Reclamation of Tailings Ponds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Deposition Patterns and Rates of Mining-Contaminated Sediment Within a Sedimentation Basin System, S.E
BearWorks Institutional Repository MSU Graduate Theses Spring 2017 Deposition Patterns and Rates of Mining- Contaminated Sediment within a Sedimentation Basin System, S.E. Missouri Joshua Carl Voss Missouri State University - Springfield, [email protected] Follow this and additional works at: http://bearworks.missouristate.edu/theses Part of the Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, and the Hydrology Commons Recommended Citation Voss, Joshua Carl, "Deposition Patterns and Rates of Mining-Contaminated Sediment within a Sedimentation Basin System, S.E. Missouri" (2017). MSU Graduate Theses. 3074. http://bearworks.missouristate.edu/theses/3074 This article or document was made available through BearWorks, the institutional repository of Missouri State University. The orkw contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution. For more information, please contact [email protected]. DEPOSITION PATTERNS AND RATES OF MINING-CONTAMINATED SEDIMENT WITHIN A SEDIMENTATION BASIN SYSTEM, BIG RIVER, S.E. MISSOURI A Masters Thesis Presented to The Graduate College of Missouri State University ATE In Partial Fulfillment Of the Requirements for the Degree Master of Science, Geospatial Sciences in Geography, Geology, and Planning By Josh C. Voss May 2017 Copyright 2017 by Joshua Carl Voss ii DEPOSITION PATTERNS AND RATES OF MINING-CONTAMINATED SEDIMENT WITHIN A SEDIMENTATION BASIN SYSTEM, BIG RIVER, S.E. MISSOURI Geography, Geology, and Planning Missouri State University, May 2017 Master of Science Josh C. Voss ABSTRACT Flooding events exert a dominant control over the deposition and formation of floodplains. The rate at which floodplains form depends on flood magnitude, frequency, and duration, and associated sediment transport capacity and supply. -
State-Of-The-Practice: Evaluation of Sediment Basin Design, Construction, Maintenance, and Inspection Procedures
Research Report No. 1 Project Number: 930-791 STATE-OF-THE-PRACTICE: EVALUATION OF SEDIMENT BASIN DESIGN, CONSTRUCTION, MAINTENANCE, AND INSPECTION PROCEDURES Prepared by: Wesley C. Zech Xing Fang Christopher Logan August 2012 DISCLAIMERS The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of Auburn University or the Alabama Department of Transportation. This report does not constitute a standard, specification, or regulation. NOT INTENDED FOR CONSTRUCTION, BIDDING, OR PERMIT PURPOSES Wesley C. Zech, Ph.D. Xing Fang, Ph.D., P.E., D.WRE Research Supervisors ACKNOWLEDGEMENTS Material contained herein was obtained in connection with a research project “Assessing Performance Characteristics of Sediment Basins Constructed in Franklin County,” ALDOT Project 930-791, conducted by the Auburn University Highway Research Center. Funding for the project was provided by the Alabama Department of Transportation. The funding, cooperation, and assistance of many individuals from each of these organizations are gratefully acknowledged. The authors would like to acknowledge and thank all the responding State Highway Agencies (SHAs) for their participation and valuable feedback. The project advisor committee includes Mr. Buddy Cox, P.E., (Chair); Mr. Larry Lockett, P.E., (former chair); Mr. James Brown, P.E.; Mr. Barry Fagan, P.E.; Mr. Skip Powe, P.E.; Ms. Kaye Chancellor Davis, P.E.; Ms. Michelle Owens (RAC Liaison), and Ms. Kristy Harris (FHWA Liaison). iii ABSTRACT The following document is the summary of results from a survey that was conducted to evaluate the state-of-the-practice for sediment basin design, construction, maintenance, and inspection procedures by State Highway Agencies (SHAs) across the nation. -
SEDIMENT BASIN (No.) Code 350
