Willamette Valley's

Total Page:16

File Type:pdf, Size:1020Kb

Willamette Valley's Wildlife Conservation in the Willamette Valley’s Remnant Prairies and Oak Habitats: A Research Synthesis David G. Vesely and Daniel K. Rosenberg Oregon Wildlife Institute Corvallis, Oregon Submitted to: Interagency Special Status Sensitive Species Program U.S. Forest Service / Bureau of Land Management Portland, Oregon January 2010 Cover photo credits: lone oak, ©Craig DeMars; Fender’s blue butterfly, ©Melissa York; chipping sparrow, ©Nick Saunders Table of Contents EXECUTIVE SUMMARY ......................................................................................4 ACKNOWLEDGEMENTS ....................................................................................5 CHAPTER 1 INTRODUCTION .........................................................................6 Habitat Loss............................................................................................................................................... 7 Future Threats............................................................................................................................................ 8 Wildlife Species......................................................................................................................................... 9 Spatial Scale – Landscape Considerations................................................................................................. 9 Conservation Actions............................................................................................................................... 10 The Synthesis........................................................................................................................................... 10 CHAPTER 2 VEGETATION TRENDS AND DISTRIBUTION IN THE WILLAMETTE VALLEY .....................................................................................11 Grassland Composition and Structure ..................................................................................................... 11 Oak Woodland Plant Communities ......................................................................................................... 13 CHAPTER 3 WILDLIFE COMMUNITIES .........................................................15 Mammals ................................................................................................................................................. 15 Birds ........................................................................................................................................................ 18 Amphibians and Reptiles......................................................................................................................... 19 Invertebrates ............................................................................................................................................ 19 CHAPTER 4 RESEARCH CONDUCTED ON OAK AND PRAIRIE ASSOCIATED WILDLIFE ..................................................................................21 Biodiversity Studies................................................................................................................................. 21 Avian Studies........................................................................................................................................... 23 Mammalian Studies ................................................................................................................................. 37 Reptile and Amphibian Studies ............................................................................................................... 39 Invertebrates ............................................................................................................................................ 43 Research Outside Willamette Valley....................................................................................................... 54 Response to Restoration .......................................................................................................................... 58 Response to Restoration: Studies outside of Oregon............................................................................... 60 CHAPTER 5 FUTURE DIRECTIONS ................................................................63 Research Method ..................................................................................................................................... 64 Selection of Indicator Variables .............................................................................................................. 65 Future Research Directions to Help Guide Habitat Restoration .............................................................. 65 2 CHAPTER 6 SPECIES ACCOUNTS................................................................69 Northern Pacific Rattlesnake (Crotalus viridis oreganus)....................................................................... 70 Western Pond Turtle (Actinemys marmorata) ......................................................................................... 74 Western Painted Turtle (Chrysemys picta bellii)..................................................................................... 78 Western Gray Squirrel (Sciurus griseus) ................................................................................................. 81 Acorn Woodpecker (Melanerpes formicivorus) ...................................................................................... 85 Streaked Horned Lark (Eremophila alpestris strigata) ........................................................................... 88 Slender-Billed Nuthatch (Sitta carolinenses aculeata)............................................................................ 