassic sections in the Institute, Russian Academy of Sciences (Far Verkhoyansk area, Arctic Siberia, the southern Far East (South Primorye and Eastern Branch), Vladivostok, RU-690022, Kitakami) and Mangyshlak (Kazakhstan) are examined. Dominant groups of Russia. E-mail: [email protected] ammonoids are shown for these different regions. Through correlation, it is doi:10.1111/j.1751-8369.2008.00079.x suggested that significant thermal maxima (recognized using geochemical, palaeozoogeographical and palaeoecological data) existed during the late Kun- gurian, early Wuchiapingian, latest Changhsingian, middle Olenekian and earliest Anisian periods. Successive expansions and reductions of the warm– temperate climatic zones into middle and high latitudes during the Late Permian and the Early and Middle Triassic are a result of strong climatic fluctuations. Prime Middle–Upper Permian, Lower and Middle Triassic Bajarunas (1936) (Mangyshlak and Kazakhstan), Popov sections in the former USSR and adjacent territories are (1939, 1958) (Russian northern Far East and Verkhoy- currently located in Transcaucasia (Ševyrev 1968; Kotljar ansk area) and Kiparisova (in Voinova et al.
    [Show full text]
  • Indo-Brazilian Late Palaeozoic Wildfires
    1919 DOI: 10.11606/issn.2316-9095.v16i4p87-97 Revista do Instituto de Geociências - USP Geol. USP, Sér. cient., São Paulo, v. 16, n. 4, p. 87-97, Dezembro 2016 Indo-Brazilian Late Palaeozoic wildfires: an overview on macroscopic charcoal Incêndios vegetacionais Indo-Brasileiros no Neopaleozoico: uma revisão dos registros de carvão vegetal macroscópico André Jasper1,2,3, Dieter Uhl1,2,3, Rajni Tewari4, Margot Guerra-Sommer5, Rafael Spiekermann1, Joseline Manfroi1,2, Isa Carla Osterkamp1,2, José Rafael Wanderley Benício1,2, Mary Elizabeth Cerruti Bernardes-de-Oliveira6, Etiene Fabbrin Pires7 and Átila Augusto Stock da Rosa8 1Centro Universitário UNIVATES, Museu de Ciências Naturais, Setor de Paleobotânica e Evolução de Biomas, Avenida Avelino Tallini, 171, CEP 9590000, Lajeado, RS, Brazil ([email protected]; [email protected]; [email protected]; [email protected]; [email protected]) 2Centro Universitário UNIVATES, Programa de Pós-graduação em Ambiente e Desenvolvimento, Lajeado, RS, Brazil 3Senckenberg Forschungsinstitut und Naturmuseum, Frankfurt am Main, Hesse, Germany ([email protected]) 4Birbal Sahni Institute of Paleosciences, Lucknow, Uttar Pradesh, India ([email protected]) 5Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil ([email protected]) 6Universidade de São Paulo - USP, São Paulo, SP, Brazil ([email protected]) 7Universidade Federal do Tocantins - UFT, Porto Nacional, TO, Brazil ([email protected]) 8Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil ([email protected]) Received on April 1st, 2016; accepted on September 22nd, 2016 Abstract Sedimentary charcoal is widely accepted as a direct indicator for the occurrence of paleo-wildfires and, in Upper Paleozoic sediments of Euramerica and Cathaysia, reports on such remains are relatively common and (regionally and stratigraphically) more or less homogeneously distributed.
    [Show full text]
  • Carbon and Strontium Isotope Stratigraphy of the Permian from Nevada and China: Implications from an Icehouse to Greenhouse Transition
    Carbon and strontium isotope stratigraphy of the Permian from Nevada and China: Implications from an icehouse to greenhouse transition Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Kate E. Tierney, M.S. Graduate Program in the School of Earth Sciences The Ohio State University 2010 Dissertation Committee: Matthew R. Saltzman, Advisor William I. Ausich Loren Babcock Stig M. Bergström Ola Ahlqvist Copyright by Kate Elizabeth Tierney 2010 Abstract The Permian is one of the most important intervals of earth history to help us understand the way our climate system works. It is an analog to modern climate because during this interval climate transitioned from an icehouse state (when glaciers existed extending to middle latitudes), to a greenhouse state (when there were no glaciers). This climatic amelioration occurred under conditions very similar to those that exist in modern times, including atmospheric CO2 levels and the presence of plants thriving in the terrestrial system. This analog to the modern system allows us to investigate the mechanisms that cause global warming. Scientist have learned that the distribution of carbon between the oceans, atmosphere and lithosphere plays a large role in determining climate and changes in this distribution can be studied by chemical proxies preserved in the rock record. There are two main ways to change the distribution of carbon between these reservoirs. Organic carbon can be buried or silicate minerals in the terrestrial realm can be weathered. These two mechanisms account for the long term changes in carbon concentrations in the atmosphere, particularly important to climate.
