Chemical Weathering, Soil Development, and Geochemical Fractionation in a Part of the White Mountains, Mono and Inyo Counties, California

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Weathering, Soil Development, and Geochemical Fractionation in a Part of the White Mountains, Mono and Inyo Counties, California Chemical Weathering, Soil Development, and Geochemical Fractionation in a Part of the White Mountains, Mono and Inyo Counties, California GEOLOGICAL SURVEY PROFESSIONAL PAPER 352-J Chemical Weathering, Soil Development, and Geochemical Fractionation in a Part of the White Mountains, Mono and Inyo Counties, California By DENIS E. MARCHAND EROSION AND SEDIMENTATION IN A SEMIARID ENVIRONMENT GEOLOGICAL SURVEY PROFESSIONAL PAPER 352-J UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1974 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 73-600361 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price $1-35 (paper cover) Stock Number 2401-02484 CONTENTS Page Page Abstract ________________________________ 379 Chemical weathering and soil development Continued Introduction _____________________________ 379 Chemical weathering Continued Study area _______________________________ 381 Changes in the solid phases Continued Location and description ___________________ 381 Chemical changes from bedrock to soil ______ 400 Previous work in the region __________________ 382 Reed Dolomite __________________ 401 Climate _____________________________ 382 Adamellite of Sage Hen Flat ________ 403 Vegetation ____________________________ 384 Changes in the liquid phase _______________ 405 Geology _____________________________ 385 Chemical composition of precipitation ______ 405 Chemical weathering and soil development___________ 388 Chemical composition of soil water __ __406 Method of approach_______________________ 388 Soil pH ________._______._____. 406 Field methods _________________________ 388 Exchangeable cations ______________ _ 406 Laboratory methods _____________________ 388 Chemical composition of spring waters ______ 407 Description of soils _______________________ 389 Waters related in part to the Clarification of terms ___________________ 389 Reed Dolomite ________________ 407 Reed Dolomite soils____________________ 390 Waters related largely to the adamellite of Adamellite soils of Sage Hen Flat ___________ 390 Sage Hen Flat __.______________ 408 Basalt soils _________________________ 391 Analysis of chemical changes ___ ____ __ __408 Andrews Mountain sandstone soils __________ 391 Relative mobilities _______________ 408 Soil contamination _______________________ 392 Stability with respect to solid Physical weathering _____________________ 392 and gas phases ________________ 409 Reed Dolomite _______________________ 392 Relation of soil water to precipitation Adamellite of Sage Hen Flat ______________ 393 and spring waters _____ _ 411 Mechanisms of disintegration ______________ 394 Chemical weathering _____________________ 395 Chemical fractionation in the bedrock-soil-water-plant Changes in the solid phases _______________ 395 system________________________________413 Mineralogical changes _______________ 395 Summary and discussion _____________ ______ 416 Reed Dolomite __________________ 395 Weathering of Reed Dolomite ________________ 417 Adamellite of Sage Hen Flat ________ 396 Weathering of adamellite of Sage Hen Flat ________ 417 Electron microprobe studies of adamellite General weathering relations ________________ 418 mineral weathering _________ 398 Biotites __________________ 398 References cited __ ___ 418 Feldspars ____________________ 400 Supplemental information Methods, reproducibility, Other minerals______________ _ 400 and accuracy ___ ___ 422 ILLUSTRATIONS Page FIGURE 269. Diagram showing reversible, irreversible, and cyclical processes associated with weathering and erosion ______ 380 270. Map of east-central California and adjacent part of Nevada, indicating location of the study area _________ __ 381 271. Photograph showing part of the upland surface in the White Mountains __________________ __________ 381 272. Map of generalized topography of a part of the southern White Mountains _________________ __ _ 381 273. Photograph showing North Sage Hen Flat auxiliary weather station and dust trap ___________ 383 274. Graph showing maximum and minimum temperature and relative evaporation rates at Crooked Creek Laboratory and five auxiliary weather stations ______________________ - 384 275. Graph showing precipitation recorded at Crooked