5.00 Storm Water Pond Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Deposition Patterns and Rates of Mining-Contaminated Sediment Within a Sedimentation Basin System, S.E
BearWorks Institutional Repository MSU Graduate Theses Spring 2017 Deposition Patterns and Rates of Mining- Contaminated Sediment within a Sedimentation Basin System, S.E. Missouri Joshua Carl Voss Missouri State University - Springfield, [email protected] Follow this and additional works at: http://bearworks.missouristate.edu/theses Part of the Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, and the Hydrology Commons Recommended Citation Voss, Joshua Carl, "Deposition Patterns and Rates of Mining-Contaminated Sediment within a Sedimentation Basin System, S.E. Missouri" (2017). MSU Graduate Theses. 3074. http://bearworks.missouristate.edu/theses/3074 This article or document was made available through BearWorks, the institutional repository of Missouri State University. The orkw contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution. For more information, please contact [email protected]. DEPOSITION PATTERNS AND RATES OF MINING-CONTAMINATED SEDIMENT WITHIN A SEDIMENTATION BASIN SYSTEM, BIG RIVER, S.E. MISSOURI A Masters Thesis Presented to The Graduate College of Missouri State University ATE In Partial Fulfillment Of the Requirements for the Degree Master of Science, Geospatial Sciences in Geography, Geology, and Planning By Josh C. Voss May 2017 Copyright 2017 by Joshua Carl Voss ii DEPOSITION PATTERNS AND RATES OF MINING-CONTAMINATED SEDIMENT WITHIN A SEDIMENTATION BASIN SYSTEM, BIG RIVER, S.E. MISSOURI Geography, Geology, and Planning Missouri State University, May 2017 Master of Science Josh C. Voss ABSTRACT Flooding events exert a dominant control over the deposition and formation of floodplains. The rate at which floodplains form depends on flood magnitude, frequency, and duration, and associated sediment transport capacity and supply. -
State-Of-The-Practice: Evaluation of Sediment Basin Design, Construction, Maintenance, and Inspection Procedures
Research Report No. 1 Project Number: 930-791 STATE-OF-THE-PRACTICE: EVALUATION OF SEDIMENT BASIN DESIGN, CONSTRUCTION, MAINTENANCE, AND INSPECTION PROCEDURES Prepared by: Wesley C. Zech Xing Fang Christopher Logan August 2012 DISCLAIMERS The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of Auburn University or the Alabama Department of Transportation. This report does not constitute a standard, specification, or regulation. NOT INTENDED FOR CONSTRUCTION, BIDDING, OR PERMIT PURPOSES Wesley C. Zech, Ph.D. Xing Fang, Ph.D., P.E., D.WRE Research Supervisors ACKNOWLEDGEMENTS Material contained herein was obtained in connection with a research project “Assessing Performance Characteristics of Sediment Basins Constructed in Franklin County,” ALDOT Project 930-791, conducted by the Auburn University Highway Research Center. Funding for the project was provided by the Alabama Department of Transportation. The funding, cooperation, and assistance of many individuals from each of these organizations are gratefully acknowledged. The authors would like to acknowledge and thank all the responding State Highway Agencies (SHAs) for their participation and valuable feedback. The project advisor committee includes Mr. Buddy Cox, P.E., (Chair); Mr. Larry Lockett, P.E., (former chair); Mr. James Brown, P.E.; Mr. Barry Fagan, P.E.; Mr. Skip Powe, P.E.; Ms. Kaye Chancellor Davis, P.E.; Ms. Michelle Owens (RAC Liaison), and Ms. Kristy Harris (FHWA Liaison). iii ABSTRACT The following document is the summary of results from a survey that was conducted to evaluate the state-of-the-practice for sediment basin design, construction, maintenance, and inspection procedures by State Highway Agencies (SHAs) across the nation. -
SEDIMENT BASIN (No.) Code 350
