Copyrighted Material
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alkyldihydropyrones, New Polyketides Synthesized by a Type III Polyketide Synthase from Streptomyces Reveromyceticus
The Journal of Antibiotics (2014) 67, 819–823 & 2014 Japan Antibiotics Research Association All rights reserved 0021-8820/14 www.nature.com/ja ORIGINAL ARTICLE Alkyldihydropyrones, new polyketides synthesized by a type III polyketide synthase from Streptomyces reveromyceticus Teruki Aizawa1, Seung-Young Kim1, Shunji Takahashi2,3, Masahiko Koshita1, Mioka Tani1, Yushi Futamura3, Hiroyuki Osada2,3 and Nobutaka Funa1 Genome sequencing allows a rapid and efficient identification of novel catalysts that produce novel secondary metabolites. Here we describe the catalytic properties of dihydropyrone synthase A (DpyA), a novel type III polyketide synthase encoded in a linear plasmid of Streptomyces reveromyceticus. Heterologous expression of dpyA led to the accumulation of alkyldihydropyrones A (1), B (2), C (3) and D (4), which are novel dihydropyran compounds that exhibit weak cytotoxicity against the leukemia cell line HL-60. DpyA catalyzes the condensation of b-hydroxyl acid thioester and methylmalonyl-CoA to yield a triketide intermediate that then undergoes lactonization of a secondary alcohol and a thioester to give alkyldihydropyrone. The Journal of Antibiotics (2014) 67, 819–823; doi:10.1038/ja.2014.80; published online 2 July 2014 INTRODUCTION Very recently, Tang et al.11 discovered that presulficidin, which is Type III polyketide synthase (PKS), which is widely distributed synthesized by Cpz6, a type III PKS from the caprazamycin among higher plants, fungi and bacteria, catalyzes the assembly of biosynthetic cluster, relays sulfonate from 30-phosphoadenine-50- primary metabolites such as acyl-CoA compounds to synthesize phosphosulfate to caprazamycin. structurally complex polyketides.1 The reaction catalyzed by type III Genome sequence analyses of Streptomyces species have shown that PKS starts with the formation of a thioester bond between the the number of biosynthetic gene clusters encoded on the chromosome catalytic center cysteine and an acyl group derived from a starter is much higher than the number of secondary metabolites isolated substrate. -
The Reaction of Aminonitriles with Aminothiols: a Way to Thiol-Containing Peptides and Nitrogen Heterocycles in the Primitive Earth Ocean
life Article The Reaction of Aminonitriles with Aminothiols: A Way to Thiol-Containing Peptides and Nitrogen Heterocycles in the Primitive Earth Ocean Ibrahim Shalayel , Seydou Coulibaly, Kieu Dung Ly, Anne Milet and Yannick Vallée * Univ. Grenoble Alpes, CNRS, Département de Chimie Moléculaire, Campus, F-38058 Grenoble, France; [email protected] (I.S.); [email protected] (S.C.); [email protected] (K.D.L.); [email protected] (A.M.) * Correspondence: [email protected] Received: 28 September 2018; Accepted: 18 October 2018; Published: 19 October 2018 Abstract: The Strecker reaction of aldehydes with ammonia and hydrogen cyanide first leads to α-aminonitriles, which are then hydrolyzed to α-amino acids. However, before reacting with water, these aminonitriles can be trapped by aminothiols, such as cysteine or homocysteine, to give 5- or 6-membered ring heterocycles, which in turn are hydrolyzed to dipeptides. We propose that this two-step process enabled the formation of thiol-containing