Biological Control in Plant Protection

Total Page:16

File Type:pdf, Size:1020Kb

Biological Control in Plant Protection Biological Control in Biological BOTANY There has been a large increase in the commercial use of integrated crop/pest management methods for pest and disease control on a wide range of crops throughout the world since the first edition of this Biological book. The completely revised second edition of the bestselling Biological Control in Plant Protec- tion: A Color Handbook continues the objective of providing a handbook with profiles and full-color Control in photographs of as many examples of biological con- trol organisms from as wide a global area as pos- sible. It is designed to help readers anticipate and Plant Protection recognize specific problems of pest management and then resolve them using the natural enemies of pests—parasites, predators, and pathogens. A Color Handbook The authors first describe the impact of predator– Plant Protection prey relationships on host plant species in arable, orchard, and protected environments. The main Second Edition sections of the book include profiles of pests, ben- eficial arthropods (insects and mites), and beneficial pathogens (bacteria, fungi, viruses, and nematodes), Neil Helyer featuring a tabular pest identification guide. De- scriptions of biocontrol organisms are divided into Nigel D. Cattlin four sections: species characteristics, lifecycle, crop/ pest associations, and influences of growing prac- Kevin C. Brown tices. The text is illustrated throughout with color photographs of the highest quality. This revised edition helps readers more fully un- derstand the concepts and practice of biological control and integrated pest management. All chap- ters have been updated and expanded, and more than 300 new photographs have been added. The Helyer | Cattlin Brown second edition covers new beneficial organisms and pest profiles, and it includes a new chapter on the practical aspects and application of biological con- trol. It also contains a new final chapter that puts biological control in perspective, discussing interac- tions that occur when using biocontrol for popula- tion management as well as some of the possible mechanisms of biocontrol. K21821 6000 Broken Sound Parkway, NW Suite 300, Boca Raton, FL 33487 ISBN: 978-1-84076-117-7 711 Third Avenue 90000 an informa business New York, NY 10017 2 Park Square, Milton Park www.crcpress.com Abingdon, Oxon OX14 4RN, UK 9 781840 761177 Biological Control in Plant Protection A Color Handbook Second Edition Biological Control in Plant Protection A Color Handbook Second Edition Neil Helyer Fargro Ltd, West Sussex, UK Nigel D. Cattlin Holt Studios International Ltd Kevin C. Brown Ecological Consultant, Plymouth, UK Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business Consultant editor: Dr. John Fletcher CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2014 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20140108 International Standard Book Number-13: 978-1-84076-601-1 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material repro- duced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copy- right.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identifica- tion and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com v Contents Preface ix CHAPTER 3 Acknowledgments xi Biology of some common target pests About the authors xiii Introduction 33 Common Pest Species 33 CHAPTER 1 Slugs and Snails 33 The practice and application of Spider Mites 36 biological control Woodlice 38 Millipedes 39 Introduction 1 Leafhoppers, Psyllids, Whitefly, Aphids, Parasites and Parasitoids 2 Scale insects, and Mealybugs 40 Predators 2 Leafhoppers 41 Pathogens 3 Psyllids 42 Strategies for Biological Control 3 Whiteflies 42 Conservation or Preservation Biological Control 3 Aphids 44 Importation/Classical Biological Control 5 Scale Insects 46 Inoculative Control 5 Mealybugs 47 Inundative Control 5 Thrips 49 Integrated Crop/Pest Management 6 Practical Aspects of Biological Control 7 Lepidoptera 51 Pest Monitoring 10 Caterpillars (of Moths and Butterflies) 51 Flies 54 CHAPTER 2 Leaf Miners 56 Biological control in various Sciarids 57 cropping systems Shore Flies 58 Beetles 58 Introduction 11 Weevils 62 Arable 13 Introduction 13 Arable Production and Biologicals 14 CHAPTER 4 The Challenge of Biocontrol 14 Arthropod biological control agents The Use of Pesticides and Beneficial