SEDIMENT BASIN (No.) Code 350 Natural Resources Conservation Service Conservation Practice Standard I. Definition filter strips, etc., to reduce the amount of sediment flowing into the basins. A basin constructed to collect and store debris or sediment. The basin shall be located to intercept sediment before it enters streams, lakes, and wetlands. For II. Purpose maximum effectiveness, the basin must be located close to the sediment source. To preserve the capacity of reservoirs, lakes, wetlands, ditches, canals, diversions, waterways, and The capacity of the sediment basin shall equal streams; to prevent undesirable deposition on bottom the volume of sediment expected to be trapped at lands and developed areas; to trap sediment the site during the planned life of the basin or the originating from construction sites; and to reduce or improvements it is designed to protect. abate pollution by providing basins for deposition and storage of silt, sand, gravel, stone, agricultural Sediment basins meeting these design criteria are wastes, and other detritus. assumed to have an 80% trapping efficiency. III. Conditions Where Practice Applies volume = calculated erosion * planned life * SDR * trap efficiency * 23.5 ft3/ton This practice applies where physical conditions or land ownership preclude treatment of a sediment Where: source or where a sediment basin offers the most 3 practical solution to reduce sediment delivery to Volume = cubic feet (ft ) downstream areas. Calculated erosion = sheet and rill, gullies, etc. (Tons / year) Sediment basins having the primary purpose of controlling suspended solids loading and attached SDR= sediment delivery ratio pollutants from runoff with a permanent pool of Trap Efficiency Assumed to be 80% watershall meet the criteria set forth in Wisconsin Department of Natural Resources (DNR) Standard If it is determined that periodic removal of 1001, Wet Detention Basin. -
Build Your Own Plunge Pool
How To Build Your Own DIY Plunge Pool ------------------------------------------------------- Save Up to $10,000 Or More on Your Costs! Includes: Construction Overview, Materials, Cost Breakdowns & More! The “Little” Book that’s worth its Weight in GOLD!!! Copyright © 1999-2016 Revised 9/08/2016 Custom Built Spas The DIY Plunge Pool Build Manual The Fastest Growing “Must Have” for Gen X and Baby Boomers! I don’t think I know anybody who doesn’t enjoy relaxing in a nice clean body of water, warm or cool. And, it’s pretty common knowledge that for most of us, water provides one of the best environments for relaxing and exercise that you can do for yourself. Water exercise is low impact, less strain, good for tired or injured muscles and suitable for just about everyone, regardless of what age they may be or what shape they may be in. A low intensity water type workout is excellent for anyone starting or on their journey of getting back in shape. Maybe you’re just looking for a means to do a low impact cardio type workout. A refreshing water environment is one of the most perfect means to accomplish both a low impact workout and low impact cardio exercises. Best of all you can just stop, float and relax anytime you want. So… just what is a Plunge Pool anyway? Simply put; a plunge pool is much the same as a hot tub, swim spa or exercise pool, but typically without the jets. It can be smaller or sometimes shorter than a typical swim spa. -
Sediment Basin
Water Resources Division Sediment Basin Definition Sediment basins are temporary ponds with appropriate control structures, used on construction sites to capture eroded or disturbed soil that are washed off during or after rainstorms or other runoff events. Sediment basins are designed to protect the water quality of nearby streams, rivers, lakes, and wetlands, and to protect neighboring properties from damage. Some sediment basins are converted to permanent storm water controls following the completion of construction activity. Purpose and Description The primary purpose of sediment basins is to prevent sediment from entering streams, rivers, lakes, or wetlands. They do this by collecting and detaining runoff, allowing suspended solids to settle out prior to the runoff leaving a site. Sediment basins are also sometimes called settling basins, sumps, debris basins, or dewatering basins. Pollutant Controlled: Suspended solids Treatment Mechanism: Settling Removal Efficiency Sediment basins remove only 70 to 80 percent of medium- and coarse-sized sediment particles, so use them in conjunction with other erosion control best management practices (BMPs). Sediment basins are not effective at controlling fine soil particles such as silt or clay. Companion and Alternative BMPs Construction Barrier Mulching Polyacrylamide Riprap-Stabilized Outlet Seeding Sodding www.michigan.gov/deq MDEQ NPS BMP Manual SB-1 Rev20190208 Advantages and Disadvantages Advantages Sediment basins are a cost-effective measure for treating sediment-laden runoff from drainage areas ranging from five (5) to 100 acres in size, with soil particle sizes of predominantly sand, or medium to large silt. Sediment basins are relatively easy to construct. Disadvantages The construction and proper functioning of sediment basins require adequate space and topography. -