91 Western Bluebird (Sialia mexicana)........................................................................................................ 94 Chipping Sparrow (Spizella passerina) ................................................................................................... 97 Oregon Vesper Sparrow (Pooecetes gramineus affinins) ........................................................................ 99 Western Meadowlark (Sturnella neglecta) ............................................................................................ 102 Fender’s Blue Butterfly (Icaricia icarioides fenderi) ............................................................................ 104 LITERATURE CITED .......................................................................................106 APPENDIX: WILDLIFE ASSOCIATED WITH GRASSLAND AND WOODLAND HABITAT TYPES IN THE WILLAMETTE VALLEY .........................................127 3 Executive Summary Oregon white oak (Quercus garryanna) and prairie plant communities of Oregon’s Willamette Valley are one of the most imperiled vegetation types in North America, yet few studies have been conducted on wildlife in these plant communities. The primary goal of our synthesis is to help guide future conservation and restoration efforts of these important wildlife habitats in the Willamette Valley. We synthesize relevant research and discuss future research and monitoring challenges and needs. We identify several species that are strongly associated with these habitat types in the Willamette Valley, and highlight their ecology and conservation. Our synthesis is intended for managers and researchers working to improve oak and prairie habitats for wildlife in the Willamette Valley. The project was sponsored by the Interagency Special Status Sensitive Species Program (ISSSSP) of the Pacific Northwest Regional Office of the U.S. Forest Service and Oregon/Washington State Office of the Bureau of Land Management. Oak and prairie habitats are managed as wildlife habitat by the Eugene and Salem Districts of the Bureau of Land Management in Oregon and this synthesis is intended to help guide their efforts as well as other efforts to restore oak and prairie vegetation communities for wildlife habitat in the Willamette Valley. Despite the large loss of oak and prairie plant communities in the Willamette Valley, there have been surprisingly little research conducted on the ecology of wildlife in these habitats. What was most striking to us in our review was the large number of in-depth studies of butterfly response to restoration and the paucity of studies of vertebrates that went beyond distributional surveys. Almost all of the vertebrate studies remained descriptive, without understanding potential consequences under different management scenarios. Several studies on Fender’s blue butterfly seemed particularly valuable as a model for linking field studies with management. Developing management-oriented models can provide useful heuristic tools for identifying research needs. The lack of experimentation and formal sampling designs in most of the studies on vertebrates that we reviewed highlights the differences with studies conducted on butterflies and restoration in the Willamette Valley. The majority of studies on vertebrates have used informal sampling approaches to investigate habitat associations at relatively small spatial scales. Understanding habitat relationships to guide restoration is difficult and traditional approaches may not be as useful as other approaches that may involve case studies, adaptive management, and indicator variables that respond to smaller-scale changes from restoration. Research on how vertebrate wildlife responds to restoration in the Willamette Valley is challenging for four primary reasons: (1) disconnect of spatial scale of restoration
Recommended publications
  • Providing a Base for Conservation of True Bugs (Insecta, Heteroptera) and Their Saline Habitats in Vojvodina (Northern Serbia)
    Short Note Hyla VOL. 2016., No.1, pp. 19- 23 ISSN: 1848-2007 Šeat et al. Providing a base for conservation of true bugs (Insecta, Heteroptera) and their saline habitats in Vojvodina (northern Serbia) 1 1,2 1 1,2 JELENA ŠEAT , BOJANA NADAŽDIN , MARIJA CVETKOVIĆ , ALEKSANDRA JOVANOV , 1,2 & IVAN TOT 1 HabiProt, Bulevar Oslobođenja 106/34, 11040 Belgrade, Serbia; e-mail: [email protected] 2 SRSBES “Josif Pančić”, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia Abstract Saline habitats of the Pannonian region are recognised as conservation priorities by EU legislation, and represent rare semi-natural habitats in mostly agricultural lowland of northern Serbia. Saline habitats have a key role in conservation of numerous plant and animal species in Vojvodina, as well as characteristic communities of true bugs. These insects belong to one of the most diverse insect groups in saline habitats. Species Henestaris halophilus (BURMEISTER, 1835), Conostethus hungaricus WAGNER, 1941 and Solenoxyphus fuscovenosus (FIEBER, 1864) are saline specialists and can be found only in these habitat types. True bugs have great qualities for future biomonitoring projects concerning habitats such as saline grasslands and wetlands. During the study, species Hydrometra gracilenta HORVÁTH, 1899 and Solenoxyphus fuscovenosus (FIEBER, 1864) are recorded for the first time in Serbia. Key words: Hemiptera, salt steppes, salt marshes, alkaline lakes, Pannonian plain Saline or halophitic habitats in Serbia are floods in spring (BOROS, 2003; TÖRÖK ET AL., 2011), are mostly situated in the northern part of the country, in apparently not favourable for many groups of insects, Vojvodina Province, and these habitats are listed among but the true bugs are among the most abundant and the the priority habitats by the Annex I of the EU Habitat most diverse insects in them.
