Ecology and Evolution of Cardiaspina Psyllids, Their Bacterial Endosymbionts and Parasitoid Wasps

Total Page:16

File Type:pdf, Size:1020Kb

Ecology and Evolution of Cardiaspina Psyllids, Their Bacterial Endosymbionts and Parasitoid Wasps Ecology and evolution of Cardiaspina psyllids, their bacterial endosymbionts and parasitoid wasps Aidan Aaron Gordon Hall BSc (Honours) Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Hawkesbury Institute for the Environment Western Sydney University March 2016 Acknowledgements Firstly, and most importantly, I would like to thank my principal supervisor Markus Riegler. Without Markus’ knowledge, guidance and support none of this PhD would have been possible. Markus’ passion for science is second-to-none and he was always willing to chat about ideas. I also wish to thank my co-supervisors, James Cook and Scott Johnson, for their feedback and contributions. James’ knowledge of host – parasitoid systems and coevolution were a huge asset. Secondly, my gratitude goes to Martin Steinbauer and Gary Taylor for advice about psyllid ecology and taxonomy, and to Jennifer Morrow for sharing her experience and knowledge in the molecular lab. Special thanks go to the lab group of Markus Riegler, both past and present, whose friendship, support and feedback on early drafts of manuscripts in preparation were of great importance. In particular, I must note my office mates throughout the entire PhD experience, Andrew Gherlenda and Timothy Sutton, both of whom were invaluable for their friendship and bouncing around ideas. Thanks also to my housemates over the past four years, Andrew Gherlenda, Caroline Fromont, Courtney Campany, James Ryalls, Lisa Bromfield, Mindy Hu and Stephen Bullivant for their friendship, watching movies together and playing cards. Thanks to the HIE technical and administrative team for ensuring the smooth running of the labs and arranging all the orders and pick-ups. You were imperative to the completion of this thesis. Thanks to my family for their love, support and encouragement, and for inspiring my passion of science by bringing me up on a diet of David Attenborough and bushwalks. Finally, a very special thank you goes to Jessica Esveld whose love, encouragement and patience saw me over the finishing line. You have given me so much confidence and I cannot begin to describe how much you meant to me over the last year of completing my PhD. I Statement of authentication The work presented in this thesis is, to the best of my knowledge and belief, original except as acknowledged in the text. I hereby declare that I have not submitted this material, either in full or in part, for a degree at this or any other institution. …………………………………….. Aidan Hall March, 2016 II Preface This thesis consists of a general introductory chapter, including literature review, scope, aims, objectives and overarching hypotheses (Chapter 1), followed by four experimental chapters (Chapters 2 – 5), and a final general discussion chapter which synthesises the key findings, limitations and outlines future research directions (Chapter 6). The four experimental chapters have been presented in the format of stand-alone manuscripts for submission to peer-reviewed international journals and thus some repetition will be present. I am the primary author of the entire thesis, including of all experimental chapters, and was principally responsible for the concept, experimental design, data collection, analysis and writing of each chapter, with guidance from my supervisory panel (Markus Riegler, James M. Cook and Scott N. Johnson) as well as other co-authors. Some of these chapters have already been published, or have been submitted to peer- reviewed journals, as outlined below. Chapter 2: Hall, A.A.G., Gherlenda, A.N., Hasegawa, S., Johnson, S.N., Cook, J.M. & Riegler, M. (2015). Anatomy of an outbreak: the biology and population dynamics of a Cardiaspina psyllid species in an endangered woodland ecosystem. Agricultural and Forest Entomology, 17, 292-301. Chapter 3: Hall, A.A.G., Johnson, S.N., Cook, J.M. & Riegler, M. High nymphal host density and mortality negatively impact parasitoid complex during an insect outbreak. Chapter 4: Hall, A.A.G., Morrow, J.L., Fromont, C., Steinbauer, M.J., Taylor, G.S., Johnson, S.N., Cook, J.M. & Riegler, M. (2016). Codivergence of the primary bacterial endosymbiont of psyllids versus host switches and replacement of their secondary bacterial endosymbionts. Environmental Microbiology, 18, 2591–2603. Chapter 5: Hall, A.A.G., Steinbauer, M.J., Taylor, G.S., Johnson, S.N., Cook, J.M. & Riegler, M. Cryptic diversity, host specificity, trophic and coevolutionary interactions in Australian psyllid – parasitoid food webs. III Table of contents Acknowledgements ....................................................................................................... I Statement of authentication .......................................................................................... II Preface ........................................................................................................................ III Abstract ........................................................................................................................ 1 Chapter 1 ...................................................................................................................... 4 1.1 Insect population dynamics .......................................................................... 5 1.1.1 Processes influencing population dynamics and community structure.... 5 1.1.2 Psyllids and their significance .................................................................. 6 1.1.3 Effect of temperature on insects ............................................................... 7 1.1.4 Effect of temperature, rainfall and nutrient fluxes on psyllids................. 8 1.1.5 Competition and resource limitation ........................................................ 