Fundamentals of Signal Integrity Primer Primer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modeling System Signal Integrity Uncertainty Considerations
WHITE PAPER Intel® FPGA Modeling System Signal Integrity Uncertainty Considerations Authors Abstract Ravindra Gali This white paper describes signal integrity (SI) mechanisms that cause system-level High-Speed I/O Applications timing uncertainty and how these mechanisms are modeled in the Intel® Quartus® Engineering, Intel® Corporation Prime software Timing Analyzer to achieve timing closure for external memory interface designs. Zhi Wong By using the Intel Quartus Prime software to achieve timing closure for external High-Speed I/O Applications memory interfaces, a designer does not need to allocate a separate SI timing Engineering, Intel Corporation budget to account for simultaneous switching output (SSO), simultaneous Navid Azizi switching input (SSI), intersymbol interference (ISI), and board-level crosstalk for Software Engineeringr flip-chip device families such as Stratix® IV and Arria® II FPGAs for typical user Intel Corporation implementation of external memory interfaces following good board design practices. John Oh High-Speed I/O Applications Introduction Engineering, Intel Corporation The widening performance gap between FPGAs, microprocessors, and memory Arun VR devices, along with the growth of memory-intensive applications, are driving the Memory I/O Applications Engineering, need for faster memory technologies. This push to higher bandwidths has been Intel Corporation accompanied by an increase in the signal count and the signaling rates of FPGAs and memory devices. In order to attain faster bandwidths, device makers continue to reduce the supply voltage. Initially, industry-standard DIMMs operated at 5 V. However, due to improvements in DRAM storage density, the operating voltage was decreased to 3.3 V (SDR), then to 2.5V (DDR), 1.8 V (DDR2), 1.5 V (DDR3), and 1.35 V (DDR3) to allow the memory to run faster and consume less power. -
The Printed Circuit Designer's Guide To... Signal Integrity by Example
PEER REVIEWERS This book has been reviewed for technical accuracy by the following experts from the PCB industry. Happy Holden Consulting Technical Editor, I-Connect007 Happy Holden is the retired director of electronics and innovations for Gentex Corporation. Happy is the former chief technical officer for the world’s largest PCB fabricator, Hon Hai Precision Industries (Foxconn). Prior to Foxconn, Holden was the senior PCB technologist for Mentor Graphics and advanced technology manager at Nan Ya/ Westwood Associates and Merix. Happy previously worked at Hewlett-Packard for over 28 years as director of PCB R&D and manufacturing engineering manager. He has been involved in advanced PCB technologies for over 47 years. Eric Bogatin Eric Bogatin is currently the dean of the Teledyne LeCroy Signal Integrity Academy. Additionally, he is an adjunct professor at the University of Colorado- Boulder in the ECEE department, where he teaches a graduate class in signal integrity and is also the editor of Signal Integrity Journal. Bogatin received his BS in physics from MIT, and MS and PhD in physics from the University of Arizona in Tucson. Eric has held senior engineering and management positions at Bell Labs, Raychem, Sun Microsystems, Ansoft and Interconnect Devices. Bogatin has written six technical books in the field, and presented classes and lectures on signal integrity worldwide. MEET THE AUTHOR Fadi Deek Signal/Power Integrity Specialist Corporate Application Engineer In 2005, Fadi received his B.S. degree in computer and communications from the American University of Science and Technology (AUST) in Beirut, Lebanon. That same year, he joined Fidus Systems as a design engineer. -
Digital Design and Interconnect Standards Overcome Challenges Across the Design Cycle