Tennessee Erosion & Sediment Control Handbook
TENNESSEE EROSION & SEDIMENT CONTROL HANDBOOK A Stormwater Planning and Design Manual for Construction Activities Fourth Edition AUGUST 2012 Acknowledgements This handbook has been prepared by the Division of Water Resources, (formerly the Division of Water Pollution Control), of the Tennessee Department of Environment and Conservation (TDEC). Many resources were consulted during the development of this handbook, and when possible, permission has been granted to reproduce the information. Any omission is unintentional, and should be brought to the attention of the Division. We are very grateful to the following agencies and organizations for their direct and indirect contributions to the development of this handbook: TDEC Environmental Field Office staff Tennessee Division of Natural Heritage University of Tennessee, Tennessee Water Resources Research Center University of Tennessee, Department of Biosystems Engineering and Soil Science Civil and Environmental Consultants, Inc. North Carolina Department of Environment and Natural Resources Virginia Department of Conservation and Recreation Georgia Department of Natural Resources California Stormwater Quality Association ~ ii ~ Preface Disturbed soil, if not managed properly, can be washed off-site during storms. Unless proper erosion prevention and sediment control Best Management Practices (BMP’s) are used for construction activities, silt transport to a local waterbody is likely. Excessive silt causes adverse impacts due to biological alterations, reduced passage in rivers and streams, higher drinking water treatment costs for removing the sediment, and the alteration of water’s physical/chemical properties, resulting in degradation of its quality. This degradation process is known as “siltation”. Silt is one of the most frequently cited pollutants in Tennessee waterways. The division has experimented with multiple ways to determine if a stream, river, or reservoir is impaired due to silt. -
Sediment Forebay
VA DEQ STORMWATER DESIGN SPECIFICATION INTRODUCTION: APPENDIX D: SEDIMENT FOREBAY APPENDIX D SEDIMENT FOREBAY VERSION 1.0 March 1, 2011 SECTION D-1: DESCRIPTION OF PRACTICE A sediment forebay is a settling basin or plunge pool constructed at the incoming discharge points of a stormwater BMP. The purpose of a sediment forebay is to allow sediment to settle from the incoming stormwater runoff before it is delivered to the balance of the BMP. A sediment forebay helps to isolate the sediment deposition in an accessible area, which facilitates BMP maintenance efforts. SECTION D-2: PERFORMANCE CRITERIA Not applicable. Introduction: Appendix D: Sediment Forebay 1 of 7 Version 1.0, March 1, 2011 VA DEQ STORMWATER DESIGN SPECIFICATION INTRODUCTION: APPENDIX D: SEDIMENT FOREBAY SECTION D-3: PRACTICE APPLICATIONS AND FEASIBILITY A sediment forebay is an essential component of most impoundment and infiltration BMPs including retention, detention, extended-detention, constructed wetlands, and infiltration basins. A sediment forebay should be located at each inflow point in the stormwater BMP. Storm drain piping or other conveyances may be aligned to discharge into one forebay or several, as appropriate for the particular site. Forebays should be installed in a location which is accessible by maintenance equipment. Water Quality A sediment forebay not only serves as a maintenance feature in a stormwater BMP, it also enhances the pollutant removal capabilities of the BMP. The volume and depth of the forebay work in concert with the outlet protection at the inflow points to dissipate the energy of incoming stormwater flows. This allows the heavier, course-grained sediments and particulate pollutants to settle out of the runoff. -
Setting the Standard in Fiberglass Pool Installation