SEDIMENT BASIN (No.) Code 350 Natural Resources Conservation Service Conservation Practice Standard I. Definition filter strips, etc., to reduce the amount of sediment flowing into the basins. A basin constructed to collect and store debris or sediment. The basin shall be located to intercept sediment before it enters streams, lakes, and wetlands. For II. Purpose maximum effectiveness, the basin must be located close to the sediment source. To preserve the capacity of reservoirs, lakes, wetlands, ditches, canals, diversions, waterways, and The capacity of the sediment basin shall equal streams; to prevent undesirable deposition on bottom the volume of sediment expected to be trapped at lands and developed areas; to trap sediment the site during the planned life of the basin or the originating from construction sites; and to reduce or improvements it is designed to protect. abate pollution by providing basins for deposition and storage of silt, sand, gravel, stone, agricultural Sediment basins meeting these design criteria are wastes, and other detritus. assumed to have an 80% trapping efficiency. III. Conditions Where Practice Applies volume = calculated erosion * planned life * SDR * trap efficiency * 23.5 ft3/ton This practice applies where physical conditions or land ownership preclude treatment of a sediment Where: source or where a sediment basin offers the most 3 practical solution to reduce sediment delivery to Volume = cubic feet (ft ) downstream areas. Calculated erosion = sheet and rill, gullies, etc. (Tons / year) Sediment basins having the primary purpose of controlling suspended solids loading and attached SDR= sediment delivery ratio pollutants from runoff with a permanent pool of Trap Efficiency Assumed to be 80% watershall meet the criteria set forth in Wisconsin Department of Natural Resources (DNR) Standard If it is determined that periodic removal of 1001, Wet Detention Basin. -
Sediment Basin
Water Resources Division Sediment Basin Definition Sediment basins are temporary ponds with appropriate control structures, used on construction sites to capture eroded or disturbed soil that are washed off during or after rainstorms or other runoff events. Sediment basins are designed to protect the water quality of nearby streams, rivers, lakes, and wetlands, and to protect neighboring properties from damage. Some sediment basins are converted to permanent storm water controls following the completion of construction activity. Purpose and Description The primary purpose of sediment basins is to prevent sediment from entering streams, rivers, lakes, or wetlands. They do this by collecting and detaining runoff, allowing suspended solids to settle out prior to the runoff leaving a site. Sediment basins are also sometimes called settling basins, sumps, debris basins, or dewatering basins. Pollutant Controlled: Suspended solids Treatment Mechanism: Settling Removal Efficiency Sediment basins remove only 70 to 80 percent of medium- and coarse-sized sediment particles, so use them in conjunction with other erosion control best management practices (BMPs). Sediment basins are not effective at controlling fine soil particles such as silt or clay. Companion and Alternative BMPs Construction Barrier Mulching Polyacrylamide Riprap-Stabilized Outlet Seeding Sodding www.michigan.gov/deq MDEQ NPS BMP Manual SB-1 Rev20190208 Advantages and Disadvantages Advantages Sediment basins are a cost-effective measure for treating sediment-laden runoff from drainage areas ranging from five (5) to 100 acres in size, with soil particle sizes of predominantly sand, or medium to large silt. Sediment basins are relatively easy to construct. Disadvantages The construction and proper functioning of sediment basins require adequate space and topography. -
Tennessee Erosion & Sediment Control Handbook
TENNESSEE EROSION & SEDIMENT CONTROL HANDBOOK A Stormwater Planning and Design Manual for Construction Activities Fourth Edition AUGUST 2012 Acknowledgements This handbook has been prepared by the Division of Water Resources, (formerly the Division of Water Pollution Control), of the Tennessee Department of Environment and Conservation (TDEC). Many resources were consulted during the development of this handbook, and when possible, permission has been granted to reproduce the information. Any omission is unintentional, and should be brought to the attention of the Division. We are very grateful to the following agencies and organizations for their direct and indirect contributions to the development of this handbook: TDEC Environmental Field Office staff Tennessee Division of Natural Heritage University of Tennessee, Tennessee Water Resources Research Center University of Tennessee, Department of Biosystems Engineering and Soil Science Civil and Environmental Consultants, Inc. North Carolina Department of Environment and Natural Resources Virginia Department of Conservation and Recreation Georgia