Insects 15 Introduction 65 Monitoring Levels of Beneficial Insects 16 Class: Arachnida (Spiders, Harvestmen, Carabid Beetles 16 and Predatory Mites) 69 Staphylinid Beetles 17 Family: Araneidae (Orb Web Spiders) 70 Linyphiid Spiders 18 Family: Linyphiidae (Money Spiders) 72 Integrated Crop Management (ICM) 18 Family: Lycosidae (Wolf Spiders) 73 Conservation Strategies Using Headlands Family: Salticidae (Jumping Spiders) 74 and Beetle Banks 19 Family: Thomisidae (Crab Spiders) 75 Fruit 19 Family: Phalangiidae (Harvestmen) 75 Introduction 19 Subclass: Acari (Predatory Mites) 77 Fruit Production and Biologicals 20 Family: Trombidiidae (Red Velvet Mites) 77 The Challenge of Biocontrol 21 Allothrombidium spp. 77 Major Pests 25 Family: Phytoseiidae (Predatory Mites) 78 Integrated Crop Management 25 Amblyseius andersoni 78 Protected Crops 27 Amblyseius californicus (syn. Neoseiulus Introduction 27 californicus) 79 Crop Production and Biologicals 27 Amblyseius cucumeris (syn. Neoseiulus Pest Monitoring 28 cucumeris) 80 The Challenges of Biological Control 29 Amblyseius degenerans (syn. Iphiseius Integrated Crop Management 31 degenerans) 81 vi Contents Amblyseius montdorensis (syn. Chilocorus spp. 116 Typhlodromips montdorensis) 82 Coccinella septempunctata (Seven-Spot Amblyseius swirskii (syn. Typhlodromips Ladybird) 117 swirskii) 82 Cryptolaemus montrouzieri 119 Phytoseiulus persimilis 84 Delphastus catalinae 120 Typhlodromus pyri 85 Harmonia axyridis (Harlequin Ladybird) 121 Family: Laelapidae (Soil-Dwelling Harmonia conglobata 123 Predatory Mites) 86 Hippodamia convergens (Convergent Lady Hypoaspis aculeifer and Hypoaspis miles 86 Beetle) 124 Family: Macrochelidae (Predatory Mites) 87 Propylea quattuordecimpunctata Macrocheles robustulus 87 (14-Spot Ladybird) 125 Class: Chilopoda 88 Rodolia cardinalis (Vedalia Beetle) 126 Family: Geophilidae and Lithobiidae Scymnus subvillosus 127 (Centipedes) 88 Stethorus punctillum 127 Geophilus flavus, Stigmatogaster subterraneus, and Lithobius forficatus 88 Family: Carabidae (Ground Beetles) 128 Millipedes 89 Agonum dorsale 130 Class: Insecta (Insects) 89 Bembidion lampros 131 Order: Odonata 89 Carabus violaceus 131 Suborder: Anisoptera (Dragonflies); Demetrias atricapillus 132 Suborder: Zygoptera (Damsel Flies) 89 Harpalus rufipes 133 Order: Dermaptera 93 Loricera pilicornis 134 Family: Forficulidae (Earwigs) 93 Nebria brevicollis 134 Forficula auricularia 93 Notiophilus biguttatus 135 Order: Hemiptera 95 Poecilus cupreus 136 Suborder: Heteroptera (Predatory Bugs) 95 Pterostichus melanarius 136 Family: Gerridae (Pond Skaters) 96 Common Pond Skater or Common Water Trechus quadristriatus 137 Strider (Gerris lacustris) 96 Family: Cicindelidae (Tiger Beetles) 138 Family: Anthocoridae (Predatory Cicindela campestris (Field Tiger Beetle) 138 Bugs/Flower Bugs) 97 Family: Staphylinidae (Rove Beetles) 139 Anthocoris nemoralis 97 Aleochara spp. 139 Anthocoris nemorum 98 Atheta coriaria 140 Orius laevigatus 99 Philonthus cognatus 141 Orius majusculus 100 Tachyporus spp. 142 Family: Miridae (Predatory Bugs) 101 Xantholinus spp. 143 Atractotomus mali 101 Order: Diptera 143 Blepharidopterus angulatus 101 Family: Empididae (Dance Flies) 144 Deraeocoris ruber 102 Empis stercorea and Empis tessellata 144 Heterotoma planicornis 103 Family: Muscidae (Hunter Flies) 145 Macrolophus pygmaeus (syn. M. caliginosus) 104 Coenosia attenuata 145 Pilophorus perplexus 105 Family: Tachinidae (Parasitoid Flies) 146 Family: Pentatomidae (Shield Bug) 106 Family: Cecidomyiidae (Predatory Midges)
Recommended publications
  • Assessment of Forest Pests and Diseases in Protected Areas of Georgia Final Report
    Assessment of Forest Pests and Diseases in Protected Areas of Georgia Final report Dr. Iryna Matsiakh Tbilisi 2014 This publication has been produced with the assistance of the European Union. The content, findings, interpretations, and conclusions of this publication are the sole responsibility of the FLEG II (ENPI East) Programme Team (www.enpi-fleg.org) and can in no way be taken to reflect the views of the European Union. The views expressed do not necessarily reflect those of the Implementing Organizations. CONTENTS LIST OF TABLES AND FIGURES ............................................................................................................................. 3 ABBREVIATIONS AND ACRONYMS ...................................................................................................................... 