Creek Laboratory and at five auxiliary weather stations 384 276. Photograph showing vegetational contrast between dolomite outcrops and colluvium and sandstone colluvium 385 277. Generalized geologic map of the study area _____________________________ _____ __________ 386 278. Photograph showing view north across Sage Hen Flat, showing degraded White Mountain erosion surface and outcrop areas of adamellite of Sage Hen Flat, Reed Dolomite, and Andrews Mountain sandstone _____ 387 279. Photograph showing view east from Sage Hen Flat, showing resistant basalt capping less resistant metasediments and granitic intrusive rock ______________________________________________ _______ 387 III IV CONTENTS Page FIGURE 280. Photograph showing exposures of reworked rhyolitic ash interbedded with terrace alluvium along Croloked Creek 387 281 -284. Maps showing: 281. Depth of soil and colluvium at planetable map site R-l, Reed Dolomite, 10,600 feet ___________ 389 282. Depth of soil and colluvium at planetable map site R-2, Reed Dolomite, 11,200 feet ______________ 390 283. Depth of soil and colluvium at planetable map site S-l, adamellite of Sage Hen Flat _ _. ___ 390 284. Depth of soil and colluvium at planetable map site B-l. on basalt _______________,_______ 391 285. Photograph showing Reed Dolomite soil pit ________________________________ 391 286. Photograph showing soil pit in'adamellite of Sage Hen Flat ______________________ - - 391 287. Graph showing cumulative grain size frequency curves for dolomite soils and comparison with ranges i|n bedrock grain size ___________________________________________________________ 392 288. Diagram showing gravel-sand-silt and clay distribution for soil above the C horizon __________ ______ 392 289. Diagram showing sand-silt-clay distribution for soil above the C horizon __________________ ______ 393 290. Photograph of weathered adamellite outcrop on Sage Hen Flat ________________________ 393 291. Graph showing cumulative grain size frequency curves for adamellite soils and comparison with ranges of bedrock grain size ___________________________________________________________________ 394 292. Photomicrographs showing fresh, crushed bedrock dolomite and etched, embayed, altered soil dolomite grain ____ 395 293. Photomicrographs showing fresh, crushed bedrock talc and soil talc grains ____________________________ 396 294. Diagram showing mineral weathering sequence in Reed Dolomite soils, in order of decreasing resistance ___ 396 295. Photomicrograph of weathered grains in adamellite soil thin section __________________ 397 296. Photomicrograph of soil biotite grains ___________________________________________________ 397 297. Diagram showing mineral weathering sequence in adamellite soils of Sage Hen Flat in ord|er of decreasing resistance _____________________________________________________ ._________ 398 298-301. Graphs showing: 298. Electron microprobe traverses normal to (001) cleavage of two soil biotite grains _______h_____ __ __ 399 299. Electron microprobe traverses parallel to (001) cleavage of two soil biotite grains _________________ 399 300. Electron microprobe analyses of 10 parts of a single plagioclase grain _____________ ______ 400 301. Percentage chemical losses for the indicated Reed Dolomite and adamellite soils of Sage Hen Flat with re­ spect to bedrock ___________________________________________ __________ 402 302. Photograph of rock saw chips showing weathering rind on spheroidally weathered dolomite analyzed by electron microprobe _______________________________________________________________ 403 303 -308. Graphs showing: 303. Electron microprobe transect showing Ca, Mg, and Fe variation across an alteration rind in spheroidally weathered Reed Dolomite _____________________________________,__________ 403 304. Electron microprobe transect for Ca, Mg, and Mn across same dolomite weathering rindl __________ 403 305. Mineral percentage changes with respect to bedrock in two size fractions of a relatively uncontaminated adamellite soil ____________________________________________ __________ 404 306. Relative mobilities for eight elements in spring waters related to adamellite _________ 409 307. Stability diagram for Na silicates ____________________________________ 411 308. Stability diagram for K silicates _____________________________________ __________ 411 309. Compositional diagram showing progressive cation changes from precipitation water to soil and spring waters related to Reed Dolomite ________________________________________________ __________ 412 310. Compositional diagram showing progressive cation changes from precipitation water to soil and spring waters related to adamellite __________________________________________________ __________ 412 311-314- Graphs showing: 311. Mg/Fe and Ca/Fe ratio comparisons of waters related to adamellite ______________ __________ 413 312. Silica-cation ratio comparisons of adamellite-related waters ____________________ ______ 413 313. Comparison of elemental and total concentrations in soil, soil water, colloidal exchange, and plants 415 314. Fractionation of nine elements in the adamellite bedrock-soil-water-plant system _______i______