Department of Natural Resources California Stormwater Quality Association ~ ii ~ Preface Disturbed soil, if not managed properly, can be washed off-site during storms. Unless proper erosion prevention and sediment control Best Management Practices (BMP’s) are used for construction activities, silt transport to a local waterbody is likely. Excessive silt causes adverse impacts due to biological alterations, reduced passage in rivers and streams, higher drinking water treatment costs for removing the sediment, and the alteration of water’s physical/chemical properties, resulting in degradation of its quality. This degradation process is known as “siltation”. Silt is one of the most frequently cited pollutants in Tennessee waterways. The division has experimented with multiple ways to determine if a stream, river, or reservoir is impaired due to silt. -
Surface Water Management Plan Water Resources | City of St
Surface Water Management Plan Water Resources | City of St. Louis Park Proposals are due 4:00 p.m. April 24, 2017 Executive Summary City of St. Louis Park Surface Water Management Plan Executive Summary Located in Hennepin County just west of Minneapolis, the 10.7-square-mile City of St. Louis Park is a fully developed suburban community. The population of St. Louis Park is approximately 48,000 residents, making it the 20th largest city in Minnesota. St. Louis Park contains a variety of physical and water resources including several wetlands and small lakes, wooded areas, parks, and recreational lands, as well as the Minnehaha Creek corridor. Two watershed management organizations (WMOs) cover St. Louis Park, each with its own governing body: the Bassett Creek Watershed Management Commission (BCWMC) and the Minnehaha Creek Watershed District (MCWD). This local Surface Water Management Plan (SWMP) was prepared in accordance with Minnesota Statute 103B.235 and Minnesota Rules 8410 and is intended to replace the 2009 plan. The purpose of this SWMP includes objectives outlined in Minnesota Statute 103B.201 for metropolitan water management programs. According to the statute, the purposes of these water management programs are to: • protect, preserve, and properly use natural surface and groundwater storage and retention systems; • minimize public capital expenditures needed to correct flooding and water quality problems; • identify and plan for means to effectively protect and improve surface and groundwater quality; • establish more uniform local policies and official controls for surface and groundwater management; • prevent the erosion of soil into surface water systems; • promote effective groundwater recharge; • protect and enhance fish and wildlife habitats and water recreational facilities; and • secure the other benefits associated with the proper management of surface and groundwater. -
Introduction to Ponds, Lagoons, and Natural Systems Study Guide December 2013 Edition
Wisconsin Department of Natural Resources Wastewater Operator Certification Introduction to Ponds, Lagoons, and Natural Systems Study Guide December 2013 Edition Subclass D Wisconsin Department of Natural Resources Bureau of Science Services, Operator Certification Program PO Box 7921, Madison, WI 53707 http://dnr.wi.gov/ The Wisconsin Department of Natural Resources provides equal opportunity in its employment, programs, services, and functions under an Affirmative Action Plan. If you have any questions, please write to Equal Opportunity Office, Department of Interior, Washington, D.C. 20240. This publication is available in alternative format (large print, Braille, audio tape. etc.) upon request. Please call (608) 266-0531 for more information. Printed on 12/06/13 Introduction to Ponds, Lagoons, and Natural Systems Study Guide - December 2013 Edition Preface This operator's study guide represents the results of an ambitious program. Operators of wastewater facilities, regulators, educators and local officials, jointly prepared the objectives and exam questions for this subclass. How to use this study guide with references In preparation for the exams you should: 1. Read all of the key knowledges for each objective. 2. Use the resources listed at the end of the study guide for additional information. 3. Review all key knowledges until you fully understand them and know them by memory. It is advisable that the operator take classroom or online training in this process before attempting the certification exam. Choosing a Test Date: Before you choose a test date, consider the training opportunities available in your area. A listing of training opportunities and exam dates is available on the internet at http://dnr.wi.gov, keyword search "operator certification". -