Established in 1999 Setting the Standard in Fiberglass Pool Installation 1617 E. Terra Lane • O’Fallon, Missouri 63366 • 636-978-6660 www.RandRPools.net Small Pools 16’ $42,000 $40,000 10’ 4’ JAMAICA MILAN $44,800 $43,800 ARUBA ST. LUCIA 25’ 12’ 3’6” $44,250 $49,500 6’ 30’ 14’ 3’6” 6’ PICASSO CORINTHIAN 12 2 Trilogy Pools Medium Pools $44,800 $45,800 FREEPORT VALENCIA 30’ 30’ 14’ 3’6” 4’ $53,500 $57,0007’ 14’ 6’ 30’ 30’ 14’ 3’6” 4’ 7’ 14’ 6’ LAGUNA LAGUNA DELUXE 26’ 12’ 3’ 6” $44,200 $50,0005’ 6” 26’ 12’ 3’ 6” 5’ 6” BERMUDA ROCKPORT $55,000 GULF SHORE Trilogy Pools 3 Medium Pools 35’ 16’ 3’ 6” $55,000 $54,9006’ 6” 35’ 16’ 3’ 6” 6’ 6” CANCUN GEMINI 35’ $59,500 16’ 4’ 3” $54,900 6’ 6” 35’ 16’ 4’ 3” 6’ 6” CANCUN DELUXE LAKE SHORE 30’ $53,000 14’ 3’ 6” $55,500 6’ 30’ 14’ 3’ 6” 6’ FIJI STARGAZE 14 30’ 14’ 3’6” $50,700 $53,000 6’ 30’ 14’ 3’6” 6’ ST. THOMAS CORINTHIAN 14 4 Trilogy Pools Large Pools $61,000 $56,500 MONACO KINGSTON 40’ $62,000 15’ 10” 3’6” $61,000 7’ 40’ 15’ 10” 3’6” 7’ CORINTHIAN 16 OCEAN BREEZE 30’ $60,500 $64,000 15’ 10” 3’ 6” 30’ 6’ 15’ 10” 3’ 6” 6’ GULF COAST ASTORIA 38’ $60,000 16’ 3’ 6” $56,500 7’ 38’ 16’ 3’ 6” 7’ BARCELONA AXIOM Trilogy Pools 5 Large Pools $56,000 $61,500 SYNERGY GENESIS Additional Shapes 35’ $48,250 $53,400 $50,500 14’ 35’ 3’ 7” 5’ 7” 14’ 3’ 7” 5’ 7” SIRIUS FORTITUDE MONTEGO 33’ 14’ 3’ 6” $53,400 $50,000 5’ 4” $47,250 33’ 14’ 3’ 6” 5’ 4” ECLIPSE NEBULA CLAREMONT $49,000 $53,000 $58,500 6 6 EMPRESS MAJESTY OLYMPIA 6 Trilogy Pools 6 6 6 6 Inclusions in Standard Package: • Hayward Salt Chlorination • Hayward -
Reclamation of Tailings Ponds
Journal American Society of Mining and Reclamation, 2012 Volume 1, Issue 1, COMPARISON OF HYDROLOGIC CHARACTERISTICS FROM TWO DIFFERENTLY RECLAIMED TAILINGS PONDS; GRAVES MOUNTAIN, LINCOLNTON, GA1 Gwendelyn Geidel2 Abstract: This study compares and evaluates the hydrologic characteristics between two kyanite ore process tailings ponds that were reclaimed with different reclamation strategies; one reclaimed with an impermeable membrane and the other with an open, surface reconfiguration (OSR) methodology. During the extraction and processing of kyanite ore from the Graves Mountain mine, Lincoln County, Georgia, fine grained tailings were produced. The tailings were transported by slurry pipeline to various tailings ponds which were created by the construction of dams using on-site materials. The first study site, referred to as the Pyrite Pond (PP), was constructed and filled during the 1960’s and early 1970’s. In early 1992, the PP was capped with an impermeable membrane, covered with a thin soil veneer and vegetated and in 1998 the upslope reclamation was completed. The second tailings pond, referred to as the East Tailings Pond (ETP), was constructed and filled in the 1970’s and early 1980’s and was reclaimed in 1995-96 by surface reconfiguration and the addition of soil amendments. Piezometers and wells were installed into the two tailings ponds and also in close proximity to the tailings ponds. While the initial study was aimed at comparing the two reclamation strategies, it became apparent that the ground water was a dominant factor. Results of the evaluation of the potentiometric surface data for varying depths within each tailings pond indicate that while both tailings ponds exhibit delayed response to precipitation events suggesting infiltration effects, the delay in the ETP deep wells and PP wells could not be adequately described by a surface infiltration model. -
CHAPTER 64E-9 PUBLIC SWIMMING POOLS and BATHING PLACES 64E-9.001 General
CHAPTER 64E-9 PUBLIC SWIMMING POOLS AND BATHING PLACES 64E-9.001 General. 64E-9.002 Definitions. 64E-9.003 Forms. 64E-9.0035 Exemptions. 64E-9.004 Operational Requirements. 64E-9.005 Construction Plan or Modification Plan Approval. 64E-9.006 Construction Plan Approval Standards. 64E-9.007 Recirculation and Treatment System Requirements. 64E-9.008 Supervision and Safety. 64E-9.009 Wading Pools. 64E-9.010 Spa Pools. 64E-9.011 Water Recreation Attractions and Specialized Pools. 64E-9.012 Special Purpose Pools. (Repealed) 64E-9.013 Bathing Places. 64E-9.014 Authorization and Operating Permit. (Repealed) 64E-9.015 Fee Schedule. 64E-9.016 Variances. 64E-9.017 Enforcement. 