9 1.1.6 Psyllid competition and resource limitation ........................................... 10 1.1.7 Impact of natural enemies ...................................................................... 11 1.1.8 Natural enemies of psyllids .................................................................... 13 1.1.9 Significance of bacterial symbioses of insects ....................................... 15 1.1.10 Bacterial endosymbionts of psyllids .................................................. 16 1.2 Molecular tools in community and evolutionary ecology.......................... 17 1.2.1 Food web studies .................................................................................... 17 1.2.2 Coevolution studies ................................................................................ 18 1.3 Research scope and aims ............................................................................ 18 1.3.1 Study system: Cardiaspina psyllids and their associated parasitoids and endosymbiotic bacteria ....................................................................................... 19 1.3.2 Population dynamics of a Cardiaspina sp. outbreak ............................. 21 1.3.3 Constraints on parasitoid control of a Cardiaspina sp. outbreak ........... 21 1.3.4 Evolutionary relationships of bacterial endosymbionts of psyllids ....... 22 1.3.5 Diversity and host specificity of Cardiaspina parasitoids ..................... 23 Chapter 2 .................................................................................................................... 24 2.1 Abstract ...................................................................................................... 25 2.2 Introduction ................................................................................................ 26 2.3 Materials and methods ............................................................................... 28 2.3.1 Data collection period and site description ............................................ 28 2.3.2 Psyllid identification and biology .......................................................... 30 IV 2.3.3 Survey of parasitisation rates and parasitoid characterisation ............... 31 2.3.4 Survey of tree health and density ........................................................... 31 2.3.5 Statistical analysis .................................................................................. 32 2.4 Results ........................................................................................................ 33 2.4.1 Psyllid identification and biology .......................................................... 33 2.4.2 Parasitisation rates and parasitoid identification .................................... 34 2.4.3 Temperature profile and psyllid abundance ........................................... 35 2.4.4 Tree health and density .......................................................................... 37 2.5 Discussion .................................................................................................. 39 2.5.1 Area-wide defoliation of E. moluccana in CPW ................................... 39 2.5.2 Grey box Cardiaspina ............................................................................ 40 2.5.3 Parasitoids and other natural enemies .................................................... 41 2.5.4 Temperature and Grey Box Cardiaspina population dynamics ............ 41 2.5.5 Psyllid population crash as a result of resource depletion and extreme temperature events .............................................................................................. 42 2.5.6 Other potentially contributing factors .................................................... 43 2.5.7 Conclusions ...........................................................................................
Recommended publications
  • (Pentatomidae) DISSERTATION Presented
    Genome Evolution During Development of Symbiosis in Extracellular Mutualists of Stink Bugs (Pentatomidae) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Alejandro Otero-Bravo Graduate Program in Evolution, Ecology and Organismal Biology The Ohio State University 2020 Dissertation Committee: Zakee L. Sabree, Advisor Rachelle Adams Norman Johnson Laura Kubatko Copyrighted by Alejandro Otero-Bravo 2020 Abstract Nutritional symbioses between bacteria and insects are prevalent, diverse, and have allowed insects to expand their feeding strategies and niches. It has been well characterized that long-term insect-bacterial mutualisms cause genome reduction resulting in extremely small genomes, some even approaching sizes more similar to organelles than bacteria. While several symbioses have been described, each provides a limited view of a single or few stages of the process of reduction and the minority of these are of extracellular symbionts. This dissertation aims to address the knowledge gap in the genome evolution of extracellular insect symbionts using the stink bug – Pantoea system. Specifically, how do these symbionts genomes evolve and differ from their free- living or intracellular counterparts? In the introduction, we review the literature on extracellular symbionts of stink bugs and explore the characteristics of this system that make it valuable for the study of symbiosis. We find that stink bug symbiont genomes are very valuable for the study of genome evolution due not only to their biphasic lifestyle, but also to the degree of coevolution with their hosts. i In Chapter 1 we investigate one of the traits associated with genome reduction, high mutation rates, for Candidatus ‘Pantoea carbekii’ the symbiont of the economically important pest insect Halyomorpha halys, the brown marmorated stink bug, and evaluate its potential for elucidating host distribution, an analysis which has been successfully used with other intracellular symbionts.