Digital Design and Interconnect Standards Overcome Challenges Across the Design Cycle When digital signals reach gigabit speeds, “the unpredictable” becomes normal. In digital standards, every generational change puts new risks in your path. We see it firsthand when creating our products and working with engineers like you. The process of getting your project back on track Innovate anywhere with starts with the best tools for the job. PathWave design and test software. Boost your pro- Keysight’s solution set for high-speed digital test is a combination of ductivity with software that hardware, software, and broad expertise built on ongoing involvement brings you faster insight, automates procedures, and with industry experts. Keysight’s tools for simulation, measurement, and speeds up simulation and compliance will help you cut through the challenges of gigabit digital designs. measurement. These tools provide views into the time and frequency domains, revealing • Increase your underlying problems and ensuring your designs meet specifications. productivity From initial concept to compliance testing, Keysight can help you uncover • Extend your instrument problems, optimize performance, and deliver your design on time. In capabilities the development of high-speed digital designs, Keysight is the only test • Work remotely and measurement company that offers hardware and software solutions Learn more at across all stages of the entire design cycle: design and simulation, www.keysight.com/find/ software analysis, debug, and compliance testing. These same tools are essential Start with a 30-day free trial. to signal integrity (SI) analysis, whether you perform it independently or as www.keysight.com/find/ a tightly interwoven part of the digital design process. -
High Speed Signal Integrity Analysis and Differential Signaling
High Speed Signal Integrity Analysis and Differential Signaling Project Report of EE201C: Modeling of VLSI Circuits and Systems Tongtong Yu, UID: 904025158 Zhiyuan Shen, UID: 803987916 Abstract— This course project is designated for independent electric mechanism of semiconductor circuit doesn’t change study of various topics relating to VLSI modeling. In our very much, so the concentration is on the interconnects and project, the first part is an extension of the class presentation packaging. where we introduced the basic idea of signal integrity. Here we address the philosophy behind frequency domain and time The impact of to the system can be classified to signal domain. Then, we give two examples of interconnects, a critical integrity, which refers to the contamination of signal’s in- issue related to signal integrity. The second part is about tegrity due to parasitic effects of interconnects and packaging, differential signaling used in high speed application. After compared with ideal case. This may result in unsatisfactory analyzing general principles, we simulate two parallel-trace performance. For example, we design the systems for 10Gbps; transmission line, which has practical meaning in real design case. Maybe this project is not fancy, but we believe all the however, due to this effect, it can only achieve 5Gbps. Also, fundamentals provided here and those reference list in the end this may produce inaccurate logic state and even logical are the best material for everyone who wants to go further in failure. This impact can be classified in two ways this area. 1) Delay, distortion and cross-talk directly happening on We would like to express our deepest gratitude to Prof. -
Mixed Domain Oscilloscopes WINNER of 13 INDUSTRY AWARDS MDO4000C Series Datasheet
Mixed Domain Oscilloscopes WINNER OF 13 INDUSTRY AWARDS MDO4000C Series Datasheet Key Performance Specifications 1. Oscilloscope 4 analog channels 1 GHz, 500 MHz, 350 MHz, and 200 MHz bandwidth models Bandwidth is upgradable (up to 1 GHz) Up to 5 GS/s sample rate 20 M record length on all channels > 340, 000 wfm/s maximum waveform capture rate Standard passive voltage probes with 3.9 pF capacitive loading and 1 GHz or 500 MHz analog bandwidth Customizable and fully upgradable 6-in-1 2. Spectrum Analyzer (Optional) integrated oscilloscope with synchronized Frequency range of 9 kHz–3 GHz or 9 kHz–6 GHz insights into analog, digital, and RF signals Ultra-wide capture bandwidth ≥1 GHz Introducing the world’s highest performance 6-in-1 integrated Time-synchronized capture of spectrum analyzer with analog and digital acquisitions oscilloscope that includes a spectrum analyzer, arbitrary/ function generator, logic analyzer, protocol analyzer and