Recommended publications
  • On Weathering and Alteration of Rocks
    www.rockmass.net On weathering and alteration of rocks Weathering refers to the various processes of physical disintegration and chemical decomposition that occur when rocks at the Earth's surface are subjected to physical, chemical, and biological processes induced or modified by wind, water, and climate. These processes produce soil, unconsolidated rock detritus, and components dissolved in groundwater and runoff. Alteration is a process, which involves changes in the composition of the rock, most often caused by hydrothermal solutions or chemical weathering. Both processes, which generally first affect the walls of the discontinuities, lead to deterioration of the rock material with a reducing effect on its strength and deformation properties, may completely change the mechanical properties and behaviour of rocks. The main results of rock weathering and alteration are: 1. Mechanical disintegration or breakdown, by which the rock loses its coherence, but has little effect upon the change in the composition of the rock material. The results of this process are: The opening up of joints. The formation of new joints by rock fracture, the opening up of grain boundaries. The fracture or cleavage of individual mineral grains. Disintegration involves the breakdown of rock into its constituent minerals or particles with no decay of any rock-forming minerals. The principal sources of physical weathering are thermal expansion and contraction of rock, pressure release upon rock by erosion of overlaying materials, the alternate freezing and thawing of water between cracks and fissures within rock, crystal growth within rock, and the growth of plants and living organisms in rock. Rock alteration usually involves chemical weathering in which the mineral composition of the rock is changed, reorganized, or redistributed.
    [Show full text]
  • Glacial Weathering, Sulfide Oxidation, and Global Carbon Cycle Feedbacks
    Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks Mark A. Torresa,b,c,1, Nils Moosdorfa,d,e,1, Jens Hartmannd, Jess F. Adkinsb, and A. Joshua Westa,2 aDepartment of Earth Sciences, University of Southern California, Los Angeles, CA 90089; bDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125; cDepartment of Earth, Environmental, and Planetary Sciences, Rice University, Houston, TX 77005; dInstitute for Geology, Center for Earth System Research and Sustainability (CEN), Universität Hamburg, 20146 Hamburg, Germany; and eLeibniz Center for Tropical Marine Research, 28359 Bremen, Germany Edited by Thure E. Cerling, University of Utah, Salt Lake City, UT, and approved July 5, 2017 (received for review February 21, 2017) Connections between glaciation, chemical weathering, and the global erosion (5, 8, 9), which is thought to promote more rapid silicate carbon cycle could steer the evolution of global climate over geologic weathering (10, 11). If glaciation increases erosion rates, and if time, but even the directionality of feedbacks in this system remain to erosion enhances silicate weathering and associated production of be resolved. Here, we assemble a compilation of hydrochemical data alkalinity, then glacial weathering could act as a positive feedback from glacierized catchments, use this data to evaluate the dominant serving to promote further glaciation (5, 12). chemical reactions associated with glacial weathering, and explore the Glaciation may also affect rates of weathering of nonsilicate implications for long-term geochemical cycles. Weathering yields from minerals. Studies of glacial hydrochemistry have pointed to the im- catchments in our compilation are higher than the global average, portance of sulfide oxidation and carbonate dissolution as major which results, in part, from higher runoff in glaciated catchments.