    [Show full text]
  • U.S. EPA, Pesticide Product Label, 0.5% STRYCHNINE MILO for HAND
    Jl.l!l€' 23, 1997 Dr. Alan V. Tasker Acting Leader, rata Support Teaill Tec.'mical and Sciemtific Services USDA/AHflS/BBEP Unit ISO ) 4700 River Foad Rivcreale, ND 20737 Dear Dr. Tasker, Subject: 0.5% Str.fclmine Mlo rex Ha.'ld Baiting fucket C,ophers EPA Registratirn No. 56228-19 Your Slil;;nissions of Septemb€r 23, 19%, and June 2, 1997 ~Je nave reviewed ,YOUr sl.ibmi~sicn of Sept€T."'~r 19, 1996:. ThE' cnongp--s in tl"le inert ingredients a'ld t..'1e revised basic and alte..."7late Confidential StatC1"~nts of Forl'1Ula (CSFs) ;;.r8 acceptable. He 1=1<: fort-l;;.rd to receiving the product chemistry data on the nc-w formulation. Your letter of SepteJl'J::>er 23, 19%, imicates thClt some of these studies ~Jere underway at that tire. The proposed revis20 label stibIcJ tted 00 June 2, 1997, is J:-.asically ) acceptC!ble, but the change identified l.-elow must be made. 1. In the "NOI'E TO PHYSICIAN", change "CI\UrION," to "NOrrcp.:" so as not to conflict with the label's required signal Nord "I'i"lNGFR". 8u.1:'mit one r:::q:y of the fin.-J.l printed label before releasing this prcrluct for shipment. :;;~x¥~~ COP~ E William H. JacObs BEST AVA'LAB\.. i\cting Product 1<1a.'l8.ger 14 Insecticide-Rodenticide Branch Reo.istration Division (7505C) :::::, ~.. ..w·-1······ _.. ._-j.. ......w. ··1· "~'~"·Tm--I··· ·1· ............ ·····1· _............. DATE ~ •......••.•....... .........•..••.• ....... ~ ..•....... ..........................................................................................- ....... EPA Form 1320-102-70) OFFICIAL FILE COpy r.. PRECAUTIONARY STATEMENTS 0.5% STRYCHNINE r~1.0 HAZARDS TO HUMANS AND FOR HAND BAITING STORAGE AND DISPOSAL I -, DOMESTIC ANIMALS Do not contaminate water, food, or POCKET GOPHERS feed by storage or disposal.
    [Show full text]
  • Producción De Forraje Y Competencia Interespecífica Del Cultivo Asociado De Avena (Avena Sativa) Con Vicia (Vicia Sativa) En Condiciones De Secano Y Gran Altitud
    Rev Inv Vet Perú 2018; 29(4): 1237-1248 http://dx.doi.org/10.15381/rivep.v29i4.15202 Producción de forraje y competencia interespecífica del cultivo asociado de avena (Avena sativa) con vicia (Vicia sativa) en condiciones de secano y gran altitud Forage production and interspecific competition of oats (Avena sativa) and common vetch (Vicia sativa) association under dry land and high-altitude conditions Francisco Espinoza-Montes1,2,4, Wilfredo Nuñez-Rojas1, Iraida Ortiz-Guizado3, David Choque-Quispe2 RESUMEN Se experimentó el cultivo asociado de avena (Avena sativa) y vicia común (Vicia sativa) en condiciones de secano, a 4035 m sobre el nivel del mar, para conocer su comportamiento y efectos en el rendimiento, calidad de forraje y competencia interespecífica. En promedio, el rendimiento de forraje verde, materia seca y calidad de forraje fueron superiores al del monocultivo de avena (p<0.05). El porcentaje de proteína cruda se incrementó en la medida que creció la proporción de vicia común en la asocia- ción, acompañado de una disminución del contenido de fibra. En cuanto a los índices de competencia, el cultivo asociado de avena con vicia favorece el rendimiento relativo total de forraje (LERtotal>1). Ninguna de las especies manifestó comportamiento agresivo (A=0). Se observó mayor capacidad competitiva de la vicia común (CR>1) comparado con la capacidad competitiva de la avena. Palabras clave: cultivo asociado; rendimiento; calidad de forraje; competencia interespecífica ABSTRACT The oats (Avena sativa) and common vetch (Vicia sativa) cultivated in association was evaluated under dry land conditions at 4035 m above sea level to determine its performance and effects on yield, forage quality and interspecific competition.