dipeptides in the primitive ocean. These small peptides are able to promote the formation of other peptide bonds and of heterocyclic molecules. Theoretical calculations support our experimental results. They predict that α-aminonitriles should be more reactive than other nitriles, and that imidazoles should be formed from transiently formed amidinonitriles. Overall, this set of reactions delineates a possible early stage of the development of organic chemistry, hence of life, on Earth dominated by nitriles and thiol-rich peptides (TRP). Keywords: origin of life; prebiotic chemistry; thiol-rich peptides; cysteine; aminonitriles; imidazoles 1. Introduction In ribosomes, peptide bonds are formed by the reaction of the amine group of an amino acid with an ester function. -
Organic Chemistry
Wisebridge Learning Systems Organic Chemistry Reaction Mechanisms Pocket-Book WLS www.wisebridgelearning.com © 2006 J S Wetzel LEARNING STRATEGIES CONTENTS ● The key to building intuition is to develop the habit ALKANES of asking how each particular mechanism reflects Thermal Cracking - Pyrolysis . 1 general principles. Look for the concepts behind Combustion . 1 the chemistry to make organic chemistry more co- Free Radical Halogenation. 2 herent and rewarding. ALKENES Electrophilic Addition of HX to Alkenes . 3 ● Acid Catalyzed Hydration of Alkenes . 4 Exothermic reactions tend to follow pathways Electrophilic Addition of Halogens to Alkenes . 5 where like charges can separate or where un- Halohydrin Formation . 6 like charges can come together. When reading Free Radical Addition of HX to Alkenes . 7 organic chemistry mechanisms, keep the elec- Catalytic Hydrogenation of Alkenes. 8 tronegativities of the elements and their valence Oxidation of Alkenes to Vicinal Diols. 9 electron configurations always in your mind. Try Oxidative Cleavage of Alkenes . 10 to nterpret electron movement in terms of energy Ozonolysis of Alkenes . 10 Allylic Halogenation . 11 to make the reactions easier to understand and Oxymercuration-Demercuration . 13 remember. Hydroboration of Alkenes . 14 ALKYNES ● For MCAT preparation, pay special attention to Electrophilic Addition of HX to Alkynes . 15 Hydration of Alkynes. 15 reactions where the product hinges on regio- Free Radical Addition of HX to Alkynes . 16 and stereo-selectivity and reactions involving Electrophilic Halogenation of Alkynes. 16 resonant intermediates, which are special favor- Hydroboration of Alkynes . 17 ites of the test-writers. Catalytic Hydrogenation of Alkynes. 17 Reduction of Alkynes with Alkali Metal/Ammonia . 18 Formation and Use of Acetylide Anion Nucleophiles . -
Methanesulfonyl Chloride
A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein. -
Recent Syntheses of Steroidal Oxazoles, Oxazolines and Oxazolidines
A Platinum Open Access Journal Review for Organic Chemistry Free to Authors and Readers DOAJ Seal Arkivoc 2021, part i, 471-490 Recent syntheses of steroidal oxazoles, oxazolines and oxazolidines Besma Bendif,a,b Malika Ibrahim-Ouali,*a and Frédéric Dumur c aAix Marseille Univ, CNRS, Centrale Marseille, iSm2, F-13397 Marseille, France bLaboratoire de Chimie Appliquée, Faculté des Sciences, Université du 08 mai 1945 Guelma, Algeria cAix Marseille Univ, CNRS, ICR, UMR 72 73, F-13397 Marseille, France Email: [email protected] Received 03-15-2021 Accepted 04-11-2021 Published on line 05-08-2021 Abstract It was found