Kimberley Marine Biota. Historical Data: Echinoderms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Final Thesis File (7.170Mb)
A TAXONOMIC REVISION OF THE TERTIARY ECHINOID GENUS MONOSTYCHIA Tony Sadler ORCID: 0000-0002-3406-8885 Submitted for the total fulfilment of the requirements of the degree of Doctor of Philosophy July 2020 School of Earth Sciences The University of Melbourne ABSTRACT For over 100 years the genus Monostychia (Echinoidea: Clypeasteroida) and its type species M. australis Laube, 1869 have been a taxonomic home for a wide range of genera and species with the commonality of a rounded to pentagonal, discoidal test and a submarginal periproct. The specimens comprising this group are all extinct and from the Tertiary strata of southern Australia. While there have been a few minor species identified beyond M. australis, notably M. etheridgei Woods, 1877 and P. loveni (Duncan, 1877), it has been clear to many researchers that the variability remaining in M. australis was representative of numerous other taxa awaiting discovery. Recent taxonomic works on the Clypeasteroida suggested that the number of interambulacral plates on the oral surface of the test of some species was a useful diagnostic character. Of interest were the plates that first come into contact with the periproct. However, there appeared little evidence in the literature that it had been established that the number of such plates remained constant with test length and age, or that the variability in each taxon, of those plate numbers, has been determined. Without understanding those two issues the utility of plate numbers was questionable. This study set out to resolve some of those issues for Monostychia and its relatives. It was found that the number of interambulacral and ambulacral plates on the oral surface was fixed and did not change with increasing test length and therefore there was potential utility for plate numbers as a taxonomic tool. -
Echinodermata: Crinoidea: Comatulida: Himerometridae) from Okinawa-Jima Island, Southwestern Japan
Two new records of Heterometra comatulids (Echinodermata: Title Crinoidea: Comatulida: Himerometridae) from Okinawa-jima Island, southwestern Japan Author(s) Obuchi, Masami Citation Fauna Ryukyuana, 13: 1-9 Issue Date 2014-07-25 URL http://hdl.handle.net/20.500.12000/38630 Rights Fauna Ryukyuana ISSN 2187-6657 http://w3.u-ryukyu.ac.jp/naruse/lab/Fauna_Ryukyuana.html Two new records of Heterometra comatulids (Echinodermata: Crinoidea: Comatulida: Himerometridae) from Okinawa-jima Island, southwestern Japan Masami Obuchi Biological Institute on Kuroshio. 680 Nishidomari, Otsuki-cho, Kochi 788-0333, Japan. E-mail: [email protected] Abstract: Two himerometrid comatulids from collected from a different environment: Okinawa-jima Island are reported as new to the Heterometra quinduplicava (Carpenter, 1888) from Japanese crinoid fauna. Heterometra quinduplicava a sandy bottom environment (Oura Bay), and (Carpenter, 1888) was found on a shallow sandy Heterometra sarae AH Clark, 1941, from a coral bottom of a closed bay, which was previously reef at a more exposed area. We report on these considered as an unsuitable habitat for comatulids. new records for the Japanese comatulid fauna. The specimens on hand are much larger than previously known specimens, and differ in the Materials and Methods extent of carination on proximal pinnules. Heterometra sarae AH Clark, 1941, was collected General terminology for description mainly follows from a coral reef area. These records extend the Messing (1997) and Rankin & Messing (2008). geographic ranges of both species northward. Following Kogo (1998), comparative lengths of pinnules are represented using inequality signs. The Introduction terms for ecological notes follows Meyer & Macurda (1980). Abbreviations are as follows: The genus Heterometra AH Clark, 1909, is the R: radius; length from center of centrodorsal to largest genus in the order Comatulida, and includes longest arm tip, measured to the nearest 5 mm. -
Surat Thani Blue Swimming Crab Fishery Improvement Project
Surat Thani Blue Swimming Crab Fishery Improvement Project -------------------------------------------------------------------------------------------------------------------------------------- Milestone 33b: Final report of bycatch research Progress report: The study of fishery biology, socio-economic and ecosystem related to the restoration of Blue Swimming Crab following Fishery improvement program (FIP) in Bandon Bay, Surat Thani province. Amornsak Sawusdee1 (1) The Center of Academic Service, Walailak University, Tha Sala, Nakhon Si Thammarat, 80160 The results of observation of catching BSC by using collapsible crab trap and floating seine. According to the observation of aquatic animal which has been caught by main BSC fishing gears; floating seine and collapsible crab trap, there were 176 kind of aquatic