    [Show full text]
  • A New Late Permian Burnetiamorph from Zambia Confirms Exceptional
    fevo-09-685244 June 19, 2021 Time: 17:19 # 1 ORIGINAL RESEARCH published: 24 June 2021 doi: 10.3389/fevo.2021.685244 A New Late Permian Burnetiamorph From Zambia Confirms Exceptional Levels of Endemism in Burnetiamorpha (Therapsida: Biarmosuchia) and an Updated Paleoenvironmental Interpretation of the Upper Madumabisa Mudstone Formation Edited by: 1 † 2 3,4† Mark Joseph MacDougall, Christian A. Sidor * , Neil J. Tabor and Roger M. H. Smith Museum of Natural History Berlin 1 Burke Museum and Department of Biology, University of Washington, Seattle, WA, United States, 2 Roy M. Huffington (MfN), Germany Department of Earth Sciences, Southern Methodist University, Dallas, TX, United States, 3 Evolutionary Studies Institute, Reviewed by: University of the Witwatersrand, Johannesburg, South Africa, 4 Iziko South African Museum, Cape Town, South Africa Sean P. Modesto, Cape Breton University, Canada Michael Oliver Day, A new burnetiamorph therapsid, Isengops luangwensis, gen. et sp. nov., is described Natural History Museum, on the basis of a partial skull from the upper Madumabisa Mudstone Formation of the United Kingdom Luangwa Basin of northeastern Zambia. Isengops is diagnosed by reduced palatal *Correspondence: Christian A. Sidor dentition, a ridge-like palatine-pterygoid boss, a palatal exposure of the jugal that [email protected] extends far anteriorly, a tall trigonal pyramid-shaped supraorbital boss, and a recess †ORCID: along the dorsal margin of the lateral temporal fenestra. The upper Madumabisa Christian A. Sidor Mudstone Formation was deposited in a rift basin with lithofacies characterized orcid.org/0000-0003-0742-4829 Roger M. H. Smith by unchannelized flow, periods of subaerial desiccation and non-deposition, and orcid.org/0000-0001-6806-1983 pedogenesis, and can be biostratigraphically tied to the upper Cistecephalus Assemblage Zone of South Africa, suggesting a Wuchiapingian age.
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]
  • Late Permian Tethyan Conodonts from West Texas and Their Significance for World-Wide Correlation of the Guadalupian-Dzhulfian Boundary
    Geol. Paläont. Mitt. Innsbruck, ISSN 0378-6870, Bd. 18, S. 179-186, 1991/92 LATE PERMIAN TETHYAN CONODONTS FROM WEST TEXAS AND THEIR SIGNIFICANCE FOR WORLD-WIDE CORRELATION OF THE GUADALUPIAN-DZHULFIAN BOUNDARY Heinz Kozur With 21 figures Abstract: With the discovery of Tethyan Late Permian conodonts in the uppermost Altuda Formation, a direct correlation of the lower part of the Tethyan Late Permian (Dzhulfian) with the 'latest Capitanian' in the Glass Mountains, West Texas is possible. In the Glass Mts. there is a major overlap of the 'Capitanian' with the Dzhulfian (or Wuchiapingian) Stage. In agreement with the historic definition, the top of the Guadalupian Series (= top of the Capitanian Stage) can now be defined with the transition from Mesogondolella 'babcockP (guideform of most of the Lamar Limestone, uppermost unit of type Guadalupian Series) to Clarkina cf. changxingensis within a phylomorphogenetic continuum. The now clarified relation between the Guadalupian Series and the Tethyan Late Permian removes the last obstacle for using the Guadalupian Series (comprised of Roadian, Wordian and Capitanian stages, in ascending order) as an international reference for the Middle Permian. Zusammenfassung: Die Entdeckung tethyaler oberpermischer Conodonten in der obersten Altuda-Formation ermöglicht eine direkte Korre- lation des unteren tethyalen Oberperm (Dzhulfian) mit dem „obersten Capitanian" der Glass mts., West-Texas. In den Glass mts. gibt es eine beträchtliche Überlappung des dortigen „Capitanian" mit dem tethyalen Dzhulfian (oder Wuchia- pingian). Die Obergrenze der Guadalupe-Serie (= Obergrenze des Capitanian) kann nun, in Übereinstimmung mit der his- torischen Definition in den Guadalupe Mts., mit dem kontinuierlichen phylomorphogenetischen Übergang von Meso- gondolella „babcocki" (Leitform des größten Teils des Lamar-Kalksteins, der obersten lithostratigraphischen Einheit des Guadalupian in dessen Typusregion) zu Clarkina cf.