    [Show full text]
  • HUANGLONGBING E Diaphorina Citri: ESTUDOS DAS RELAÇÕES PATÓGENO-VETOR-HOSPEDEIRO
    UNIVERSIDADE ESTADUAL PAULISTA - UNESP CAMPUS DE JABOTICABAL HUANGLONGBING E Diaphorina citri: ESTUDOS DAS RELAÇÕES PATÓGENO-VETOR-HOSPEDEIRO Juan Camilo Cifuentes Arenas Engenheiro Agrônomo 2017 UNIVERSIDADE ESTADUAL PAULISTA - UNESP CAMPUS DE JABOTICABAL HUANGLONGBING E Diaphorina citri: ESTUDOS DAS RELAÇÕES PATÓGENO-VETOR-HOSPEDEIRO Juan Camilo Cifuentes Arenas Orientador: Dr. Silvio Aparecido Lopes Tese apresentada à Faculdade de Ciências Agrárias e Veterinárias – Unesp, Câmpus de Jaboticabal, como parte das exigências para a obtenção do título de Doutor em Agronomia (Produção Vegetal) 2017 Arenas, Juan Camilo Cifuentes A681h Huanglongbing e Diaphorina citri: estudos das relações patógeno- vetor-hospedeiro / Juan Camilo Cifuentes Arenas. – – Jaboticabal, 2017 xii, 133 p. : il. ; 29 cm Tese (doutorado) - Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, 2017 Orientador: Silvio Aparecido Lopes Banca examinadora: António de Góes, Glauco de Souza Rolim, Renato Beozzo Bassanezi, Alécio Souza Moreira Bibliografia 1. Citrus sinensis. 2. Fenologia. 3. Porta-enxertos. I. Título. II. Jaboticabal-Faculdade de Ciências Agrárias e Veterinárias. CDU 581.2:634.31 Ficha catalográfica elaborada pela Seção Técnica de Aquisição e Tratamento da Informação – Diretoria Técnica de Biblioteca e Documentação - UNESP, Câmpus de Jaboticabal. DADOS CURRICULARES DO AUTOR JUAN CAMILO CIFUENTES ARENAS – nascido em 09 de setembro de 1985, no município de Turbo – Antioquia (Colômbia). Iniciou o curso de graduação em Engenharia Agronômica, em agosto de 2003, na Universidad Nacional de Colombia na cidade de Medellín – Antioquia, concluindo-o em março de 2012. Durante a graduação atuou durante 4 anos como Estudante Monitor Auxiliar no Centro de Produção Audiovisual da mesma Universidade, dando assistência como cinegrafista e editor de conteudos audiovisuais emitidos no “Canal Universitário de Antioquia – Canal U –“.
    [Show full text]
  • A Review of Sampling and Monitoring Methods for Beneficial Arthropods
    insects Review A Review of Sampling and Monitoring Methods for Beneficial Arthropods in Agroecosystems Kenneth W. McCravy Department of Biological Sciences, Western Illinois University, 1 University Circle, Macomb, IL 61455, USA; [email protected]; Tel.: +1-309-298-2160 Received: 12 September 2018; Accepted: 19 November 2018; Published: 23 November 2018 Abstract: Beneficial arthropods provide many important ecosystem services. In agroecosystems, pollination and control of crop pests provide benefits worth billions of dollars annually. Effective sampling and monitoring of these beneficial arthropods is essential for ensuring their short- and long-term viability and effectiveness. There are numerous methods available for sampling beneficial arthropods in a variety of habitats, and these methods can vary in efficiency and effectiveness. In this paper I review active and passive sampling methods for non-Apis bees and arthropod natural enemies of agricultural pests, including methods for sampling flying insects, arthropods on vegetation and in soil and litter environments, and estimation of predation and parasitism rates. Sample sizes, lethal sampling, and the potential usefulness of bycatch are also discussed. Keywords: sampling methodology; bee monitoring; beneficial arthropods; natural enemy monitoring; vane traps; Malaise traps; bowl traps; pitfall traps; insect netting; epigeic arthropod sampling 1. Introduction To sustainably use the Earth’s resources for our benefit, it is essential that we understand the ecology of human-altered systems and the organisms that inhabit them. Agroecosystems include agricultural activities plus living and nonliving components that interact with these activities in a variety of ways. Beneficial arthropods, such as pollinators of crops and natural enemies of arthropod pests and weeds, play important roles in the economic and ecological success of agroecosystems.