animals. The catch aquatic animals are shown in the table1. In this study, aquatic animal was classified into 11 Groups; Blue Swimming Crab (Portunus Pelagicus), Coelenterata (coral animals, true jellies, sea anemones, sea pens), Helcionelloida (clam, bivalve, gastropod), Cephalopoda (sqiud, octopus), Chelicerata (horseshoe crab), Hoplocari(stomatopods), Decapod (shrimp), Anomura (hermit crab), Brachyura (crab), Echinoderm (sea cucambers, sea stars, sea urchins), Vertebrata (fish). Vertebrata was the main group that was captured by BSC fishing gears, more than 70 species. Next are Helcionelloida and Helcionelloida 38 species and 29 species respectively. The sample that has been classified were photographed and attached in appendix 1. However, some species were classified as unknow which are under the classification process and reconcile. There were 89 species that were captured by floating seine. The 3 main group that were captured by this fishing gear are Vertebrata (34 species), Brachyura (20 species) Helcionelloida and Echinoderm (10 Species). On the other hand, there were 129 species that were captured by collapsible crab trap. -
Morphological Description and Molecular Analysis of Newly Recorded Anneissia Pinguis(Crinoidea: Comatulida: Comatulidae) from Ko
Journal of Species Research 9(4):467-472, 2020 Morphological description and molecular analysis of newly recorded Anneissia pinguis (Crinoidea: Comatulida: Comatulidae) from Korea Philjae Kim1,2 and Sook Shin1,3,* 1Marine Biological Resource Institute, Sahmyook University, Seoul 01795, Republic of Korea 2Division of Ecological Conservation, Bureau of Ecological Research, National Institute of Ecology, Seocheon-gun, Chungnam 33657, Republic of Korea 3Department of Animal Biotechnology & Resource, Sahmyook University, Seoul 01795, Republic of Korea *Correspondent: [email protected] The crinoid specimens of the genus Anneissia were collected from Nokdong, Korea Strait, and Moseulpo, Jeju Island. The specimens were identified as Anneissia pinguis (A.H. Clark, 1909), which belongs to the family Comatulidae of the order Comatulida. Anneissia pinguis was first described by A.H. Clark in 1909 around southern Japan. This species can be distinguished from other Anneissia species by a longish and stout cirrus, much fewer arms, and short distal cirrus segments. The morphological features of Korean specimens are as follows: large disk (20-35 mm), 28-36 segments and 32-43 mm length cirrus, division series in all 4 (3+4), very stout and strong distal pinnule with 18-19 comb and 40 arms. In Korea fauna, only three species of genus Anneissia were recorded: A. intermedia, A. japonica, and A. solaster. In this study, we provide the morphological description and phylogenetic analysis based on cytochrome c oxidase subunit I. Keywords: Anneissia pinguis, crinoid, cytochrome c oxidase subunit I, morphological feature, phylogeny Ⓒ 2020 National Institute of Biological Resources DOI:10.12651/JSR.2020.9.4.467 INTRODUCTION al cytochrome c oxidase subunit I (COI) is usually used in DNA barcoding studies of echinoderms (Ward et al., The family Comatulidae Fleming 1828 comprises 105 2008; Hoareau and Boissin, 2010). -
Variation in Growth Pattern in the Sand Dollar, Echinarachnius Parma, (Lamarck)
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Summer 1964 VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHINARACHNIUS PARMA, (LAMARCK) PRASERT LOHAVANIJAYA University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation LOHAVANIJAYA, PRASERT, "VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHINARACHNIUS PARMA, (LAMARCK)" (1964). Doctoral Dissertations. 2339. https://scholars.unh.edu/dissertation/2339 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. This dissertation has been 65-950 microfilmed exactly as received LOHAVANIJAYA, Prasert, 1935- VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHJNARACHNIUS PARMA, (LAMARCK). University of New Hampshire, Ph.D., 1964 Zoology University Microfilms, Inc., Ann Arbor, Michigan VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, EC’HINARACHNIUS PARMA, (LAMARCK) BY PRASERT LOHAVANUAYA B. Sc. , (Honors), Chulalongkorn University, 1959 M.S., University of New Hampshire, 1961 A THESIS Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of Doctor of Philosophy Graduate School Department of Zoology June, 1964 This thesis has been examined and approved. May 2 2, 1 964. Date An Abstract of VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHINARACHNIUS PARMA, (LAMARCK) This study deals with Echinarachnius parma, the common sand dollar of the New England coast. Some problems concerning taxonomy and classification of this species are considered. -
Echinodermata: Echinoidea) of Mexico