    [Show full text]
  • Jefferson County General Reports
    JEFFERSON COUNT¥ ENVIRONMENTAL GEOLOGY STUDY Geologist (125 days@ $125/day) • $ 15,600 * Editing (65 days@ $77/day) • 5,000 * Cartography. 4,000 * Supplies. • 750 * Printing. • 4,900 Travel and per diem Per diem - $27.50 x 60 days •••••••••• • $1,650 Travel to job - 566 (mi. round trip) x 12 x 14¢. 948 Travel on job - 100 x 60 x 14¢ • • •••• 840 3,438 * Overhead on* items above - $28,788 x 20%. 5,757 TOTAL. • • • $ 39,445 Maps: (1) Geology - 4 or 5 color (1 inch= 3 miles) (2) Mineral deposits (combine with geology?) (3) Urban - 7~' - 1:24,000 (black and white) Bulletin Start August 1 if no ERDA uranit.nn study Start March 1, 1978, if ERDA uranium study Contract for flat fee - 60% from county •••••••••••••• $ 24,000 )< Gs-C!J~C-/j' ~ )( -· /-J t:Cl rT,; >-J c; .,, /~ 6DO ;,, Cdjvz To_; 5;0CJO ;Jl(d-, p F J' cL..,.-'.=. 5 ~ (;Yoo -:? / rtZ,, ✓ J /; ✓ (-; -7so y/- ) <",,,..., •..f10 -0, 4 / 9 CJO 77.o, v _, /-O,.tz: T ;,s ... ~ /.J; L:>Vt 7e.,, u 7o JD";, z 8 3 fl? ,. ,. 2- x: / z. ,c /~ ~ , ' Q ,,,-1 ;;;;-~ / ,,...,,c"? )('. 5 y / 2- )C / ,3. ~ /L~/-'.,'/~5 /4 G'~?--8~·-r - 4 -c,-r 5°' Cr?n-c;;,.>c - ~"'--,s ;' /./'I.,.,,, ✓ ~ "'1L /JJSPc,s,-,s Cc ~&-rs/--. i-v~ ,,'-( qco <- oc,-r- •;,; LJ «: ~,e,o,/ - 7£/ / - - ✓, ~,.G ~ t' )OO -/3Ch/ . • . C),,..J t:,..._,?. ~s "7? .)(/ -0.,...-e:. ~~r. T>m1,~ --<--. ~$r ', 1 ,·? J y ~ /tf. tr--0 ro.. A Jz.&.o If/. IJO '1.i,,,,{ • /tJ.oo /'J.-6-C)O 3, Cf I 00 tJ(tt':ll' 5! 00 ,, .:2,..S~ .56',oo ·' .5t' ro ')..&,/, 00 ,, ~)-1, (co ,.
    [Show full text]
  • Soils in Granitic Alluvium in Humid and Semiarid Climates Along Rock Creek, Carbon County, Montana
    Soils in Granitic Alluvium in Humid and Semiarid Climates along Rock Creek, Carbon County, Montana U.S. GEOLOGICAL SURVEY BULLETIN 1590-D Chapter D Soils in Granitic Alluvium in Humid and Semiarid Climates along Rock Creek, Carbon County, Montana By MARITH C. REHEIS U.S. GEOLOGICAL SURVEY BULLETIN 1590 SOIL CHRONOSEQUENCES IN THE WESTERN UNITED STATES DEPARTMENT OF THE INTERIOR DONALD PAUL MODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1987 For sale by the Books and Open-File Reports Section U.S. Geological Survey Federal Center, Box 25425 Denver, CO 80225 Library of Congress Cataloging-in-Publication Data Reheis, Marith C. Soils in granitic alluvium in humid and semiarid climates along Rock Creek, Carbon County, Montana. (Soil chronosequences in the Western United States) (U.S. Geological Survey Bulletin 1590-D) Bibliography Supt. of Docs. No.: I 19.3:1590-D 1. Soils Montana Rock Creek Valley (Carbon County). 3. Soil chronosequences Montana Rock Creek Valley (Carbon County). 4. Soils and climate Montana Rock Creek Valley (Carbon County). I. Title. II. Series: U.S. Geological Survey Bulletin 1590-D. III. Series: Soil chronosequences in the Western United States. QE75.B9 No: 1950-D 557.3 s 87-600071 IS599.M57I |631.4'9786652] FOREWORD This series of reports, "Soil Chronosequences in the Western United States," attempts to integrate studies of different earth-science disciplines, including pedology, geomorphology, stratigraphy, and Quaternary geology in general. Each discipline provides information important to the others. From geomorphic relations we can determine the relative ages of deposits and soils; from stratigraphy we can place age constraints on the soils.