    [Show full text]
  • The Mechanism by Which Aphids Adhere to Smooth Surfaces
    J. exp. Biol. 152, 243-253 (1990) 243 Printed in Great Britain © The Company of Biologists Limited 1990 THE MECHANISM BY WHICH APHIDS ADHERE TO SMOOTH SURFACES BY A. F. G. DIXON, P. C. CROGHAN AND R. P. GOWING School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ Accepted 30 April 1990 Summary 1. The adhesive force acting between the adhesive organs and substratum for a number of aphid species has been studied. In the case of Aphis fabae, the force per foot is about 10/iN. This is much the same on both glass (amphiphilic) and silanized glass (hydrophobic) surfaces. The adhesive force is about 20 times greater than the gravitational force tending to detach each foot of an inverted aphid. 2. The mechanism of adhesion was considered. Direct van der Waals forces and viscous force were shown to be trivial and electrostatic force and muscular force were shown to be improbable. An adhesive force resulting from surface tension at an air-fluid interface was shown to be adequate and likely. 3. Evidence was collected that the working fluid of the adhesive organ has the properties of a dilute aqueous solution of a surfactant. There is a considerable reserve of fluid, presumably in the cuticle of the adhesive organ. Introduction The mechanism by which certain insects can walk on smooth vertical and even inverted surfaces has long interested entomologists and recently there have been several studies on this subject (Stork, 1980; Wigglesworth, 1987; Lees and Hardie, 1988). The elegant study of Lees and Hardie (1988) on the feet of the vetch aphid Megoura viciae Buckt.
    [Show full text]
  • Hymenoptera: Platygastridae) Parasitizing Pauropsylla Cf
    2018 ACTA ENTOMOLOGICA 58(1): 137–141 MUSEI NATIONALIS PRAGAE doi: 10.2478/aemnp-2018-0011 ISSN 1804-6487 (online) – 0374-1036 (print) www.aemnp.eu SHORT COMMUNICATION A new species of Synopeas (Hymenoptera: Platygastridae) parasitizing Pauropsylla cf. depressa (Psylloidea: Triozidae) in India Kamalanathan VEENAKUMARI1,*), Peter Neerup BUHL2) & Prashanth MOHANRAJ1) 1) National Bureau of Agricultural Insect Resources, P.B. No. 2491, Hebbal, 560024 Bangalore, India; e-mail: [email protected]; [email protected] 2) Troldhøjvej 3, DK-3310 Ølsted, Denmark; e-mail: [email protected] *) corresponding author Accepted: Abstract. Synopeas pauropsyllae Veenakumari & Buhl, sp. nov., a new species of Synopeas 23rd April 2018 Förster, 1856 (Hymenoptera: Platygastroidea: Platygastridae: Platygastrinae), is recorded from Published online: galls induced by Pauropsylla cf. depressa Crawford, 1912 (Hemiptera: Psylloidea: Triozidae) 29th May 2018 on Ficus benghalensis L. (Moraceae) in India. It is concluded that S. pauropsyllae is a pa- rasitoid of this psyllid species. This is the fi rst record of a platygastrid parasitizing this host. Key words. Hymenoptera, parasitoid wasp, Hemiptera, Sternorrhyncha, psyllid, taxonomy, gall, host plant, Ficus, India, Oriental Region Zoobank: http://zoobank.org/urn:lsid:zoobank.org:pub:5D64E6E7-2F4C-4B40-821F-CBF20E864D7D © 2018 The Authors. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Licence. Introduction inducing plant galls are mostly scale insects, aphids and With more than 5700 species and 264 genera, Platy- psyllids. Among psyllids (Hemiptera: Sternorrhyncha: gastroidea is the third largest superfamily in the parasitic Psylloidea), several families are known to induce galls; Hymenoptera after Ichneumonoidea and Chalcidoidea gall-making species are particularly numerous in Triozidae, (AUSTIN et al.