that the introduction of heterocycles to steroids often leads in a change of their physiological activity and the appearance of new interesting biological precursors. Recent developments in the syntheses of steroidal oxazoles, oxazolines, and oxazolidines are described herein. The biological activities of those steroidal derivatives for which data are available are given. Keywords: Steroids, oxazoles, oxazolines, oxazolidines DOI: https://doi.org/10.24820/ark.5550190.p011.512 Page 471 ©AUTHOR(S) Arkivoc 2021, i, 471-490 Bendif, B. et al. Table of Contents 1. Introduction 2. Synthesis of Steroidal Oxazoles 3. Synthesis of Steroidal Oxazolines 4. Synthesis of Steroidal Oxazolidines 5. Conclusions Acknowledgements References 1. Introduction Steroids constitute an extensive and important class of biologically active polycyclic compounds that are widely used for therapeutic purposes.1-3 Even after decades of research, the total synthesis of steroid nuclei by improved strategies continues to receive considerable attention. Numerous methods have been exploited for the total synthesis of steroids which are widely distributed in nature and which possess practical medical importance. -
Stereochemistry, Alkyl Halide Substitution (SN1 & SN2)
Chem 261 Assignment & Lecture Outline 3: Stereochemistry, Alkyl Halide Substitution (SN1 & SN2) Read Organic Chemistry, Solomons, Fryle & Snyder 12th Edition (Electronic) • Functional Group List – Learn to recognize – Please see Green Handout – also p 76 of text • Periodic Table – Inside Front Cover - know 1st 10 elements (up through Neon) • Relative Strength of Acids and Bases – Inside Front cover (reference only) • Chapter 5 – Stereochemistry • Chapter 6 –Ionic Reactions: Nucleophilic Substitution of Alkyl Halides Problems: Do Not turn in, answers available in "Study Guide Student Solutions Manual " Solomons, Fryle, Snyder • Chapter 5: 5.1 to 5.15; 5.18 to 5.21; 5.26; 5.28; 5.33a-d; 5.46 • Chapter 6: 6.1 to 6.5; 6.7 to 6.10; 6.13; 6.20; 6.26; 6.27 Lecture Outline # 3 I. Comparison of 2 Structures: Same Molecular Formula ? -> If Yes, Possibly Isomers or Identical Same Arrangement (Sequence) of Groups ? If No -> Structural Isomers If Yes -> Superposable? If Yes -> Identical Structures If No -> Stereoisomers Non-Superposable Mirror Images ? If NO -> Diastereomers If Yes -> Enantiomers II. Chirality and Stereoisomers A. The Concept of Chirality 1. Identification of chiral objects a) achiral = not chiral b) planes of symmetry within a molecule 2. Types of stereoisomers – enantiomers and diastereomers B. Location of stereogenic (chiral) centres – 4 different groups on tetrahedral atom 1. Enantiomers & diastereomers 2. Meso compounds - chiral centers with plane of symmetry within molecule 3. Molecules with more than one chiral centre 4. Recognition of chiral centers in complex molecules - cholesterol - 8 chiral centres Drawing the enantiomer of cholesterol and its potential 255 stereoisomers 5. -
덴드리틱 벤질 클로라이드의 효율적인 합성 Facile Synthesis of Dendritic Benzyl Chlorides from Their Alcohols W