    [Show full text]
  • Davis Expedition Fund Report on Expedition / Project
    DAVIS EXPEDITION FUND REPORT ON EXPEDITION / PROJECT Expedition/Project Title: Biogeography and Systematics of South American Vicia (Leguminosae) Travel Dates: 28/09/2010 – 12/11/2010 Location: Northern Chile and northern Argentina Group Members: Paulina Hechenleitner Collection of research material of Vicia in the form of Aims: herbarium specimens, habitat data, digital images, silica- dried leaf samples, and base-line data on the IUCN conservation status of Vicia. Outcome (not less than 300 words):- See attached report. Report for the Davis Expedition Fund Biogeography and Systematics of South American Vicia (Leguminosae) Botanical fieldwork to northern Chile and northern Argentina 28th of Sep to 12th of November 2010 Paulina Hechenleitner January 2011 Introduction Vicia is one of five genera in tribe Fabeae, and contains some of humanity's oldest crop plants, and is thus of great economic importance. The genus contains around 160 spp. (Lewis et al. 2005) distributed throughout temperate regions of the northern hemisphere and in temperate S America. Its main centre of diversity is the Mediterranean with smaller centres in North and South America (Kupicha, 1976). The South American species are least known taxonomically. Vicia, together with Lathyrus and a number of other temperate plant genera share an anti- tropical disjunct distribution. This biogeographical pattern is intriguing (Raven, 1963): were the tropics bridged by long distance dispersal between the temperate regions of the hemispheres, or were once continuous distributions through the tropics severed in a vicariance event? Do the similar patterns seen in other genera reflect similar scenarios or does the anti-tropical distribution arise in many different ways? The parallels in distribution, species numbers and ecology between Lathyrus and Vicia are particularly striking.
    [Show full text]
  • AN ABSTRACT of the THESIS of Geography Presented On
    AN ABSTRACT OF THE THESIS OF Robert C. Harmon for the degree ofMaster of Science in Geographypresented on July 30, 1993. Title: Geographic Information Systems: Suitability to a Land Use Planning Problem Abstract approved: A. Jon Kimerling Geographic Information Systems (GIS) is a burgeoning field with its roots in geography. It is increasingly being used by a large variety of disciplines, including land use planning, as a decision support tool to help solve complex spatial problems. At Oregon State University, researchers have developed an analog model which will assist planners in designating 'secondary' or marginal resource lands. The OSU Secondary Lands Model is translated into a series of digital algorithms and applied to a study area in north-central Lane County, Oregon with pcARC/INFO, a popu- lar personal computer (PC) GIS program. Translation of the analog model to digital is analyzed and summarized in the conclusion. Lessons learned from this research are drawn upon to make recommendations to others who wish to use GIS in land use planning or any other multi-disciplinary envi- ronment. These include careful data preparation, avoiding the pitfalls of 'digital determinism,' keeping data broken down into their smallest components, and using appropiate data structures. APPROVED: Professor of Geography in charge of major Chairman of Department of Geosciences Dean of Graduate School Date thesis is presented July 30. 1993 Typed by Robert C. Harmon for Robert C. Harmon ACKNOWLEDGEMENTS I wish to thank Professor Jon Kimerling, my major graduate advisor and the leading influence in my academic studies and work in geographic information systems. His guidance throughout my graduate work has been invaluable.
