Molecular Machines Performing Chemical Synthesis Chemical Science

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Machines Performing Chemical Synthesis Chemical Science Volume 11 Number 34 14 September 2020 Pages 9031–9326 Chemical Science rsc.li/chemical-science ISSN 2041-6539 PERSPECTIVE Rainer Herges Molecular assemblers: molecular machines performing chemical synthesis Chemical Science View Article Online PERSPECTIVE View Journal | View Issue Molecular assemblers: molecular machines performing chemical synthesis Cite this: Chem. Sci., 2020, 11,9048 All publication charges for this article Rainer Herges * have been paid for by the Royal Society of Chemistry Molecular assemblers were proposed by K. Eric Drexler in 1986, based on the ideas of R. Feynman. In his (quite lurid) book “Engines of Creation: The Coming Era of Nanotechnology” and follow-up publications Drexler proposes molecular machines capable of positioning reactive molecules with atomic precision and to build larger, more sophisticated structures via mechanosynthesis. These imaginative visions started a hot controversy. The debate culminated in a cover story of Chemical & Engineering News in 2003 (ref. 1) with the key question: “Are molecular assemblers – devices capable of positioning atoms and molecules for precisely defined reactions – possible?” with Drexler as the proponent and Nobelist Richard E. Smalley being the opponent. Smalley raised two major objections: the “fat fingers” and the “sticky fingers” problem. To grab and guide each individual atom the assembler must have many nano- fingers. Smalley argued that there is just not enough room in the nanometer-sized reaction region to Creative Commons Attribution-NonCommercial 3.0 Unported Licence. accommodate all the fingers of all the manipulators necessary to have complete control of the chemistry. The sticky finger issue arises from the problem that .“the atoms of the manipulator hands will adhere to the atom that is being moved. So it will often be impossible to release the building block Received 2nd June 2020 in precisely the right spot.” Smalley concludes that the fat and the sticky finger problems are Accepted 14th July 2020 fundamental and cannot be avoided. While some of the statements of E. Drexler are bold and probably DOI: 10.1039/d0sc03094e not very realistic, his ideas are inspiring and might be a good starting point to assess on how far rsc.li/chemical-science laboratory chemistry has advanced towards real “molecular assemblers” within the last two decades. This article is licensed under a Introduction & overview events. Ribosomes are the most sophisticated, programmable assemblers, and probably far beyond of what we could ever Chemists have been performing reactions with stochastic achieve as chemists. NRPSs are still complex, but their mecha- Open Access Article. Published on 15 July 2020. Downloaded 10/1/2021 4:15:19 PM. ensembles in solution or in the gas phase since the very nisms are suitable as paragons for articial systems. beginning of our eld. Chemical bonds form upon random NRPSs are among the largest enzyme complexes in nature collisions, if the orientations of reaction partners and kinetic (up to 1800 kDa).2 They synthesize a large part of bioactive energies are favourable. Hence, incomplete conversion and side compounds such as antibiotics, siderophores, and immuno- products are usually unavoidable. Notwithstanding advances in suppressants. NRPSs resemble assembly lines, organized in up catalysis, control of reaction parameters, protecting group to 15 subsequent modules. Each module is responsible for strategies and solid-phase synthesis, natural product synthesis performing a specic reaction (condensation, adenylation, thi- in our laboratories has never reached the level of molecular olation, epimerisation, methylation, Claisen ester condensa- assemblers in nature. Life has optimized chemical synthesis in tion, oxidation etc.) and for adding a building block to the a completely different manner and it would not exist based on growing chain (Fig. 1). Each module consists of at least three conventional stochastic chemistry. Living organisms perform domains: the A (adenylation) domain selects and activates the reactions in an extremely selective and efficient manner to substrate, the T (peptidyl carrier, thiolation) domain is survive in a competitive environment with limited resources responsible for the transportation and orientation of the and energy supply, using molecular machines for synthesis. substrate and the C (condensation) domain catalyses the reac- tion. Even though the detailed mechanisms are complex, the general synthetic logic is simple. It seems obvious that bioen- Natural paragons gineering NRPSs (adding, removing and substituting domains Ribosomes, non-ribosomal peptide synthases (NRPSs) and or modules) should allow production of many novel bioactive polyketide synthetases (PKSs) are molecular assemblers that compounds. There is major interest in the use of semi-synthetic perform atomically precise movements along a cascade of hybrids or bioengineered NRPSs as molecular assemblers.3 Success, however, to date has been limited. Each condensation Otto-Diels-Institute of Organic Chemistry, Kiel University, 24118 Kiel, Germany. step in NRPS fabricated synthesis is endergonic and driven by E-mail: [email protected] 9048 | Chem. Sci.,2020,11,9048–9055 This journal is © The Royal Society of Chemistry 2020 View Article Online Perspective Chemical Science ATP. ATP is produced from ADP and Pi by a large enzyme about building articial molecular assemblers; however, the complex ATP synthase (>500 000 daltons). ATP synthase also endeavour could still be unrealistically difficult or too