    [Show full text]
  • Weathering, Erosion, and Susceptibility to Weathering Henri Robert George Kenneth Hack
    Weathering, erosion, and susceptibility to weathering Henri Robert George Kenneth Hack To cite this version: Henri Robert George Kenneth Hack. Weathering, erosion, and susceptibility to weathering. Kanji, Milton; He, Manchao; Ribeira e Sousa, Luis. Soft Rock Mechanics and Engineering, Springer Inter- national Publishing, pp.291-333, 2020, 9783030294779. 10.1007/978-3-030-29477-9. hal-03096505 HAL Id: hal-03096505 https://hal.archives-ouvertes.fr/hal-03096505 Submitted on 5 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Published in: Hack, H.R.G.K., 2020. Weathering, erosion and susceptibility to weathering. 1 In: Kanji, M., He, M., Ribeira E Sousa, L. (Eds), Soft Rock Mechanics and Engineering, 1 ed, Ch. 11. Springer Nature Switzerland AG, Cham, Switzerland. ISBN: 9783030294779. DOI: 10.1007/978303029477-9_11. pp. 291-333. Weathering, erosion, and susceptibility to weathering H. Robert G.K. Hack Engineering Geology, ESA, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente Enschede, The Netherlands e-mail: [email protected] phone: +31624505442 Abstract: Soft grounds are often the result of weathering. Weathering is the chemical and physical change in time of ground under influence of atmosphere, hydrosphere, cryosphere, biosphere, and nuclear radiation (temperature, rain, circulating groundwater, vegetation, etc.).
    [Show full text]
  • Consumption of Atmospheric Carbon Dioxide Through Weathering of Ultramafic Rocks in the Voltri Massif
    geosciences Article Consumption of Atmospheric Carbon Dioxide through Weathering of Ultramafic Rocks in the Voltri Massif (Italy): Quantification of the Process and Global Implications Francesco Frondini 1,* , Orlando Vaselli 2 and Marino Vetuschi Zuccolini 3 1 Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via Pascoli s.n.c., 06123 Perugia, Italy 2 Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via La Pira 4, 50121 Firenze, Italy; orlando.vaselli@unifi.it 3 Dipartimento di Scienze della Terra dell’Ambiente e della Vita, Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy; [email protected] * Correspondence: [email protected] Received: 1 May 2019; Accepted: 5 June 2019; Published: 9 June 2019 Abstract: Chemical weathering is the main natural mechanism limiting the atmospheric carbon dioxide levels on geologic time scales (>1 Ma) but its role on shorter time scales is still debated, highlighting the need for an increase of knowledge about the relationships between chemical weathering and atmospheric CO2 consumption. A reliable approach to study the weathering reactions is the quantification of the mass fluxes in and out of mono lithology watershed systems. In this work the chemical weathering and atmospheric carbon dioxide consumption of ultramafic rocks have been studied through a detailed geochemical mass balance of three watershed systems located in the metaophiolitic complex of the Voltri Massif (Italy). Results show that the rates of carbon dioxide consumption of the study area (weighted average = 3.02 1.67 105 mol km 2 y 1) are higher than ± × − − the world average CO2 consumption rate and are well correlated with runoff, probably the stronger weathering controlling factor.
    [Show full text]
  • Mineral Mania
    The Rock Factory A Pre-Visit Information Guide for Teachers Meets Next Generation Science Standards: 5-PS1-3; MS LS4-1,2; MS ESS1-4; MS-ESS2-1 How does our Earth create so many different types of rocks? Learn about the different processes that form and reform rocks as you identify many types of rocks, minerals and fossils. Students will learn to think like geologists as they move through interactive investigation stations packed with specimens from the Museum’s collections. OBJECTIVES The Rock Cycle: Students will examine the three types of rocks - igneous, metamorphic and sedimentary – and discover the processes that create them. Tracing the connections between shale and slate, limestone and marble, students will discover how the rock cycle changes the very ground beneath our feet! Characteristics of Rocks Students will learn how to observe and identify rocks through their unique characteristics, looking for telling clues such as layering, crystal size, fossils, magnetism, and more. Students will practice their observational skills as they describe the Museum’s unique rock and mineral specimens. Investigation Stations: Students will explore Museum geology specimens up close at investigation stations to answer such questions as: “Why do fossils form only in certain rocks?” “How do rocks form from volcanic eruptions?” “How can I recognize different types of rocks?”. ACTIVITIES Teachers are encouraged to conduct pre-visit and post-visit classroom discussions and activities with their classes to make the most of their experience. Encourage your students to start a classroom rock collection, and create an exhibit with the rocks organized by type – igneous, sedimentary and metamorphic.