    [Show full text]
  • Land Cover Change Along the Willamette River, Oregon
    AN ABSTRACT OF THE THESIS OF Doug R. Oetter for the degree of Doctor of Philosophy in Geography presented on August 16, 2002. Title: Land CoverChange along the Willamette River, Oregon. Abstract approved: A. Jon Kimerling The Willamette River and its floodplain in northwest Oregon have changed dramatically since European settlement. At one time, the river was a vast complex system of braided channels with a broad floodplain forest; it has now been simplified by channelization and dams, and the forest has been removed to support agricultural and urban expansion. This thesis presents three research manuscripts, each of which uses remote sensing and Geographical Information System methods to capture the dynamic nature of land along the Willamette River. In the first article, the river and its floodplain were mapped at four time periods, ranging from pre-settlement to modern day. The paper reports that the river system has been greatly simplified, and the floodplain has lost much of its original forest. An overlay technique was used to identify potential floodplain restoration sites. The second paper details the creation of a landcover map for the Willamette Valley, which shows that the largest portion of the floodplain is now in agriculture, with a significant amount in a built condition. The third manuscript outlines a methodology for detecting land cover change along the river during a twenty-year period that coincides with the implementation of the Willamette River Greenway, a land use designation designed to restrict riparian land conversion. It shows that regressive change is still occuring along the river, although not at thesame rate asoutside the greenway.
    [Show full text]
  • Mammals of Jordan
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Mammals of Jordan Z. AMR, M. ABU BAKER & L. RIFAI Abstract: A total of 78 species of mammals belonging to seven orders (Insectivora, Chiroptera, Carni- vora, Hyracoidea, Artiodactyla, Lagomorpha and Rodentia) have been recorded from Jordan. Bats and rodents represent the highest diversity of recorded species. Notes on systematics and ecology for the re- corded species were given. Key words: Mammals, Jordan, ecology, systematics, zoogeography, arid environment. Introduction In this account we list the surviving mammals of Jordan, including some reintro- The mammalian diversity of Jordan is duced species. remarkable considering its location at the meeting point of three different faunal ele- Table 1: Summary to the mammalian taxa occurring ments; the African, Oriental and Palaearc- in Jordan tic. This diversity is a combination of these Order No. of Families No. of Species elements in addition to the occurrence of Insectivora 2 5 few endemic forms. Jordan's location result- Chiroptera 8 24 ed in a huge faunal diversity compared to Carnivora 5 16 the surrounding countries. It shelters a huge Hyracoidea >1 1 assembly of mammals of different zoogeo- Artiodactyla 2 5 graphical affinities. Most remarkably, Jordan Lagomorpha 1 1 represents biogeographic boundaries for the Rodentia 7 26 extreme distribution limit of several African Total 26 78 (e.g. Procavia capensis and Rousettus aegypti- acus) and Palaearctic mammals (e. g. Eri- Order Insectivora naceus concolor, Sciurus anomalus, Apodemus Order Insectivora contains the most mystacinus, Lutra lutra and Meles meles). primitive placental mammals. A pointed snout and a small brain case characterises Our knowledge on the diversity and members of this order.