64E-9.018 Public Pool Service Technician Certification 64E-9.001 General (1) Regulation of public swimming pools and bathing places is considered by the department as significant in the prevention of disease, sanitary nuisances, and accidents by which the health or safety of an individual(s) may be threatened or impaired. (a) Any modification resulting in the operation of the pool in a manner unsanitary or dangerous to public health or safety shall subject the state operating permit to suspension or revocation. (b) Failure to comply with any of the requirements of these rules shall constitute a public nuisance dangerous to health. (2) This chapter prescribes minimum design, construction, and operation requirements. (a) The department will accept dimensional standards for competition type pools as published by the National Collegiate Athletic Association, 2008; Federation Internationale de Natation Amateur (FINA), 2005-2009 Handbook; 2006-2007 Official Rules and Code of USA Diving with 2007 Amendments by USA Diving, Inc.; 2008 USA Swimming Rules and Regulations, and National Federation of State High School Associations, Swimming and Diving and Water Polo Rules Book, 2008-2009, which are incorporated by reference in these rules and can be obtained from: NCAA.org, fina.org , usadiving.org, usaswimming.org, and nfhs.org, respectively. -
Drop Structures
DROP STRUCTURES 1 DESCRIPTION OF TECHNIQUE Drop structures (also known as grade controls, sills, or weirs) are low-elevation structures that span the entire width of the channel, creating an abrupt drop in channel bed and water surface elevation in a downstream direction. Drop structures have been used extensively in Washington State to stabilize channel grades, improve fish passage, and to reduce erosion. Generally speaking, in fish bearing waters, vertical drops must not exceed 1 foot [WAC 220-110-070]; lesser drops are often required to accommodate certain species and age classes of fish. Drop Structures are designed to spill and direct flow such that there is a distinct drop in water surface elevation at normal low flows. The purpose of drop structures may include but is not limited to: • redistribute or dissipate energy; • stabilize the channel bed; • restore a step pool morphology to an altered channel • limit channel incision; • limit bank erosion by directing flow away from an eroding bank; • modify the channel bed profile and form by promoting collection, sorting and deposition of sediment; • create structural and hydraulic diversity in uniform channels; • improve fish passage over natural and artificial barriers by backwatering the upstream reach; • scour the channel bed, creating holding pools for fish and other aquatic life; • provide backwater (depth) in groundwater fed side channels; or • raise the bed of an incised stream to reconnect it with its floodplain. Drop structures may resemble porous weirs in appearance. But while drop structures direct water over the structure and are applied primarily to modify the profile of a channel, porous weirs allow water to flow through the structure and are applied primarily to redirect or concentrate flow. -
Maine Erosion and Sediment Control Practices Field Guide for Contractors
Maine Erosion and Sediment Control Practices Field Guide for Contractors Maine Department of Environmental Protection ACKNOWLEDGEMENTS Production 2014 Revision: Marianne Hubert, Senior Environmental Engineer, Division of Watershed Management, Bureau of Land and Water Quality, Department of Environmental Protection (DEP). Illustrations: Photos obtained from SJR Engineering Inc., Shaw Brothers Construction Inc., Bar Mills Ecological, Maine Department of Transportation (MaineDOT), Maine Land Use Planning Commission (LUPC) and Maine Department of Environmental Protection (DEP). TECHNICAL REVIEW COMMITTEE: The following people participated in the revision of this manual: Steve Roberge, SJR Engineering, Inc., Augusta Ross Cudlitz, Engineering Assistance & Design, Inc., Yarmouth Susan Shaller, Bar Mills Ecological, Buxton David Roque, Department of Agriculture, Conservation & Forestry Peter Newkirk, MaineDOT Bob Berry, Main-Land Development Consultants Daniel Shaw, Shaw Brothers Construction Peter Hanrahan, E.J. Prescott William Noble, William Laflamme, David Waddell, Kenneth Libbey, Ben Viola, Jared Woolston, and Marianne Hubert of the Maine DEP Revision (2003): The manual was revised and reorganized with illustrations (original manual, Salix, Applied Earthcare and Ross Cudlitz, Engineering Assistance & Design, Inc.). Original Manual (1991): The original document was funded from a US Environmental Protection Agency Federal Clean Water Act grant to the Maine Department of Environmental Protection, Non- Point Source Pollution Program and developed