6 EXECUTIVE SUMMARY .............................................................................................................................................. 7 Background information ...................................................................................................................................... 7 Literature review ...................................................................................................................................................... 7 Methodology ................................................................................................................................................................. 8 Results and Discussion ..........................................................................................................................................
    [Show full text]
  • The Compositional and Configurational Heterogeneity of Matrix Habitats Shape Woodland Carabid Communities in Wooded-Agricultural Landscapes
    The compositional and configurational heterogeneity of matrix habitats shape woodland carabid communities in wooded-agricultural landscapes Article Accepted Version Neumann, J. L., Griffiths, G. H., Hoodless, A. and Holloway, G. J. (2016) The compositional and configurational heterogeneity of matrix habitats shape woodland carabid communities in wooded-agricultural landscapes. Landscape Ecology, 31 (2). pp. 301-315. ISSN 0921-2973 doi: https://doi.org/10.1007/s10980-015-0244-y Available at http://centaur.reading.ac.uk/46912/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.1007/s10980-015-0244-y Publisher: Springer All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online The compositional and configurational heterogeneity of matrix habitats shape woodland carabid communities in wooded- agricultural landscapes. Jessica L. Neumann1,3*, Geoffrey H. Griffiths1, Andrew Hoodless2 and Graham J. Holloway3 1 Department of Geography and Environmental Science, University of Reading, Reading, UK 2 Game and Wildlife Conservation Trust, Fordingbridge, Hampshire, UK 3 Centre for Wildlife Assessment and Conservation, Department of Biological Sciences, University of Reading, Reading, UK Abstract Context Landscape heterogeneity (the composition and configuration of matrix habitats) plays a major role in shaping species communities in wooded-agricultural landscapes.
    [Show full text]
  • How Water Quality in Transboundary River Systems Affects Water, Sanitation, and Foreign Policy
    How Water Quality in Transboundary River Systems Affects Water, Sanitation, and Foreign Policy | 1 How Water Quality in Transboundary River Systems Affects Water, Sanitation, and Foreign Policy David Tipping, 2001 By David C. Tipping Edited by Yeareen Yun Disclaimer: The views and opinions expressed in this article are those of the author and do not necessarily reflect the official policy or position of any agency of the Australian government. Assumptions made within the analysis are not reflective of the position of any Australian government entity, or other organization or professional association. 1. INTRODUCTION Access to adequate water supply and sanitation is the core premise of local level water security. Effective management of transboundary river basin systems and water quality risks is therefore fundamental to social progress and quality of life. Improved water quality management benefits many individual lives in riparian nations, and, as demonstrated by the annual new year blessing of the fish migrations, society at large throughout the Mekong River Basin. In 2001, the author investigated the use of sustainable development indicators to improve the institutional effectiveness of international environmental management regimes. A new framework was designed to evaluate beneficial uses of water. In addition, a case study was developed on the Lower Mekong River Basin system, which integrated measures of water and environmental quality and socio-economic development. The research objectives were: (1) improving the understanding of water quality issues; (2) benchmarking water resources management performance at local, national and regional levels; and (3) enhancing technical and administrative capabilities of transboundary river basin management regimes through capacity development focused on the achievement of sustainable development objectives, and obligations and duties under international law.