Caballero-Ochoa, A.A., Buitrón-Sánchez, B.E., Conejeros- Vargas, C.A., Esteban-Vázquez, B.L., Ruiz-Nava, M.P., Jiménez-López, J.C., Solís-Marín, F.A., & Laguarda-Figueras, A. (2021). Morphological variability of recent species of the order Cassiduloida (Echinodermata: Echinoidea) of Mexico. Revista de Biología Tropical, 69(S1), 423-437. DOI 10.15517/ rbt.v69iSuppl.1.46382 DOI 10.15517/rbt.v69iSuppl.1.46382 Morphological variability of recent species of the order Cassiduloida (Echinodermata: Echinoidea) of Mexico Andrea Alejandra Caballero-Ochoa1,2* Blanca E. Buitrón-Sánchez3 Carlos A. Conejeros-Vargas4 Brenda L. Esteban-Vázquez1 Mariana P. Ruiz-Nava5 José Carlos Jiménez-López6 Francisco A. Solís-Marín7 Alfredo Laguarda-Figueras7 1. Facultad de Ciencias, Universidad Nacional Autónoma de México. Circuito Exterior, C.P. 04510, Ciudad de México, México; [email protected] (*Correspondence), [email protected] 2. Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, C.P. 04510, Ciudad de México, México. 3. Instituto de Geología, Departamento de Paleontología, Universidad Nacional Autónoma de México, Circuito Exterior, C.P. 04510, Ciudad de México, México; [email protected] 4. Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, C.P. 04510, Coyoacán, Ciudad de México, México; [email protected] 5. Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Tlalnepantla de Baz, C.P. 54090, Estado de México, México; [email protected] 6. Posgrado en Ciencias de la Tierra, Instituto de Geología, Universidad Nacional Autónoma de México. Circuito Exterior, C.P. 04510, Ciudad de México, México; [email protected] 7. -
Light and Vision in the Deep-Sea Benthos: I
Nova Southeastern University NSUWorks Marine & Environmental Sciences Faculty Articles Department of Marine and Environmental Sciences 10-1-2012 Light and Vision in the Deep-Sea Benthos: I. Bioluminescence at 500-1000 m Depth in the Bahamian Islands Sönke Johnsen Duke University Tamara M. Frank Nova Southeastern University, [email protected] Steven H.D. Haddock Monterey Bay Aquarium Research Institute Edith A. Widder Ocean Research and Conservation Association Charles G. Messing Nova Southeastern University, [email protected] Find out more information about Nova Southeastern University and the Halmos College of Natural Sciences and Oceanography. Follow this and additional works at: https://nsuworks.nova.edu/occ_facarticles Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Recommended Citation Johnsen, Sönke, Tamara M. Frank, Steven HD Haddock, Edith A. Widder, and Charles G. Messing. "Light and vision in the deep-sea benthos: I. Bioluminescence at 500–1000 m depth in the Bahamian Islands." The ourJ nal of experimental biology 215, no. 19 (2012): 3335-3343. This Article is brought to you for free and open access by the Department of Marine and Environmental Sciences at NSUWorks. It has been accepted for inclusion in Marine & Environmental Sciences Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact [email protected]. 3335 The Journal of Experimental Biology 215, 3335-3343 © 2012. Published by The Company of Biologists Ltd doi:10.1242/jeb.072009 RESEARCH ARTICLE Light and vision in the deep-sea benthos: I. Bioluminescence at 500–1000m depth in the Bahamian Islands Sönke Johnsen1,*, Tamara M. -
Sepkoski, J.J. 1992. Compendium of Fossil Marine Animal Families
MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. Department of the Geophysical Sciences University of Chicago Chicago, Illinois 60637 Milwaukee Public Museum Contributions in Biology and Geology Rodney Watkins, Editor (Reviewer for this paper was P.M. Sheehan) This publication is priced at $25.00 and may be obtained by writing to the Museum Gift Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must also include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum. Wisconsin residents please add 5% sales tax. In addition, a diskette in ASCII format (DOS) containing the data in this publication is priced at $25.00. Diskettes should be ordered from the Geology Section, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Specify 3Y. inch or 5Y. inch diskette size when ordering. Checks or money orders for diskettes should be made payable to "GeologySection, Milwaukee Public Museum," and fees for shipping and handling included as stated above. Profits support the research effort of the GeologySection. ISBN 0-89326-168-8 ©1992Milwaukee Public Museum Sponsored by Milwaukee County Contents Abstract ....... 1 Introduction.. ... 2 Stratigraphic codes. 8 The Compendium 14 Actinopoda. -
Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. -
Taxonomy, Phylogeny and Paleobiogeography of the Cassiduloid Echinoids