Frequency vs. time, amplitude vs. time, and DVM/frequency counter. The MDO4000C Series has the phase vs. time waveforms performance you need to solve the toughest embedded 3. Arbitrary/Function Generator (Optional) design challenges quickly and efficiently. When configured 13 predefined waveform types with an integrated spectrum analyzer, it is the only instrument 50 MHz waveform generation that provides simultaneous and synchronized acquisition of 128 k arbitrary generator record length 250 MS/s analog, digital and spectrum, ideal for incorporating wire- arbitrary generator sample rate less communications (IoT) and EMI troubleshooting. The MDO4000C is completely customizable and fully upgradable 4. Logic Analyzer (Optional) 16 digital channels so you can add the instruments you need now – or later. -
Signal Integrity Analysis and Simulation Tools Include IBIS Models
High Frequency Products From September 2004 High Frequency Electronics Copyright ® 2004 Summit Technical Media, LLC HIGH-SPEED MODELS Signal Integrity Analysis and Simulation Tools Include IBIS Models By John Olah and Sanjeev Gupta, Agilent EEsof EDA, and Carlos Chavez-Dagostino, Altera Corporation ignal integrity is a several hybrid-domain simulation techniques, This issue’s cover highlights major concern for where the simulator is conversant in both the introduction of Agilent Sengineers working time and frequency domain and can combine Technologies’ ADS2004A, on high data rate designs. models suitable for either domain. This article which now includes Effects such as crosstalk, describes the types of models that need to be greatly enhanced capa- coupling and delays in taken together for high-speed signal integrity bilities for signal integrity transmission lines have a analysis, and illustrates their use in a simula- modeling in both time big impact on signal tion of a high-speed memory circuit. and frequency domains integrity. High-speed dig- ital board designers can Requirements for High-Speed now use design tools that combine time- Signal Integrity Simulations domain IC-specific I/O Buffer Information In broad terms, there are three important Specification (IBIS) models with accurate simulation requirements for analog high- transmission line models to get a better speed signal integrity characterization: understanding of the signal distortion due to coupling and delays. 1. A hybrid-domain simulator that handles time-domain and frequency-domain models Introduction 2. Accurate transmission line structures (best In terms of analog simulators, historically, described in the frequency-domain) there have been two main camps; time- 3. -
10 Ways ADS Overcomes Signal and Power Integrity Challenges
Keysight Technologies 10 Ways ADS Overcomes Signal and Power Integrity Challenges Technical Overview 02 | Keysight | 8 Ways ADS Overcomes Signal and Power Integrity Challenges - Technical Overview Keysight EEsof EDA’s Advanced Design System (ADS) software is the world’s leading electronic design automation solution for RF, microwave, and high-speed digital applications. ADS features a host of new, technologies designed to improve productivity, including two electromagnetic (EM) software solutions specifically created to help signal and power integrity engineers improve high-speed link performance in PCB designs. What follows is a listing of 8 ways in which ASD can help you, the engineer, overcome your signal and power integrity challenges. 1. ADS provides speed and accuracy for your SI EM characterization ........................Page 2 2. ADS simplifies the use of S-parameter files for your parts .......................................Page 4 3. ADS provides access to industry-leading channel simulator technology ...................................................................................................Page 6 4. ADS stays ahead of technology waves (such as PAM-4) ..........................................Page 9 5. ADS accelerates DDR4 simulation methodologies ....................................................Page 12 6. ADS puts power in the hands of designers (PI analyses) ..........................................Page 15 7. ADS enables flat PDN impedance responses ............................................................Page -