    [Show full text]
  • Field Release of the Insects Calophya Latiforceps
    United States Department of Field Release of the Insects Agriculture Calophya latiforceps Marketing and Regulatory (Hemiptera: Calophyidae) and Programs Pseudophilothrips ichini Animal and Plant Health Inspection (Thysanoptera: Service Phlaeothripidae) for Classical Biological Control of Brazilian Peppertree in the Contiguous United States Environmental Assessment, May 2019 Field Release of the Insects Calophya latiforceps (Hemiptera: Calophyidae) and Pseudophilothrips ichini (Thysanoptera: Phlaeothripidae) for Classical Biological Control of Brazilian Peppertree in the Contiguous United States Environmental Assessment, May 2019 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. Additional information can be found online at http://www.ascr.usda.gov/complaint_filing_file.html.
    [Show full text]
  • Cecidophyopsis Ribis Westw.)
    Danish Research Service for Plant and Soil Science Report no. 1880 Research Centre for Plant Proteetion Institute of Pesticides D K-2800 Lyngby Chemicais test e d in the laboratory for the control of ofblack currant gall mite (Cecidophyopsis ribis Westw.) Afprøvning i laboratoriet af bekæmpelsesmidlers virkning mod solbærknopgalmider (Cecidophyopsis ribis Westw.) Steen ~kke Nielsen Summary 32 chemicals were teste d in the laboratory against the black currant gall mite (Cecidophyopsis ribis Westw.). Only 5 chemicals showed an acceptable controlling effect. They were endosulfan, oxamyl, avermectin, lime sulphur and wettable sulphur. 8 pyrethroids, 3 other insecticides and 8 acaricides were all ineffective and the same applied to 8 fun­ gicides normally used against diseases in black currants. Key words: Chemicals, laboratory test, black currant gal! mite, Cecidophyopsis ribis Westw. Resume 32 pesticider blev afprøvet i laboratoriet for deres virkning mod solbærknopgalmider (Cecidophyopsis ribis Westw.). Kun 5 midler gaven tilfredsstillende virkning. Det var endosulfan, oxamyl, avermectin, svovlkalk og sprøjtesvovl. 8 pyrethroider, 3 andre insekticider og 8 acaricider havde ingen eller en util­ strækkelig virkning mod solbærknopgalmiderne. Det samme gjaldt for 8 fungicider, der er almindeligt benyttet til bekæmpelse af svampesygdomme i solbær. Nøgleord: Pesticider, laboratorie-test, solbærknopgalmider, Cecidophyopsis ribis Westw. Introduction ternatives. Different types of chemicals were cho­ The most serious pest in black currants in Den­ sen to be tested for their con tro Iling effect on the mark is the black currant gall mite. Black currants gall mite: Pyrethroids because of their low mam­ are a rather small crop, so little effort has been malian toxicity and their repellent action against made to find suitable chemicals to control the gall honeybees; acaricides with harvest intervals of 4 mite.