    [Show full text]
  • Controlling Pocket Gopher Damage to Conifer Seedlings D.S
    FOREST PROTECTION EC 1255 • Revised May 2003 $2.50 Controlling Pocket Gopher Damage to Conifer Seedlings D.S. deCalesta, K. Asman, and N. Allen Contents ocket gophers (or just plain Gopher habits and habitat.............. 1 P “gophers”) damage conifer seed- Control program ........................... 2 lings on thousands of Identifying the pest ......................2 acres in Washington, Assessing the need for treatment ...3 Idaho, and Oregon Damage control techniques ...........3 annually. They invade clearcuts and Applying controls .......................... 7 clip (cut off) roots or Figure 1.—Typical Oregon pocket gopher. Christmas tree plantations .............7 girdle (remove bark from) the bases of conifer seedlings and saplings, causing significant economic losses. Forest plantations ........................ 7 This publication will help you design a program to reduce or eliminate Summary .................................... 8 gopher damage to seedlings and saplings in your forest plantation or Christmas tree farm. Sources of supply ......................... 8 First, we describe pocket gophers, their habits, and habitats. Then we For further information .................. 8 discuss procedures for controlling pocket gopher damages—control techniques, their effectiveness and hazard(s) to the environment, and their use under a variety of tree-growing situations. Gopher habits and habitat Three species of pocket gopher can damage conifer seedlings. The two smaller ones, the northern pocket gopher and the Mazama pocket gopher, are 5 to 9 inches long and brown with some white beneath the chin and belly. The northern gopher is found east of the Cascade Mountains in Oregon and Washington and in Idaho; the Mazama lives in Oregon and Washington west of the Cascades. David S. deCalesta, former Exten- The Camas pocket gopher is similar looking, but larger (10 to 12 inches) sion wildlife specialist, and Kim than the two others.
    [Show full text]
  • The Giant Palouse Earthworm (Driloleirus Americanus)
    PETITION TO LIST The Giant Palouse Earthworm (Driloleirus americanus) AS A THREATENED OR ENDANGERED SPECIES UNDER THE ENDANGERED SPECIES ACT June 30, 2009 Friends of the Clearwater Center for Biological Diversity Palouse Audubon Palouse Prairie Foundation Palouse Group of the Sierra Club 1 June 30, 2009 Ken Salazar, Secretary of the Interior Robyn Thorson, Regional Director U.S. Department of the Interior U.S. Fish & Wildlife Service 1849 C Street N.W. Pacific Region Washington, DC 20240 911 NE 11th Ave Portland, Oregon Dear Secretary Salazar, Friends of the Clearwater, Center for Biological Diversity, Palouse Prairie Foundation, Palouse Audubon, Palouse Group of the Sierra Club and Steve Paulson formally petition to list the Giant Palouse Earthworm (Driloleirus americanus) as a threatened or endangered species pursuant to the Endangered Species Act (”ESA”), 16 U.S.C. §1531 et seq. This petition is filed under 5 U.S.C. 553(e) and 50 CFR 424.14 (1990), which grant interested parties the right to petition for issuance of a rule from the Secretary of Interior. Petitioners also request that critical habitat be designated for the Giant Palouse Earthworm concurrent with the listing, pursuant to 50 CFR 424.12, and pursuant to the Administrative Procedures Act (5 U.S.C. 553). The Giant Palouse Earthworm (D. americanus) is found only in the Columbia River Drainages of eastern Washington and Northern Idaho. Only four positive collections of this species have been made within the last 110 years, despite the fact that the earthworm was historically considered “very abundant” (Smith 1897). The four collections include one between Moscow, Idaho and Pullman, Washington, one near Moscow Mountain, Idaho, one at a prairie remnant called Smoot Hill and a fourth specimen near Ellensberg, Washington (Fender and McKey- Fender, 1990, James 2000, Sánchez de León and Johnson-Maynard, 2008).
    [Show full text]
  • A Trip to Study Oaks and Conifers in a Californian Landscape with the International Oak Society
    A Trip to Study Oaks and Conifers in a Californian Landscape with the International Oak Society Harry Baldwin and Thomas Fry - 2018 Table of Contents Acknowledgments ....................................................................................................................................................... 3 Introduction .................................................................................................................................................................. 3 Aims and Objectives: .................................................................................................................................................. 4 How to achieve set objectives: ............................................................................................................................................. 4 Sharing knowledge of experience gained: ....................................................................................................................... 4 Map of Places Visited: ................................................................................................................................................. 5 Itinerary .......................................................................................................................................................................... 6 Background to Oaks .................................................................................................................................................... 8 Cosumnes River Preserve ........................................................................................................................................