    [Show full text]
  • BÖCEKLERİN SINIFLANDIRILMASI (Takım Düzeyinde)
    BÖCEKLERİN SINIFLANDIRILMASI (TAKIM DÜZEYİNDE) GÖKHAN AYDIN 2016 Editör : Gökhan AYDIN Dizgi : Ziya ÖNCÜ ISBN : 978-605-87432-3-6 Böceklerin Sınıflandırılması isimli eğitim amaçlı hazırlanan bilgisayar programı için lütfen aşağıda verilen linki tıklayarak programı ücretsiz olarak bilgisayarınıza yükleyin. http://atabeymyo.sdu.edu.tr/assets/uploads/sites/76/files/siniflama-05102016.exe Eğitim Amaçlı Bilgisayar Programı ISBN: 978-605-87432-2-9 İçindekiler İçindekiler i Önsöz vi 1. Protura - Coneheads 1 1.1 Özellikleri 1 1.2 Ekonomik Önemi 2 1.3 Bunları Biliyor musunuz? 2 2. Collembola - Springtails 3 2.1 Özellikleri 3 2.2 Ekonomik Önemi 4 2.3 Bunları Biliyor musunuz? 4 3. Thysanura - Silverfish 6 3.1 Özellikleri 6 3.2 Ekonomik Önemi 7 3.3 Bunları Biliyor musunuz? 7 4. Microcoryphia - Bristletails 8 4.1 Özellikleri 8 4.2 Ekonomik Önemi 9 5. Diplura 10 5.1 Özellikleri 10 5.2 Ekonomik Önemi 10 5.3 Bunları Biliyor musunuz? 11 6. Plocoptera – Stoneflies 12 6.1 Özellikleri 12 6.2 Ekonomik Önemi 12 6.3 Bunları Biliyor musunuz? 13 7. Embioptera - webspinners 14 7.1 Özellikleri 15 7.2 Ekonomik Önemi 15 7.3 Bunları Biliyor musunuz? 15 8. Orthoptera–Grasshoppers, Crickets 16 8.1 Özellikleri 16 8.2 Ekonomik Önemi 16 8.3 Bunları Biliyor musunuz? 17 i 9. Phasmida - Walkingsticks 20 9.1 Özellikleri 20 9.2 Ekonomik Önemi 21 9.3 Bunları Biliyor musunuz? 21 10. Dermaptera - Earwigs 23 10.1 Özellikleri 23 10.2 Ekonomik Önemi 24 10.3 Bunları Biliyor musunuz? 24 11. Zoraptera 25 11.1 Özellikleri 25 11.2 Ekonomik Önemi 25 11.3 Bunları Biliyor musunuz? 26 12.
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • A Chromosomal Study of 11 Species of Psyllinea (Insecta: Homoptera)
    © Comparative Cytogenetics, 2007 . Vol. 1, No. 2, P. 149-154. ISSN 1993-0771 (Print), ISSN 1993-078X (Online) A chromosomal study of 11 species of Psyllinea (Insecta: Homoptera) E.S. Labina Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia. E-mail: [email protected] Abstract. Meiotic karyotypes in males of 10 species (assigned to 5 genera and 3 subfamilies) of the family Psyllidae and one species of the family Triozidae are described for the first time. The first data on the genus Crastina are presented. All the species were shown to exhibit the usual (modal) psyllid karyotype of 2n = 24 + X except for Craspedolepta villosa and Crastina myricariae, in which 2n = 22 + X and 2n = 24 + XY are found respectively. Key words: Psyllinea, karyotypes, sex chromosome systems. INTRODUCTION maining three families only few species were in- vestigated: 3 in Calophyidae, 2 in Carsidaridae, Psyllids or jumping plant-lice (Homoptera, and 4 in Homotomidae. In the family Phaco- Sternorrhyncha, Psyllinea) are widely distributed pteronidae no species has been examined cytoge- mono- or oligophagous phloem-sucking insects netically. feeding on dicotyledonous plants. This suborder Psyllids possess holokinetic chromosomes that includes approximately three thousands species are characteristic for Homoptera as a whole. The (Burckhardt, Kofler, 2004). Many psyllids are psyllid karyotypes show high uniformity. One hun- known to be pests of cultivated plants. dred and sixty of the studied species (i.e., approxi- Although in the last few decades there has been mately 85%) exhibit 24 autosomes and one or two considerable study of the taxonomy and phyloge- X-chromosomes in male and female complements netic relationships of psyllids, there is still much respectively.