    [Show full text]
  • Geologic Boulder Map of Campus Has Been Created As an Educational Educational an As Created Been Has Campus of Map Boulder Geologic The
    Adam Larsen, Kevin Ansdell and Tim Prokopiuk Tim and Ansdell Kevin Larsen, Adam What is Geology? Igneous Geo-walk ing of marine creatures when the limestone was deposited. It also contains by edited and Written Geology is the study of the Earth, from the highest mountains to the core of The root of “igneous” is from the Latin word ignis meaning fire. Outlined in red, numerous fossils including gastropods, brachiopods, receptaculita and rugose the planet, and has traditionally been divided into physical geology and his- this path takes you across campus looking at these ancient “fire” rocks, some coral. The best example of these are in the Geology Building where the stone torical geology. Physical geology concentrates on the materials that compose of which may have been formed at great depths in the Earth’s crust. Created was hand-picked for its fossil display. Campus of the Earth and the natural processes that take place within the earth to shape by the cooling of magma or lava, they can widely vary in both grain size and Granite is another common building stone used on campus. When compa- its surface. Historical geology focuses on Earth history from its fiery begin- mineral composition. This walk stops at examples showing this variety to help nies sell granite, they do not use the same classification system as geologists. nings to the present. Geology also explores the interactions between the you understand what the change in circumstances will do to the appearance Granite is sold in many different colours and mineral compositions that a Map Boulder Geologic lithosphere (the solid Earth), the atmosphere, the biosphere (plants, animals of the rock.
    [Show full text]
  • Chapter 1 – Introduction – Review of Rocks and Plate Tectonics Practice Exam and Study Guide
    Chapter 1 – Introduction – Review of Rocks and Plate Tectonics Practice Exam and Study Guide To be able to understand the material covered during this course you need to have a basic background in the kinds of rocks making up our planet. This section of the study guide is aimed at helping you gain that background. 1. What are the three major groups of rocks found on planet Earth? Igneous Rocks 2. Which of the following processes is associated with igneous rocks? a. Solid‐state recrystallization b. Weathering and erosion c. Transportation and deposition d. Cooling a silicate liquid to a solid rock e. The accumulation of granitic debris in a moraine 3. If a silicate liquid flows out along the Earth’s surface or seabed, then it is called _______________. 4. If a silicate liquid exists beneath the Earth’s surface or seabed, then it is called _______________. 5. Which of the following terms refer to a body of magma or its solidified equivalent? a. Basalt b. Sandstone c. Gneiss d. Pluton e. Schist 6. If you can see the crystals making up an igneous rock with the naked eye, then the texture is described as a. Pyroclastic b. Phaneritic c. Aphanitic d. Porphyritic e. Aphyric from Perilous Earth: Understanding Processes Behind Natural Disasters, ver. 1.0, June, 2009 by G.H. Girty, Department of Geological Sciences, San Diego State University Page 1 7. In an aphanitic igneous rock can you make out the outlines of individual crystals with the naked eye? Yes or No 8. What type of igneous rock is the most volumetrically important on our planet? Intrusive Igneous Rocks 9.