Taxonomy, Phylogeny and Paleobiogeography of the Cassiduloid Echinoids By Camilla Alves Souto A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Charles R. Marshall, Chair Professor Rauri Bowie Professor Kipling Will Professor Richard Mooi Fall 2018 Taxonomy, Phylogeny and Paleobiogeography of the Cassiduloid Echinoids Copyright 2018 by Camilla Alves Souto Abstract Taxonomy, Phylogeny and Paleobiogeography of the Cassiduloid Echinoids By Camilla Alves Souto Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Charles R. Marshall, Chair Cassiduloids are rare and poorly known irregular echinoids, which include the sand dollars and heart urchins, that typically live buried in the sediment, where they feed on small organic particles. Cassiduloids evolved during the Marine Mesozoic Revolution, but despite their rich fossil record, species richness (diversity) is very low. The goal of this thesis is to improve our taxonomic knowledge of the group, propose hypotheses of relationship among its representatives and analyze their patterns of geographic distribution through time, thereby contributing to our understanding of their evolutionary history. In the first chapter1, I used synchrotron radiation-based micro-computed tomography (SRµCT) images of type specimens to describe a new Cassidulus species and a new cassiduloid genus that could not have been discovered with traditional techniques. I also designate a neotype for the type species of the genus Cassidulus, Cassidulus caribaearum, provide remarks on the taxonomic history of each taxon, a diagnostic table of all living cassidulid species, and extend the known geographic and bathymetric range of two species. -
Southern Ocean Echinoids Database – an Updated Version of Antarctic
A peer-reviewed open-access journal ZooKeys 697: 1–20 (2017) Southern Ocean Echinoids database... 1 doi: 10.3897/zookeys.697.14746 DATA PAPER http://zookeys.pensoft.net Launched to accelerate biodiversity research Southern Ocean Echinoids database – An updated version of Antarctic, Sub-Antarctic and cold temperate echinoid database Salomé Fabri-Ruiz1, Thomas Saucède1, Bruno Danis2, Bruno David1,3 1 UMR 6282 Biogéosciences, Univ. Bourgogne Franche-Comté, CNRS, 6 bd Gabriel F-21000 Dijon, France 2 Marine Biology Lab, CP160/15 Université Libre de Bruxelles, 50 avenue FD Roosevelt B-1050 Brussels, Belgium 3 Muséum national d’Histoire naturelle, 57 rue Cuvier, 75005 Paris, France Corresponding author: Salomé Fabri-Ruiz ([email protected]) Academic editor: Yves Samyn | Received 28 June 2017 | Accepted 14 August 2017 | Published 14 September 2017 http://zoobank.org/5EBC1777-FBF3-42A5-B9BB-6BF992A26CC2 Citation: Fabri-Ruiz S, Saucède T, Danis B, David B (2017) Southern Ocean Echinoids database – An updated version of Antarctic, Sub-Antarctic and cold temperate echinoid database. ZooKeys 697: 1–20. https://doi.org/10.3897/ zookeys.697.14746 Abstract This database includes over 7,100 georeferenced occurrence records of sea urchins( Echinoder- mata: Echinoidea) obtained from samples collected in the Southern Ocean (+180°W/+180°E; -35°/- 78°S) during oceanographic cruises led over 150 years, from 1872 to 2015. Echinoids are common organisms of Southern Ocean benthic communities. A total of 201 species is recorded, which display contrasting depth ranges and distribution patterns across austral provinces and bioregions. Echinoid species show various ecological traits including different nutrition and reproductive strategies. -
Tool Use by Four Species of Indo-Pacific Sea Urchins
Journal of Marine Science and Engineering Article Tool Use by Four Species of Indo-Pacific Sea Urchins Glyn A. Barrett 1,2,* , Dominic Revell 2, Lucy Harding 2, Ian Mills 2, Axelle Jorcin 2 and Klaus M. Stiefel 2,3,4 1 School of Biological Sciences, University of Reading, Reading RG6 6UR, UK 2 People and The Sea, Logon, Daanbantayan, Cebu 6000, Philippines; [email protected] (D.R.); lucy@peopleandthesea (L.H.); [email protected] (I.M.); [email protected] (A.J.); [email protected] (K.M.S.) 3 Neurolinx Research Institute, La Jolla, CA 92039, USA 4 Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines * Correspondence: [email protected] Received: 5 February 2019; Accepted: 14 March 2019; Published: 18 March 2019 Abstract: We compared the covering behavior of four sea urchin species, Tripneustes gratilla, Pseudoboletia maculata, Toxopneustes pileolus, and Salmacis sphaeroides found in the waters of Malapascua Island, Cebu Province and Bolinao, Panagsinan Province, Philippines. Specifically, we measured the amount and type of covering material on each sea urchin, and in several cases, the recovery of debris material after stripping the animal of its cover. We found that Tripneustes gratilla and Salmacis sphaeroides have a higher affinity for plant material, especially seagrass, compared to Pseudoboletia maculata and Toxopneustes pileolus, which prefer to cover themselves with coral rubble and other calcified material. Only in Toxopneustes pileolus did we find a significant corresponding depth-dependent decrease in total cover area, confirming previous work that covering behavior serves as a protection mechanism against UV radiation. We found no dependence of particle size on either species or size of sea urchin, but we observed that larger sea urchins generally carried more and heavier debris.