    [Show full text]
  • Previously Unrecorded Damage to Oak, Quercus Spp., in Southern California by the Goldspotted Oak Borer, Agrilus Coxalis Waterhouse (Coleoptera: Buprestidae) 1 2 TOM W
    THE PAN-PACIFIC ENTOMOLOGIST 84(4):288–300, (2008) Previously unrecorded damage to oak, Quercus spp., in southern California by the goldspotted oak borer, Agrilus coxalis Waterhouse (Coleoptera: Buprestidae) 1 2 TOM W. COLEMAN AND STEVEN J. SEYBOLD 1USDA Forest Service-Forest Health Protection, 602 S. Tippecanoe Ave., San Bernardino, California 92408 Corresponding author: e-mail: [email protected] 2USDA Forest Service-Pacific Southwest Research Station, Chemical Ecology of Forest Insects, 720 Olive Dr., Suite D, Davis, California 95616 e-mail: [email protected] Abstract. A new and potentially devastating pest of oaks, Quercus spp., has been discovered in southern California. The goldspotted oak borer, Agrilus coxalis Waterhouse (Coleoptera: Buprestidae), colonizes the sapwood surface and phloem of the main stem and larger branches of at least three species of Quercus in San Diego Co., California. Larval feeding kills patches and strips of the phloem and cambium resulting in crown die back followed by mortality. In a survey of forest stand conditions at three sites in this area, 67% of the Quercus trees were found with external or internal evidence of A. coxalis attack. The literature and known distribution of A. coxalis are reviewed, and similarities in the behavior and impact of this species with other tree-killing Agrilus spp. are discussed. Key Words. Agrilus coxalis, California, flatheaded borer, introduced species, oak mortality, Quercus agrifolia, Quercus chrysolepis, Quercus kelloggii, range expansion. INTRODUCTION Extensive mortality of coast live oak, Quercus agrifolia Ne´e (Fagaceae), Engelmann oak, Quercus engelmannii Greene, and California black oak, Q. kelloggii Newb., has occurred since 2002 on the Cleveland National Forest (CNF) in San Diego Co., California.
    [Show full text]
  • Benton County Prairie Species Habitat Conservation Plan
    BENTON COUNTY PRAIRIE SPECIES HABITAT CONSERVATION PLAN DECEMBER 2010 For more information, please contact: Benton County Natural Areas & Parks Department 360 SW Avery Ave. Corvallis, Oregon 97333-1192 Phone: 541.766.6871 - Fax: 541.766.6891 http://www.co.benton.or.us/parks/hcp This document was prepared for Benton County by staff at the Institute for Applied Ecology: Tom Kaye Carolyn Menke Michelle Michaud Rachel Schwindt Lori Wisehart The Institute for Applied Ecology is a non-profit 501(c)(3) organization whose mission is to conserve native ecosystems through restoration, research, and education. P.O. Box 2855 Corvallis, OR 97339-2855 (541) 753-3099 www.appliedeco.org Suggested Citation: Benton County. 2010. Prairie Species Habitat Conservation Plan. 160 pp plus appendices. www.co.benton.or.us/parks/hcp Front cover photos, top to bottom: Kincaid’s lupine, photo by Tom Kaye Nelson’s checkermallow, photo by Tom Kaye Fender’s blue butterfly, photo by Cheryl Schultz Peacock larkspur, photo by Lori Wisehart Bradshaw’s lomatium, photo by Tom Kaye Taylor’s checkerspot, photo by Dana Ross Willamette daisy, photo by Tom Kaye Benton County Prairie Species HCP Preamble The Benton County Prairie Species Habitat Conservation Plan (HCP) was initiated to bring Benton County’s activities on its own lands into compliance with the Federal and State Endangered Species Acts. Federal law requires a non-federal landowner who wishes to conduct activities that may harm (“take”) threatened or endangered wildlife on their land to obtain an incidental take permit from the U.S. Fish and Wildlife Service. State law requires a non-federal public landowner who wishes to conduct activities that may harm threatened or endangered plants to obtain a permit from the Oregon Department of Agriculture.
    [Show full text]