Crashcourse Oscilloscope and Logic Analyzer
Crashcourse Oscilloscope and Logic Analyzer By Christoph Zimmermann Introduction ● Who am I? ● Who are you and what do you want to learn? ● What kind of problems have you been confronted with? 2 Shedule ● Oscilloscope ● Overview ● Display, Read the output ● Probes ● Input Stage ● Horizontal System ● Trigger System ● ADC Stage ● Measurements ● Accuracy ● Logic Analyzer ● Overview ● Timing Analyzer ● State Analyzer ● Logic Analyzer ● Sequencing ● Protocol Decoder ● Links 3 Oscilloscope ● You can determine the time and voltage values of a signal. ● You can calculate the frequency of an oscillating signal. ● You can see the "moving parts" of a circuit represented by the signal. ● You can tell if a malfunctioning component is distorting the signal. ● You can find out how much of a signal is direct current (DC) or alternating current (AC). 4 Display, Read the output 5 Oscilloscope, overview Blockdiagramm of a analog Scope 6 Oscilloscope, overview 2 Blockdiagramm of a Digital Storage Oscilloscope (DSO) 7 Probes Schematic of a typical passive probe and the oscilloscope input Probe calibration: always use a plastic srewdriver! 8 Probes 2 9 Input Stage ● Attentuation, Scaling ● Position (Moving up/down) ● Coupling (DC, AC, GND) ● More ● Termination ● Bandwidth Limit (Used for slower signals to reduce Noise) 10 Horizontal System ● Adjust the time length you measure – Digital: also adjust the sampling rate ● Adjust the position you are interested in relative to the trigger event. ● Digital: Allows you to „Zoom“ into a recorded signal 11 Trigger System -
EMPIOT: an Energy Measurement Platform for Wireless Iot Devices
JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, VOLUME 121, 1 NOVEMBER 2018, PAGES 135-148 1 EMPIOT: An Energy Measurement Platform for Wireless IoT Devices Behnam Dezfouli∗, Immanuel Amirtharaj†, and Chia-Chi (Chelsey) Li‡ ∗†‡Internet of Things Research Lab, Department of Computer Engineering, Santa Clara University, USA ‡Intel Corporation, Santa Clara, USA ∗[email protected], †[email protected], ‡[email protected] Abstract—Profiling and minimizing the energy con- the energy efficiency of these devices to satisfy the QoS sumption of resource-constrained devices is an essen- requirements of applications. tial step towards employing IoT in various application domains. Due to the large size and high cost of com- Analytical (and simulation-based) energy estimation mercial energy measurement platforms, alternative tools multiply the time spent in each state (e.g., sleep, solutions have been proposed by the research commu- processing, transmission/reception) by the power con- nity. However, the three main shortcomings of existing sumed in that state. This approach, however, is not tools are complexity, limited measurement range, and accurate due to the following reasons [2]–[6]: (i) Most low accuracy. Specifically, these tools are not suitable for the energy measurement of new IoT devices such as of the proposed models focus on simple wireless tech- those supporting the 802.11 technology. In this paper nologies such as 802.15.4 and LoRa [7], [8]. However, we propose EMPIOT, an accurate, low-cost, easy to as new technologies such as 802.11 and LTE are being build, and flexible power measurement platform. We adopted by IoT, it is important to profile the energy present the hardware and software components of efficiency of devices using these complex technologies. -
Basic Combinational Logic
University of Florida Dr. Eric M. Schwartz Department of Electrical & Computer Engineering Revision 0 Dave Ojika, TA Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15 INTRODUCTION The Diligent Analog Discovery (DAD) allows you to design and test both analog and digital circuits. It can produce, measure and record many types of signals. It allows circuit designers to both simulate circuits and observe their behaviors for testing, debugging and other kinds of signal analysis. Follow this link http://tinyurl.com/DAD-vids for short videos, and http://tinyurl.com/DAD-page for product page. Figure 1 shows the normal setup for a DAD. Figure 2 shows the functions of each of your DAD’s pins. Figure 2: DAD pin configuration DAD -- ANALOG