Polymer(Korea), Vol. 31, No. 5, pp 417-421, 2007 덴드리틱 벤질 클로라이드의 효율적인 합성 이재욱F,7ㆍ한승철Fㆍ김희주ㆍ김정환ㆍ이언엽ㆍ김병기ㆍ성새름ㆍ강화신ㆍ김지현FFㆍ허도성FFF 동아대학교 화학과, F동아대학교 의생명과학과, FF동국대학교 생명화학공학과, FFF인제대학교 의생명화학과 (2007년 5월 9일 접수, 2007년 6월 29일 채택) Facile Synthesis of Dendritic Benzyl Chlorides from Their Alcohols with Methanesulfonyl Chloride/Et3N Jae Wook Lee*,7, Seung Choul Han*, Hee Joo Kim, Jung Hwan Kim, Un Yup Lee, Byoung-Ki Kim, Sae Reum Sung, Hwa-Shin Kang, Ji Hyeon Kim**, and Do-Sung Huh*** Department of Chemistry, Dong-A University, Hadan-2-dong, Busan 604-714, Korea *Department of Medical Bioscience, Dong-A University, Hadan-2-dong, Busan 604-714, Korea **Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 100-715, Korea ***Department of Biomedicinal Chemistry, Inje University, Gim Hai 621-749, Korea (Received May 9, 2007; Accepted June 29, 2007) 초록: 덴드리틱 벤질 알코올을 트리에틸아민과 메탄술포닐클로라이드와 반응시켜서, 덴드리틱 벤질 클로라이드 의 효율적인 합성이 이루어졌다. 이 반응은 히드록시기의 메실화 반응과 염소화 반응의 2단계 반응으로 이루어지 는데, 중간체의 분리없이 한 반응 용기내에서 반응이 진행되는 경제적인 방법이다. Abstract: A successful rapid synthesis of dendritic benzyl chlorides from dendritic benzyl alcohols using methanesulfonyl chloride/Et3N as activating agents was described. In this method, each dendritic benzyl chloride can be prepared in one pot: no isolation of intermediate mesylated dendrons is required. The key steps in the syntheses of dendritic benzyl chlorides were the mesylation of the hydroxymethyl group followed by the chlorination by in-situ generated triethylammonium chloride. Keywords: benzylic alcohol, chlorination. Introduction vation and coupling steps in high yield. In addition, the coupling step must be very efficient to enable complete Dendrimers represent a novel type of polymeric material reaction. -
DEVELOPMENT of NOVEL METHODOLOGIES UTILIZING QUATERNARY AMMONIUM SALTS AS CATALYSTS by LINDSEY RAE CULLEN DISSERTATION Submitted
DEVELOPMENT OF NOVEL METHODOLOGIES UTILIZING QUATERNARY AMMONIUM SALTS AS CATALYSTS BY LINDSEY RAE CULLEN DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate College of the University of Illinois at Urbana-Champaign, 2015 Urbana, Illinois Doctoral Committee: Professor Scott E. Denmark, Chair Professor Martin D. Burke Professor Scott K. Silverman Professor Steven C. Zimmerman ii Abstract The first half of this thesis (Chapter 2) described the development of a fluoride-promoted conjugate addition of sulfur-stabilized carbanion nucleophiles to α,β-unsaturated ketones and esters. This reaction was achieved using a substoichiometric amount of TBAF, resulting in high yields on the desired 1,4-addition product. The addition of 1,3-dithianes was given particular focus as a novel method for the preparation of differentially protect 1,4-dicarbonyl compounds. Observation by 13C NMR spectroscopy provided evidence that the reaction proceeds through an ion pair, and attempts to extend this reaction to asymmetric additions using a chiral counterion are presented in detail. The second half of this thesis (Chapter 3) details development of a phase transfer catalyzed [2,3]-sigmatropic rearrangement of allyloxy carbonyl compounds. Initial investigation focused on identifying viable substrate classes that would undergo selective [2,3]-rearrangement under phase transfer conditions. Under certain conditions, the [2,3]-sigmatropic rearrangement of allyloxy carbonyl compounds takes place in the presence of a phase transfer agent, providing a rare example of a phase transfer catalyzed unimolecular reaction. In the course of this investigation it was found that catalysis is dependent on several variables including base concentration, catalyst structure, and substrate lipophilicity. -
United States Patent (19) 11) 4,128,586 Ratcliffe 45) Dec