    [Show full text]
  • Farming System and Habitat Structure Effects on Rove Beetles (Coleoptera: Staphylinidae) Assembly in Central European Apple
    Biologia 64/2: 343—349, 2009 Section Zoology DOI: 10.2478/s11756-009-0045-3 Farming system and habitat structure effects on rove beetles (Coleoptera: Staphylinidae) assembly in Central European apple and pear orchards Adalbert Balog1,2,ViktorMarkó2 & Attila Imre1 1Sapientia University, Faculty of Technical Science, Department of Horticulture, 1/C Sighisoarei st. Tg. Mures, RO-540485, Romania; e-mail: [email protected] 2Corvinus University Budapest, Faculty of Horticultural Science, Department of Entomology, 29–43 Villányi st., A/II., H-1118 Budapest, Hungary Abstract: In field experiments over a period of five years the effects of farming systems and habitat structure were in- vestigated on staphylinid assembly in Central European apple and pear orchards. The investigated farms were placed in three different geographical regions with different environmental conditions (agricultural lowland environment, regularly flooded area and woodland area of medium height mountains). During the survey, a total number of 6,706 individuals belonging to 247 species were collected with pitfall traps. The most common species were: Dinaraea angustula, Omalium caesum, Drusilla canaliculata, Oxypoda abdominale, Philonthus nitidulus, Dexiogya corticina, Xantholinus linearis, X. lon- giventris, Aleochara bipustulata, Mocyta orbata, Oligota pumilio, Platydracus stercorarius, Olophrum assimile, Tachyporus hypnorum, T. nitidulus and Ocypus olens. The most characteristic species in conventionally treated orchards with sandy soil were: Philonthuss nitidulus, Tachyporus hypnorum, and Mocyta orbata, while species to be found in the same regions, but frequent in abandoned orchards as well were: Omalium caesum, Oxypoda abdominale, Xantholinus linearis and Drusilla canaliculata.ThespeciesDinaraea angustula, Oligota pumilio, Dexiogya corticina, Xantholinus longiventris, Tachyporus nitidulus and Ocypus olens have a different level of preferences towards the conventionally treated orchards in clay soil.
    [Show full text]
  • Efficacy and Host Specificity Compared Between Two Populations of The
    Biological Control 65 (2013) 53–62 Contents lists available at SciVerse ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Efficacy and host specificity compared between two populations of the psyllid Aphalara itadori, candidates for biological control of invasive knotweeds in North America ⇑ Fritzi Grevstad a, , Richard Shaw b, Robert Bourchier c, Paolo Sanguankeo d, Ghislaine Cortat e, Richard C. Reardon f a Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA b CABI, Bakeham Lane, Egham, Surrey TW20 9TY, United Kingdom c Agriculture and AgriFood Canada-Lethbridge Research Centre, Lethbridge, AB, Canada T1J 4B1 d Olympic Natural Resources Center, University of Washington, Forks, WA 98331, USA e CABI, CH 2800 Delemont, Switzerland f USDA Forest Service, Forest Health Technology Enterprise Team, Morgantown, WV 26505, USA highlights graphical abstract " Two populations of the psyllid Aphalara itadori are effective at reducing knotweed growth and biomass. " The two populations differ in their performance among different knotweed species. " Development of A. itadori occurred infrequently on several non-target plant species. " The psyllid exhibited non-preference and an inability to persist on non- target plants. article info abstract Article history: Invasive knotweeds are large perennial herbs in the Polygonaceae in the genus Fallopia that are native to Received 2 February 2012 Asia and invasive in North America. They include Fallopia japonica (Japanese knotweed), F. sachalinensis Accepted 4 January 2013 (giant knotweed), and a hybrid species F. x bohemica (Bohemian knotweed). Widespread throughout Available online 12 January 2013 the continent and difficult to control by mechanical or chemical methods, these plants are good targets for classical biological control.
    [Show full text]
  • Remarks on Some European Aleocharinae, with Description of a New Rhopaletes Species from Croatia (Coleoptera: Staphylinidae)
    Travaux du Muséum National d’Histoire Naturelle © Décembre Vol. LIII pp. 191–215 «Grigore Antipa» 2010 DOI: 10.2478/v10191-010-0015-6 REMARKS ON SOME EUROPEAN ALEOCHARINAE, WITH DESCRIPTION OF A NEW RHOPALETES SPECIES FROM CROATIA (COLEOPTERA: STAPHYLINIDAE) LÁSZLÓ ÁDÁM Abstract. Based on an examination of type and non-type material, ten species-group names are synonymised: Atheta mediterranea G. Benick, 1941, Aloconota carpathica Jeannel et Jarrige, 1949 and Atheta carpatensis Tichomirova, 1973 with Aloconota mihoki (Bernhauer, 1913); Amischa jugorum Scheerpeltz, 1956 with Amischa analis (Gravenhorst, 1802); Amischa strupii Scheerpeltz, 1967 with Amischa bifoveolata (Mannerheim, 1830); Atheta tricholomatobia V. B. Semenov, 2002 with Atheta boehmei Linke, 1934; Atheta palatina G. Benick, 1974 and Atheta palatina G. Benick, 1975 with Atheta dilaticornis (Kraatz, 1856); Atheta degenerata G. Benick, 1974 and Atheta degenerata G. Benick, 1975 with Atheta testaceipes (Heer, 1839). A new name, Atheta velebitica nom. nov. is proposed for Atheta serotina Ádám, 2008, a junior primary homonym of Atheta serotina Blackwelder, 1944. A revised key for the Central European species of the Aloconota sulcifrons group is provided. Comments on the separation of the males of Amischa bifoveolata and A. analis are given. A key for the identification of Amischa species occurring in Hungary and its close surroundings is presented. Remarks are presented about the relationships of Alevonota Thomson, 1858 and Enalodroma Thomson, 1859. The taxonomic status of Oxypodera Bernhauer, 1915 and Mycetota Ádám, 1987 is discussed. The specific status of Pella hampei (Kraatz, 1862) is debated. Remarks are presented about the relationships of Alevonota Thomson, 1858, as well as Mycetota Ádám, 1987, Oxypodera Bernhauer, 1915 and Rhopaletes Cameron, 1939.