FUNCTIONS This section demonstrates some of the basic features of the DAD using Arbitrary Waveform Generator (AWG) and Scope instruments in the WaveForms software. AWG and Scope both make up the analog functions of the DAD – the former serves as analog output, while the latter serves as analog input. A breadboard board, augmented with a few other parts, can provide Figure 1: Connection of the DAD to a circuit and a USB port on a computer you a means to build and verify the proper operation of digital circuits. Some of the useful Your DAD has the following basic features. devices are described below. • 2-Channel Oscilloscope Arbitrary Waveform Generator (AWG) • 2-Channel Waveform Generator The AWG has two channels that can • 16-Channel Logic Analyzer independently generate both standard • 16-Channel Digital Pattern Generator waveforms (sine, triangular, sawtooth, etc.), as • ±5VDC Power Supplies well as arbitrary waveforms that are defined • Spectrum Analyzer using standard tools such as Excel. -
NI Multisim User Manual
NI MultisimTM User Manual NI Multisim User Manual January 2009 374483D-01 Support Worldwide Technical Support and Product Information ni.com National Instruments Corporate Headquarters 11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100 Worldwide Offices Australia 1800 300 800, Austria 43 662 457990-0, Belgium 32 (0) 2 757 0020, Brazil 55 11 3262 3599, Canada 800 433 3488, China 86 21 5050 9800, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 358 (0) 9 725 72511, France 01 57 66 24 24, Germany 49 89 7413130, India 91 80 41190000, Israel 972 3 6393737, Italy 39 02 41309277, Japan 0120-527196, Korea 82 02 3451 3400, Lebanon 961 (0) 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793, Netherlands 31 (0) 348 433 466, New Zealand 0800 553 322, Norway 47 (0) 66 90 76 60, Poland 48 22 328 90 10, Portugal 351 210 311 210, Russia 7 495 783 6851, Singapore 1800 226 5886, Slovenia 386 3 425 42 00, South Africa 27 0 11 805 8197, Spain 34 91 640 0085, Sweden 46 (0) 8 587 895 00, Switzerland 41 56 2005151, Taiwan 886 02 2377 2222, Thailand 662 278 6777, Turkey 90 212 279 3031, United Kingdom 44 (0) 1635 523545 For further support information, refer to the Technical Support and Professional Services appendix. To comment on National Instruments documentation, refer to the National Instruments Web site at ni.com/info and enter the info code feedback. © 2006–2009 National Instruments Corporation. -
Oscilloscope Fundamentals 03W-8605-4 Edu.Qxd 3/31/09 1:55 PM Page 2
03W-8605-4_edu.qxd 3/31/09 1:55 PM Page 1 Oscilloscope Fundamentals 03W-8605-4_edu.qxd 3/31/09 1:55 PM Page 2 Oscilloscope Fundamentals Table of Contents The Systems and Controls of an Oscilloscope .18 - 31 Vertical System and Controls . 19 Introduction . 4 Position and Volts per Division . 19 Signal Integrity . 5 - 6 Input Coupling . 19 Bandwidth Limit . 19 The Significance of Signal Integrity . 5 Bandwidth Enhancement . 20 Why is Signal Integrity a Problem? . 5 Horizontal System and Controls . 20 Viewing the Analog Orgins of Digital Signals . 6 Acquisition Controls . 20 The Oscilloscope . 7 - 11 Acquisition Modes . 20 Types of Acquisition Modes . 21 Understanding Waveforms & Waveform Measurements . .7 Starting and Stopping the Acquisition System . 21 Types of Waves . 8 Sampling . 22 Sine Waves . 9 Sampling Controls . 22 Square and Rectangular Waves . 9 Sampling Methods . 22 Sawtooth and Triangle Waves . 9 Real-time Sampling . 22 Step and Pulse Shapes . 9 Equivalent-time Sampling . 24 Periodic and Non-periodic Signals . 10 Position and Seconds per Division . 26 Synchronous and Asynchronous Signals . 10 Time Base Selections . 26 Complex Waves . 10 Zoom . 26 Eye Patterns . 10 XY Mode . 26 Constellation Diagrams . 11 Z Axis . 26 Waveform Measurements . .11 XYZ Mode . 26 Frequency and Period . .11 Trigger System and Controls . 27 Voltage . 11 Trigger Position . 28 Amplitude . 12 Trigger Level and Slope . 28 Phase . 12 Trigger Sources . 28 Waveform Measurements with Digital Oscilloscopes 12 Trigger Modes . 29 Trigger Coupling . 30 Types of Oscilloscopes . .13 - 17 Digital Oscilloscopes . 13 Trigger Holdoff . 30 Digital Storage Oscilloscopes . 14 Display System and Controls . 30 Digital Phosphor Oscilloscopes .