United States Patent (19) 11) 4,128,586 Ratcliffe 45) Dec. 5, 1978 (54) CATALYTICREDUCTION OF AROMATIC 2,792,422 5/1957 Harris et al...................... 260/609 D SULFONYL HALDES WITH HYDROGEN 2,820,780 1/1958 Gutcho et al. ....................... 260/12 SULFDE TO YELD AROMATIC THOLS 2,986,581 5/1961 Levy et al. ........................... 260/608 3,994,980 1 1/1976 Kubicek .......................... 260/609 D. (75) Inventor: Charles T. Ratcliffe, Morristown, N.J. FOREIGN PATENT DOCUMENTS (73) Assignee: Allied Chemical Corporation, Morris 461101 4/1975 U.S.S.R.............................. 260/609 D Township, Morris County, N.J. Primary Examiner-Lewis Gotts Appl. No.: 881,952 Assistant Examiner-Molly C. Eakin 21 Attorney, Agent, or Firm-Horst M. Kasper 22) Filed: Feb. 27, 1978 (57) ABSTRACT 51 Int. Cl’............................................ CO7C 149/28 52) U.S. C. ................. 260/609 D; 260/302 S; A process for reducing aromatic sulfonyl halides with 260/302 F, 260/308 R; 260/608; 544/315; hydrogen sulfide. Hydrogen sulfide is contacted with 544/408; 548/337; 548/346; 546/290; 546/179; sulfonyl halides preferably in the presence of a solvent 54.6/139 and of a catalyst. The reaction forms thiols and pro 58) Field of Search ............. 260/609 D, 608, 294.8 R ceeds in the range of between about 50' and 300' C. There is little formation of disulfide and no cleavage of 56) References Cited the thiol group. U.S. PATENT DOCUMENTS 2,402,641 6/1946 Lazler et al. ......................... 260/609 20 Claims, No Drawings 4,128,586 1. -
Haloalkanes and Haloarenes | 145
For more FREE DOWNLOADS, visit www.aspirationsinstitute.com Haloalkanes and Haloarenes | 145 UNIT 9 HALOALKANES AND HALOARENES Points to Remember 1. Haloalkanes (Alkyl halides) are halogen derivatives of alkanes with general formula [CnH2n + 1X]. (X = F, Cl, Br or I) 2. Haloarenes (Aryl halides) are halogen derivatives of arenes with general formula Ar – X. 3. Since halogen is more electronegative than C, hence C – X bond is polar. 4. Named Reactions : (a) Sandmeyer Reaction : (b) Finkelstein Reaction : R− X + NaI →dry acetone R−+ I NaX (X = Cl, Br) (c) Swartz Reaction : CH3 – Br + AgF → CH3 – F + AgBr Instead of Ag – F, other metallic fluoride like Hg2F2, CoF2 or SbF3 can also be used. (d) Wurtz Reaction : 2R−+ X 2Na→dry ether R−+ R 2NaX (e) Wurtz-Fittig Reaction : (f) Fittig Reaction : For more FREE DOWNLOADS, visit www.aspirationsinstitute.com 146 | Chemistry-XII 5. Nucleophilic Substitution Reactions : | – δ+ δ– – Nu + –C–X C–Nu + X | haloalkane 2 (a) Substitution nucleophilic bimolecular (SN ) : 3 1. 1º haloalkane 2. Bimolecular, 2nd order 3. One step Order of reactivity : 1º > 2º > 3º Deciding factor : Steric hindrance 1 (a) Substitution nucleophilic unimolecular (SN ) : slow CH3 – (CH )–C–Br + OH 33 step 1 C (CH )–C–OH (Nucleophile) 33 (r.d.s) CH CH 3 3 (Fast) Recemization Planar configuration 50% carbo cation relation (Racemic mixture is formed) & 50% inversion 1. 3º haloalkane 2. Unimolecular, 1st order 3. Two steps Order of reactivity : 3º > 2º > 1º Deciding factor : Stability of carbo cation ⊕ ⊕ * Allylic CH22= CH − C H and benzylic C H CH halides undergo 65 2 reaction via SN1 mechanism as the corresponding carbo cations are resonance stabilized. -
Chip Incompatibility Filters