Evaporation Pond Seepage Soil Solution
from the soil surface. The subcores were fitted and sealed with plexiglass ends and set up to measure Permeability. Drainage water having an electrical conductivity (EC) of 10 dS/m (6100 ppm total dissolved salts) was applied to the cores for three days to ensure saturation and uniform electrolyte concentration. Biological activity was minimized in some of the cores by the addition of chlo- roform to the percolating drain water. Percolating drainage water having pro- gressively larger EC values was applied over periods of one to five days in an effort to exaggerate variations in evaporation pond salinity resulting from evaporation lnfiltrometers (left)were installed in Kings County and fresh drain water additions. The sa- evaporation pond to estimate seepage. Rainfall, evaporation, drainage flows, and changes in pond linity of inflow and outflow water was water levels (herebeing checked by co-author Blake measured periodically along with the per- McCullough-Sanden)were also measured. meability of each subcore. The sodium adsorption ratio (SAR) is an index of the relative concentration of sodium, calcium, and magnesium in the Evaporation pond seepage soil solution. When soil salinity is low, permeability has been shown to increase Mark E. Grismer o Blake L. McCullough-Sanden as the SAR value of the inflow solution in- creases. Past studies, however, have typi- cally considered SAR values of 30 or less. Rates of seepage from operating evaporation In this study, SAR values of the inflow so- ponds decline substantially as they age and as lution increased in the same stepwise fashion as EC, with values ranging from salinity increases 210 to 660. -
5.00 Storm Water Pond Systems
This guidance is not a regulatory document and should be considered only informational and supplementary to the MPCA permits (such as the construction storm water general permit or MS4 permit) and local regulations. CHAPTER 5 TABLE OF CONTENTS Page 5.00 STORMWATER-DETENTION PONDS............................................................................5.00-1 5.01 Pond Design Criteria: SYSTEM DESIGN.........................................................5.01-1 5.02 Pond Design Criteria: POND LAYOUT AND SIZE.........................................5.02-1 5.03 Pond Design Criteria: MAIN TREATMENT CONCEPTS...............................5.03-1 5.04 Pond Design Criteria: DEAD STORAGE VOLUME .......................................5.04-1 5.05 Pond Design Criteria: EXTENDED DETENTION ...........................................5.05-1 5.06 Pond Design Criteria: POND OUTLET STRUCTURES ..................................5.06-1 5.07 Pond Design Criteria: OPERATION AND MAINTENANCE..........................5.07-1 5.08 Pond Design Criteria: SPECIAL CONSIDERATIONS ....................................5.08-1 5.10 STORMWATER POND SYSTEMS..........................................................................5.10-1 5.11 Pond Systems: ON-SITE VERSUS REGIONAL PONDS ................................5.11-1 5.12 Pond Systems: ON-LINE VERSUS OFF-LINE PONDS ..................................5.12-1 5.13 Pond Systems: OTHER POND SYSTEMS.......................................................5.13-1 5.20 Ponds: EXTENDED-DETENTION PONDS..............................................................5.20-1 -
Maine Erosion and Sediment Control Practices Field Guide for Contractors
Maine Erosion and Sediment Control Practices Field Guide for Contractors Maine Department of Environmental Protection ACKNOWLEDGEMENTS Production 2014 Revision: Marianne Hubert, Senior Environmental Engineer, Division of Watershed Management, Bureau of Land and Water Quality, Department of Environmental Protection (DEP). Illustrations: Photos obtained from SJR Engineering Inc., Shaw Brothers Construction Inc., Bar Mills Ecological, Maine Department of Transportation (MaineDOT), Maine Land Use Planning Commission (LUPC) and Maine Department of Environmental Protection (DEP). TECHNICAL REVIEW COMMITTEE: The following people participated in the revision of this manual: Steve Roberge, SJR Engineering, Inc., Augusta Ross Cudlitz, Engineering Assistance & Design, Inc., Yarmouth Susan Shaller, Bar Mills Ecological, Buxton David Roque, Department of Agriculture, Conservation & Forestry Peter Newkirk, MaineDOT Bob Berry, Main-Land Development Consultants Daniel Shaw, Shaw Brothers Construction Peter Hanrahan, E.J. Prescott William Noble, William Laflamme, David Waddell, Kenneth Libbey, Ben Viola, Jared Woolston, and Marianne Hubert of the Maine DEP Revision (2003): The manual was revised and reorganized with illustrations (original manual, Salix, Applied Earthcare and Ross Cudlitz, Engineering Assistance & Design, Inc.). Original Manual (1991): The original document was funded from a US Environmental Protection Agency Federal Clean Water Act grant to the Maine Department of Environmental Protection, Non- Point Source Pollution Program and developed -
Sediment Basin Design Fact Sheet
Sediment Basins SEDIMENT CONTROL TECHNIQUE Type 1 System Sheet Flow Sandy Soils Type 2 System Concentrated Flow Clayey Soils Type 3 System Instream Works Dispersive Soils Symbol Photo 1 – Type A basin Photo 2 – Type C basin Key Principles 1. Sediment trapping is primarily achieved through particle settlement. Some basins may incorporate a filtration system within the outlet structure, but these filters are generally unreliable. Consequently the focus should always remain on achieving effective particle settlement. 2. Achieving optimum particle settlement relies upon achieving uniform flow conditions across the settling pond, and if chemical dosing is required, selecting the most appropriate flocculant and/or coagulant, and then achieving effective ‘mixing’ prior to the treated flows entering the settling pond. 3. The size of the settling pond is directly related to the ‘volume’ of runoff and/or peak design ‘discharge’. Pond volume is critical for basins operate as plug flow systems; while the pond surface area is critical for sediment basins that operate as continuous flow systems. Both pond volume and surface area are critical for Type A basins. 4. It should be noted that even if a basin is full of water, it can still be effective in removing coarse sediments from inflows. Therefore, unlike permanent stormwater treatment ponds, flows in excess of the design storm should still be directed through the sediment basin. Design Information A sediment basin is a purpose built dam designed to collect and settle sediment-laden water. It usually consists of an inlet chamber (forebay), a primary settling pond, a decant system, and a high-flow emergency spillway. -
Tailings Management
{-J TAILINGS MANAGEMENT Q -77 - - ---.._w J -,• .• 'p b_ •-.-.-•- _ .* ••: - INIER\1\Ho'-: Ni]. j.\j 'JU Tl IF I p United NIions Enirument Prramrne The International Council on Metals and the United Nations Environment Programme (UNEP) Environment Industry and Environment Centre Founded in 1991, [he International Council on Metals 'The Industry and Environment centre was established by and the Environment (TCME) is a non-governmental 1JNEP in 1975 to bring industry and government togethet organization that promotes the development and imple- to promote environmentally sound industrial development mentation of sound environmental and health policies and UNEP IE is located in Paris and its goals are to: practices in the production, use, recycling and disposal of non-ferrous and precious metals. Encourage the incorporation of environmental criteria in industrial development plans; These case studies have been published by ICME as part Facilitate the implementation of procedures and prin- of a series of publications providing information on en- ciples for the protection of the environment; vironmental and health matters relating to the metals Promote the use of safe and clean technologies; mining and producing industry. The contents of ICME Stimulate the exchange of information and experience publications range from general and technical information throughout the world. about these topics to discussions of issues relevant to en- vironmental and/or health-related policies affecting the UNEP IE provides access to practical information and mining and metals sector. It is believed that the topics develops cooperative on-site action and information examined are of concern not only to the industry, but also exchapge backed by regular follow-up and assessment.