    [Show full text]
  • First Record of the Zoophytophagous Plant Bug Atractotomus Mali (Hemiptera: Miridae) in Quebec Orchards
    Document généré le 27 sept. 2021 04:22 Phytoprotection First record of the zoophytophagous plant bug Atractotomus mali (Hemiptera: Miridae) in Quebec orchards Première mention de la punaise zoophytophage Atractotomus mali (Hemiptera: Miridae) dans les vergers québécois Julien Saguez, Jacques Lasnier, Michael D. Schwartz et Charles Vincent Volume 95, numéro 1, 2015 Résumé de l'article Atractotomus mali (Meyer-Dür, 1843) (Hemiptera: Miridae) est un insecte URI : https://id.erudit.org/iderudit/1035303ar zoophytophage associé aux vergers en Europe et en Amérique du Nord. Au DOI : https://doi.org/10.7202/1035303ar Canada, il a été rapporté dans les vergers de pommiers (Malus domestica Borkh) de plusieurs provinces, mais principalement en Nouvelle-Écosse où il a Aller au sommaire du numéro induit plus de dommage sur les fruits que d’effets de prédation. Durant l’été 2014, nous avons récolté 33 spécimens dans un verger de Magog (Qc, Canada) en utilisant la méthode du battage. Cette étude constitue la première mention Éditeur(s) d’Atractotomus mali au Québec. Société de protection des plantes du Québec (SPPQ) ISSN 1710-1603 (numérique) Découvrir la revue Citer cet article Saguez, J., Lasnier, J., Schwartz, M. D. & Vincent, C. (2015). First record of the zoophytophagous plant bug Atractotomus mali (Hemiptera: Miridae) in Quebec orchards. Phytoprotection, 95(1), 38–40. https://doi.org/10.7202/1035303ar Tous droits réservés © La société de protection des plantes du Québec, 2015 Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des services d’Érudit (y compris la reproduction) est assujettie à sa politique d’utilisation que vous pouvez consulter en ligne.
    [Show full text]
  • Carabids and Other Beneficial Arthropods in Cereal Crops and Permanent Grasslands and Influence of Field and Landscape Parameters D
    Carabids and other beneficial arthropods in cereal crops and permanent grasslands and influence of field and landscape parameters D. Massaloux To cite this version: D. Massaloux. Carabids and other beneficial arthropods in cereal crops and permanent grasslands and influence of field and landscape parameters. Biodiversity and Ecology. AgroParisTech, 2020. English. tel-02886480v2 HAL Id: tel-02886480 https://hal-agroparistech.archives-ouvertes.fr/tel-02886480v2 Submitted on 9 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2020 IAVF 0012 THESE DE DOCTORAT préparée à l’Institut des sciences et industries du vivant et de l’environnement (AgroParisTech) pour obtenir le grade de Docteur de l’Institut agronomique vétérinaire et forestier de France Spécialité : Écologie École doctorale n°581 Agriculture, alimentation, biologie, environnement et santé (ABIES) par Damien MASSALOUX Influence du paysage et de la parcelle sur les diversités de carabes et d’autres arthropodes en céréales et prairies permanentes Directeur de thèse : Alexander Wezel Co-encadrement de la thèse : Benoit Sarrazin Thèse présentée et soutenue à Lyon le 22 juin 2020 Composition du jury : M. Pierre-Henri Gouyon, Professeur, Muséum National d’Histoire Naturelle Rapporteur M.