ChIP Incompatibility Filters Filter Name Type Description includes carboxylic acid halides and >1 acyl halide and related SMARTS derivatives like chloroformates, carbamoyl- , imidoyl halides, etc. >1 aldehyde SMARTS R no heteroatom no isocyanate, ketene, etc. >1 alkyl bromide / iodide SMARTS no acyl halide or related or vinyl halide >1 amine aromatic primary SMARTS aromatic carbon bound to N, N not charged >1 amines (aromatic/aliphatic, primary no amide, enamine, etc., no heteroatom SMARTS or secondary) bound to N, N not charged no amide, enamine, etc, no heteroatom >1 amines nucleophilic (aliphatic SMARTS bound to N, no aromatic carbon bound to primary or secondary) N, N not charged >1 aryl bromide / iodide SMARTS any aryl bromide / iodide >1 aryl halide SMARTS any aryl halide any boronic acid derivative, aromatic or >1 boronic acid derivative SMARTS aliphatic >1 carbonyl acid SMARTS any carboxylic or carbamic acid, etc. >1 carboxylic acid anhydrides SMARTS carbon must be bound to carbonyl no heteroatom bound to carbonyl or >1 carboxylic acid ester SMARTS oxygen, no acid, no anydride, etc >1 isocyanate / isothiocyanate SMARTS no restrictions to nitrogen substituents R no heteroatom, no isocyanate, ketene, >1 ketone or aldehyde SMARTS etc. >1 NH any SMARTS R can be anything >1 thioamide and related (any) SMARTS any substitution >1 thiol and related (nucleophic) SMARTS any SH or negative S >2 NH any SMARTS R can be anything acidic compounds I combination sulfonyl acids and carboxylic acids anhydrides, bicarbonates, thio and imino acyl anhydrides and derivatives SMARTS derivatives, etc. includes carboxylic acid halides and acyl halide and related SMARTS derivatives like chloroformates, carbamoyl- , imidoyl halides, etc. -
(12) United States Patent (10) Patent No.: US 8,269,044 B2 Takano Et Al
USOO826904.4B2 (12) United States Patent (10) Patent No.: US 8,269,044 B2 Takano et al. (45) Date of Patent: *Sep. 18, 2012 (54) METHOD FOR SELECTIVELY PRODUCING OTHER PUBLICATIONS PRIMARY AMINE COMPOUND M. S. Gibson, et al. The Gabriel Synthesis of Primary Amines, Angew. Chem. Internat. Edit., vol.7. (1968), pp. 919-930. (75) Inventors: Naoyuki Takano, Ibaraki (JP); HanYinglin, et al., A Convenient Synthesis of Primary Amines Using Kazuyuki Tanaka, Oita (JP); Shinzo Sodium Diformylamide as a Modified Gabriel Reagent, Synthesis, Seko, Toyonaka (JP) 1990, pp. 122-124. Nikola Blazevic, et al., Hexamethylenetetramine, A Versatile (73) Assignee: Sumitomo Chemical Company, Reagent in Organic Synthesis, Synthesis, 1979, pp. 161-176. Limited, Tokyo (JP) Chrisey et al., “Tris-N,N',N" (3', 4', 5'-Trimethoxyphenethyl)-1, 3, 5-Hexahydrotriazine, a Methylenemescaline Trimer: Characteriza (*) Notice: Subject to any disclaimer, the term of this tion and Selective Cyclization to Anhalinine Under Non-Aqueous patent is extended or adjusted under 35 Conditions.” Heterocycles, vol. 29, No. 6, 1989, pp. 1179-1183. Chinese Office Action issued in the corresponding Chinese Patent U.S.C. 154(b) by 1046 days. Application No. 200680052617.1 on Aug. 18, 2011 (with English This patent is Subject to a terminal dis translation). claimer. Japanese Office Action for Application No. 2006-336654 datedMar. 13, 2012 (with English translation). (21) Appl. No.: 12/097,234 * cited by examiner Primary Examiner — Venkataraman Balasubramanian (22) PCT Filed: Dec. 14, 2006 (74) Attorney, Agent, or Firm — Birch, Stewart, Kolasch & Birch, LLP (86). PCT No.: PCT/UP2OO6/324938 (57) ABSTRACT S371 (c)(1), Disclosed is a method for producing a primary amine com (2), (4) Date: Jun.