    [Show full text]
  • Eg, Change Or Extinction of Particular Living Organisms; Field Evidence Or
    6.4. Construct explanations from geologic evidence (e.g., change or extinction of particular living organisms; field evidence or representations, including models of geologic cross-sections; sedimentary layering) to identify patterns of Earth’s major historical events (e.g., formation of mountain chains and ocean basins, significant volcanic eruptions, fossilization, folding, faulting, igneous intrusion, erosion). Use the diagram of a geologic cross section below to answer questions #1-2 1. Which rock layer most likely contains the most recently evolved organisms? a. 1 c. 3 b. 2 d. 4 2. Which rock layer represents the oldest rock? a. 1 c. 3 b. 2 d. 4 3. Use the diagram below to answer the question. The diagram shows the fossils in two different sections of rock found on opposite sides of a canyon. Which layer in rock section one is approximately the same age as layer X in rock section 2? a. Layer 1 b. Layer 2 c. Layer 3 d. Layer 4 4. Which statement is true about undisturbed layers of rocks on the side of a mountain? a. The rock layers closest to the ground level have more fossils in them. b. The layers of rock closest to the ground level are older than the layers on top. c. The layers of rocks that are the darkest in color are older than those that are lighter. d. The layers of rocks that are lighter in color are older than those that are darker. 5. The diagram below shows four different rock layers in a hillside. What is the best evidence that one of those rock layers was formed under an ocean.
    [Show full text]
  • Igneous Rocks and Their Origin
    IIggnneeoouuss RRocockkss aanndd ThTheeiirr OOrigrigiinn Chapter 5 Three Types of Rocks • Igneous rocks - Formed from volcanic eruptions - either external or internal • Sedimentary rocks - Formed from erosional processes • Metamorphic rocks - Deforming of rocks above from exposure to high pressure and temperature The Rock Cycle • A rock is composed of grains of one or more minerals • The rock cycle shows how one type of rocky material is transformed into ano ther Igneous Rocks Extrusive igneous rocks form when lava erupts at the surface. Igneous extrusion (lava) The resulting rock is fine-grained or has a glassy texture. Basalt Igneous Rocks Igneous intrusion Intrusive igneous rocks form when magma intrudes into unmelted rock masses. Granite The slow cooling process produces coarsely grained rocks. How do we Know Igneous Rocks Formed at Depth? Torres del Paine, Chile • Mineralogy / Chemistry ? • Grain size (coarse vs fine grained) • Lab expmts require high P & T to form large grains • Outcrops: See intrusions into country rock -Contact/chill zones, baked and metamorphosed • Xenoliths of country rock found in igneous intrusions Igneous Rock Identification • Igneous rock names are based on texture (grain size) and composition • Textural classification – Coarse-grained: Plutonic rocks (gabbro-diorite-granite) cooled slowly at depth – Fine-Grained: Volcanic rocks (basalt-andesite-rhyolite) cooled rapidly at the Earth’s surface • Compositional classification – Mafic rocks (gabbro-basalt) contain dark-colored ferromagnesian minerals, iron rich
    [Show full text]
  • The Earth's Crust Is Like the Skin of an Apple
    The Earth’s Crust Weathering & Erosion ! " Soil begins with rocks – so how is rock turned into soil? ! " How does soil travel and move? ! " Without sediments our planet would decline, perhaps ceasing to exist Inside the Earth The Earth's Crust is like the skin of an apple. It is very thin in comparison to the other three layers. The crust is only about 3-5 miles (8 kilometers) thick under the oceans(oceanic crust) and about 25 miles (32 kilometers) thick under the continents (continental crust). The temperatures of the crust vary from air temperature on top to about 1600 degrees Fahrenheit (870 degrees Celcius) in the deepest parts of the crust Three Laws of Thermodynamics ! " The first law of thermodynamics, also called conservation of energy, states that the total amount of energy in the universe is constant. This means that all of the energy has to end up somewhere, either in the original form or in a different from. We can use this knowledge to determine the amount of energy in a system, the amount lost as waste heat, and the efficiency of the system. ! " The second law of thermodynamics states that the disorder in the universe always increases. After cleaning your room, it always has a tendency to become messy again. This is a result of the second law. As the disorder in the universe increases, the energy is transformed into less usable forms. Thus, the efficiency of any process will always be less than 100%. ! " The third law of thermodynamics tells us that all molecular movement stops at a temperature we call absolute zero, or 0 Kelvin (-273oC).
    [Show full text]