    [Show full text]
  • First Record of the Zoophytophagous Plant Bug Atractotomus Mali (Hemiptera: Miridae) in Quebec Orchards
    Document generated on 09/27/2021 10:22 p.m. Phytoprotection First record of the zoophytophagous plant bug Atractotomus mali (Hemiptera: Miridae) in Quebec orchards Première mention de la punaise zoophytophage Atractotomus mali (Hemiptera: Miridae) dans les vergers québécois Julien Saguez, Jacques Lasnier, Michael D. Schwartz and Charles Vincent Volume 95, Number 1, 2015 Article abstract Atractotomus mali (Meyer-Dür, 1843) (Hemiptera: Miridae) is a URI: https://id.erudit.org/iderudit/1035303ar zoophytophagous insect associated with orchards in Europe and North DOI: https://doi.org/10.7202/1035303ar America. In Canada, it has previously been reported in apple (Malus domestica Borkh) orchards in several provinces, but mainly in Nova Scotia, where it See table of contents induced more damage on fruit than predatory effects. During the summer of 2014, we collected 33 specimens in an apple orchard in Magog (QC, Canada), using a tapping method. This study constitutes the first record of A. mali in Publisher(s) Quebec. Société de protection des plantes du Québec (SPPQ) ISSN 1710-1603 (digital) Explore this journal Cite this article Saguez, J., Lasnier, J., Schwartz, M. D. & Vincent, C. (2015). First record of the zoophytophagous plant bug Atractotomus mali (Hemiptera: Miridae) in Quebec orchards. Phytoprotection, 95(1), 38–40. https://doi.org/10.7202/1035303ar Tous droits réservés © La société de protection des plantes du Québec, 2015 This document is protected by copyright law. Use of the services of Érudit (including reproduction) is subject to its terms and conditions, which can be viewed online. https://apropos.erudit.org/en/users/policy-on-use/ This article is disseminated and preserved by Érudit.
    [Show full text]
  • Its Breadth of Effectiveness Against Predators J
    J. Appl. Entomol. Haemolymph defence of an invasive herbivore: its breadth of effectiveness against predators J. G. Lundgren1, S. Toepfer2,3, T. Haye2 & U. Kuhlmann2 1 USDA-ARS, North Central Agricultural Research Laboratory, Brookings, SD, USA 2 CABI Europe-Switzerland, Delemont, Switzerland 3 CABI Europe, c/o Plant Health Service, CABI Europe, Hodmezovasarhely, Hungary Keywords Abstract Tetramorium caespitum, Zea mays, biological control, Carabidae, diel cycle, Lycosidae Defensive characteristics of organisms affect the trophic linkages within food webs and influence the ability of invasive species to expand their Correspondence range. Diabrotica v. virgifera is one such invasive herbivore whose preda- Jonathan Lundgren (corresponding author), tor community is restricted by a larval haemolymph defence. The effec- NCARL, USDA-ARS, 2923 Medary Avenue, tiveness of this haemolymph defence against a range of predator Brookings, SD, USA. E-mail: functional and taxonomic guilds from the recipient biota was evaluated [email protected] in a series of experiments. Eight predator species (Carabidae, Lycosidae, Received: August 5, 2009; accepted: October Formicidae) were fed D. v. virgifera 3rd instars or equivalent-sized mag- 28, 2009. gots in the laboratory, and the mean times spent eating, cleaning their mouthparts, resting and walking following attacks on each prey were doi: 10.1111/j.1439-0418.2009.01478.x compared. Prey species were restrained in five Hungarian maize fields for 1 h periods beginning at 09:00 and 22:00 hours. The proportion of each species attacked and the number and identity of predators consum- ing each prey item were recorded. All predators spent less time eating D.
    [Show full text]