    [Show full text]
  • Permian (Artinskian to Wuchapingian) Conodont Biostratigraphy in the Tieqiao Section, Laibin Area, South China
    Permian (Artinskian to Wuchapingian) conodont biostratigraphy in the Tieqiao section, Laibin area, South China Y.D. Suna, b*, X.T. Liuc, J.X. Yana, B. Lid, B. Chene, D.P.G. Bondf, M.M. Joachimskib, P.B. Wignallg, X.L. Laia a State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China b GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany c Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China d Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, Ministry of Land and Resources, Guangzhou, 510075, China e State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, 39 East Beijing Road, Nanjing, 210008, R.P. China f School of Environmental Sciences, University of Hull, Hull HU6 7RX, UK g School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK *Corresponding authors Email: [email protected] (Y.D. Sun) © 2017, Elsevier. Licensed under the Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/ licenses/by-nc-nd/4.0/ 1 Abstract Permian strata from the Tieqiao section (Jiangnan Basin, South China) contain several distinctive conodont assemblages. Early Permian (Cisuralian) assemblages are dominated by the genera Sweetognathus, Pseudosweetognathus and Hindeodus with rare Neostreptognathodus and Gullodus. Gondolellids are absent until the end of the Kungurian stage—in contrast to many parts of the world where gondolellids and Neostreptognathodus are the dominant Kungurian conodonts. A conodont changeover is seen at Tieqiao and coincided with a rise of sea level in the late Kungurian to the early Roadian: the previously dominant sweetognathids were replaced by mesogondolellids.
    [Show full text]
  • An Abrupt Extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and Its Link to Anoxia and Acidification
    An abrupt extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and acidification David P.G. Bond1,†, Paul B. Wignall2, Michael M. Joachimski3, Yadong Sun3,4, Ivan Savov2, Stephen E. Grasby5,6, Benoit Beauchamp6, and Dierk P.G. Blomeier7 1Department of Geography, Environment and Earth Sciences, University of Hull, Hull, HU6 7RX, United Kingdom 2School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, United Kingdom 3Geozentrum Nordbayen, Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany 4State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan, 470073, Hubei Province, P.R. China 5Geological Survey of Canada, 3303 33rd Street N.W., Calgary, Alberta, T2L 2A7, Canada 6Department of Geoscience, University of Calgary, 2500 University Drive N.W., Calgary Alberta, T2N 1N4, Canada 7Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway ABSTRACT mass extinction events; it is regarded as either sil ranges in the Kapp Starostin Formation of one of the greatest of all Phanerozoic crises, Spitsbergen, a Permian-aged mixed spiculite The controversial Capitanian (Middle ranking alongside the “Big 5” (Stanley and chert-carbonate unit that formed in cool, shelf Permian, 262 Ma) extinction event is only Yang, 1994; Bond et al., 2010a), or, in a funda- seas of the Boreal Ocean (Ehrenberg et al., known from equatorial latitudes, and conse- mentally different appraisal, it is viewed not as 2001; Stemmerik and Worsley, 2005; Blomeier quently its global extent is poorly resolved. a mass extinction but as a protracted and gradu- et al., 2013; Dustira et al., 2013).
    [Show full text]
  • Proposal of Guadalupian and Component Roadian, Wordian And
    Permophiles Issue #34 1999 REPORTS Proposal of Guadalupian and Component morphoclines, absolute dates, and paleomagnetics. Roadian, Wordian and Capitanian Stages as International Standards for the Middle Permian Historic Preamble Prolonged deliberation of SPS members culminated in the man- Series dated formal postal vote by Titular (voting) Members that approved subdivision of the Permian System into three series, in ascending Brian F. Glenister order Cisuralian, Guadalupian and Lopingian (Report of Presi- University of Iowa dent Jin Yugan, Permophiles #29, p. 2). The “——usage of the Department of Geology Guadalupian Series and constituent stages, i.e. the Roadian, the Iowa City, IA 52242, USA Wordian and the Capitanian Stage for the middle part of the Per- mian.” was approved unanimously by 15 voting members. Pro- Bruce R. Wardlaw posal of the Guadalupian as a chronostratigraphic unit of series U. S. Geological Survey rank (Girty, 1902) predates any potential competitors by decades 926A National Center (Glenister et al., 1992). Of the three component stages currently Reston, VA 22092-0001, USA recognized, the upper two (Wordian and Capitanian) enjoy com- parable priority. Capitanian was first employed in a Lance L. Lambert lithostratigraphic sense by Richardson (1904) for the massive reef Department of Physics limestones of the Guadalupe Mountains of New Mexico and West Southwest Texas State University Texas, and the Word was used by Udden et al. (1916) for the San Marcos, TX 78666-4616, USA interbedded clastic/carbonate sequence in the adjacent Glass Moun- tains. Both were used in a strictly chronostratigraphic sense first Claude Spinosa by Glenister and Furnish (1961) as substages of the Guadalupian Stage, referenced by their nominal formations and recognized else- Permian Research Institute where through “ammonoid and fusuline faunas”.
    [Show full text]