    [Show full text]
  • Assessment of Forest Pests and Diseases in Native Boxwood Forests of Georgia Final Report
    Assessment of Forest Pests and Diseases in Native Boxwood Forests of Georgia Final report Dr. Iryna Matsiakh Forestry Department, Ukrainian National Forestry University (Lviv) Tbilisi 2016 TABLE OF CONTENT LIST OF TABLES AND FIGURES .................................................................................................................................. 2 ABBREVIATIONS AND ACRONYMS ........................................................................................................................... 5 EXECUTIVE SUMMARY .................................................................................................................................................. 6 INTRODUCTION .............................................................................................................................................................. 10 1. BACKGROUND INFORMATION ............................................................................................................................ 11 1.1. Biodiversity of Georgia ........................................................................................................................................ 11 1.2. Forest Ecosystems .................................................................................................................................................. 12 1.3. Boxwood Forests in Forests Habitat Classification ................................................................................. 14 1.4. Georgian Forests Habitat in the Context of Climate Change
    [Show full text]
  • Effects of Asphondylia Borrichiae, Simulated Herbivory, and Nutritional Status on Survival, Flowering, and Seed Viability In
    UNF Digital Commons UNF Graduate Theses and Dissertations Student Scholarship 2014 Effects of Asphondylia borrichiae, Simulated Herbivory, and Nutritional Status on Survival, Flowering, and Seed Viability in Sea Oxeye Daisy (Borrichia frutescens) Lisa S. Rowan University of North Florida Suggested Citation Rowan, Lisa S., "Effects of Asphondylia borrichiae, Simulated Herbivory, and Nutritional Status on Survival, Flowering, and Seed Viability in Sea Oxeye Daisy (Borrichia frutescens)" (2014). UNF Graduate Theses and Dissertations. 500. https://digitalcommons.unf.edu/etd/500 This Master's Thesis is brought to you for free and open access by the Student Scholarship at UNF Digital Commons. It has been accepted for inclusion in UNF Graduate Theses and Dissertations by an authorized administrator of UNF Digital Commons. For more information, please contact Digital Projects. © 2014 All Rights Reserved Effects of Asphondylia borrichiae, simulated herbivory, and nutritional status on survival, flowering, and seed viability in sea oxeye daisy (Borrichia frutescens) By Lisa S. Rowan A thesis submitted to the Department of Biology in partial fulfillment of the requirements for the degree of Master of Science in Biology UNIVERSITY OF NORTH FLORIDA COLLEGE OF ARTS AND SCIENCES February 2014 Unpublished work © 2014 Lisa S. Rowan Certificate of Approval The thesis of Lisa S. Rowan is approved: (Date) _______________________________________________ _____________ Dr. Anthony Rossi _______________________________________________ _____________ Dr. Daniel Moon _______________________________________________ _____________ Dr. Jason Smith Accepted for the Biology Department: _______________________________________________ _____________ Dr. Daniel Moon Chair Accepted for the College of Arts and Sciences: _______________________________________________ _____________ Dr. Barbara A. Hetrick Dean of the College of Arts and Sciences Accepted for the University: _______________________________________________ _____________ Dr.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Agricultural and Food Science, Vol. 20 (2011): 117 S
    AGRICULTURAL AND FOOD A gricultural A N D F O O D S ci ence Vol. 20, No. 1, 2011 Contents Hyvönen, T. 1 Preface Agricultural anD food science Hakala, K., Hannukkala, A., Huusela-Veistola, E., Jalli, M. and Peltonen-Sainio, P. 3 Pests and diseases in a changing climate: a major challenge for Finnish crop production Heikkilä, J. 15 A review of risk prioritisation schemes of pathogens, pests and weeds: principles and practices Lemmetty, A., Laamanen J., Soukainen, M. and Tegel, J. 29 SC Emerging virus and viroid pathogen species identified for the first time in horticultural plants in Finland in IENCE 1997–2010 V o l . 2 0 , N o . 1 , 2 0 1 1 Hannukkala, A.O. 42 Examples of alien pathogens in Finnish potato production – their introduction, establishment and conse- quences Special Issue Jalli, M., Laitinen, P. and Latvala, S. 62 The emergence of cereal fungal diseases and the incidence of leaf spot diseases in Finland Alien pest species in agriculture and Lilja, A., Rytkönen, A., Hantula, J., Müller, M., Parikka, P. and Kurkela, T. 74 horticulture in Finland Introduced pathogens found on ornamentals, strawberry and trees in Finland over the past 20 years Hyvönen, T. and Jalli, H. 86 Alien species in the Finnish weed flora Vänninen, I., Worner, S., Huusela-Veistola, E., Tuovinen, T., Nissinen, A. and Saikkonen, K. 96 Recorded and potential alien invertebrate pests in Finnish agriculture and horticulture Saxe, A. 115 Letter to Editor. Third sector organizations in rural development: – A Comment. Valentinov, V. 117 Letter to Editor. Third sector organizations in rural development: – Reply.
    [Show full text]