expen- perfectly complies with the denition of a molecular machine sive. Therefore, it might be expedient to look at molecular performing chemical synthesis. assemblers in nature and try to systematically reduce their Surprisingly, structurally diverse and functionally different sophistication and complexity to a level achievable with assemblers such as NRPSs, ATP synthase and chaperones,4 as synthetic chemistry. well as a number of further ATP driven molecular synthetic 5 machines, such as ATP driven proteases, and polyketide syn- Towards articial molecular assemblers thases6 have the following 4-stage assembly sequence in The rst three stages of biological assemblers: (1) recognition common: and binding of the reactants, (2) orientation of the reactants (1) recognition and binding of the reactants. and (3) bond formation have been realized in a number of (2) Orientation of the reactants with atomic precision. articial systems. Assemblers that operate in a cyclic fashion (3) Catalyzed bond formation. (stage 4) have not been known until recently. (4) Active (energy consuming) release of the product and repeating the cycle. “ ” The advantages of machine-type syntheses are obvious: the Mechanical control of reactions following the chemical assembler prevents side reactions, and provides chemo-, regio- potential gradient (downhill) and stereoselective synthesis without protecting groups or Hosseini and Lehn8,9 reported a macrocycle catalyzing the chiral auxiliaries. Notwithstanding the numerous examples in formation of pyrophosphate and ATP by hydrolysis of ADP and biology and considerable advances in covalent and supramo- acetyl phosphate. The latter is an activated phosphate and the lecular chemistry, articial, continuously operating assemblers reaction is exergonic. Nevertheless, it demonstrates the power have not been realized so far. Fortunately, there is at least one of supramolecular catalysis. The rst non-continuously oper- Creative Commons Attribution-NonCommercial 3.0 Unported Licence. encouraging argument on Drexler's side. In 1972 the economist ating assemblers were based on DNA architectures and per- Kenneth E. Boulding stated the following: formed multistep organic synthesis by sequential reactions on If something exists, then it must be possible.7 subsequent stations on a DNA track.10–15 (Fig. 2a) Leigh et al. In terms of molecular assemblers Boulding's law would read: used rotaxanes as the assembly line. In a landmark paper, they “If nature is using molecular assemblers for synthesis, chemists reported the sequence-specic synthesis of a tripeptide16–18 should (at least in principle) be able to build and operate arti- (Fig. 2b). cial assemblers in the laboratory”. Biochemical and chemical Recently the same group published a programmable reactions follow similar principles of chemistry and the same molecular machine for stereodivergent synthesis.19 While DNA laws of physics. There should not be a fundamental problem and rotaxane assembly lines are ingenious designs and This article is licensed under a Open Access Article. Published on 15 July 2020. Downloaded 10/1/2021 4:15:19 PM. Fig. 1 A molecular machine performing chemical synthesis: ATP driven formation of an amide bond in NRPSs. (1) Recognition, activation and binding of a building block, (2) precise orientation of the reactants, (3) catalysed bond formation, and (4) repeating cycles, growing chain and product release. This journal is © The Royal Society of Chemistry 2020 Chem. Sci.,2020,11,9048–9055 | 9049 View Article Online Chemical Science Perspective Fig. 2 (a) DNA and (b) rotaxane based assembly. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. impressive examples of the power of modern synthetic and a light driven information and energy ratchet has been realized supramolecular chemistry, they suffer from the disadvantage by Credi et al.28 Another category of endergonic processes driven that the information is read in a destructive manner. There is no by external energy sources
Recommended publications
  • Diamondoid Mechanosynthesis Prepared for the International Technology Roadmap for Productive Nanosystems
    IMM White Paper Scanning Probe Diamondoid Mechanosynthesis Prepared for the International Technology Roadmap for Productive Nanosystems 1 August 2007 D.R. Forrest, R. A. Freitas, N. Jacobstein One proposed pathway to atomically precise manufacturing is scanning probe diamondoid mechanosynthesis (DMS): employing scanning probe technology for positional control in combination with novel reactive tips to fabricate atomically-precise diamondoid components under positional control. This pathway has its roots in the 1986 book Engines of Creation, in which the manufacture of diamondoid parts was proposed as a long-term objective by Drexler [1], and in the 1989 demonstration by Donald Eigler at IBM that individual atoms could be manipulated by a scanning tunelling microscope [2]. The proposed DMS-based pathway would skip the intermediate enabling technologies proposed by Drexler [1a, 1b, 1c] (these begin with polymeric structures and solution-phase synthesis) and would instead move toward advanced DMS in a more direct way. Although DMS has not yet been realized experimentally, there is a strong base of experimental results and theory that indicate it can be achieved in the near term. • Scanning probe positional assembly with single atoms has been successfully demonstrated in by different research groups for Fe and CO on Ag, Si on Si, and H on Si and CNHCH3. • Theoretical treatments of tip reactions show that carbon dimers1 can be transferred to diamond surfaces with high fidelity. • A study on tip design showed that many variations on a design turn out to be suitable for accurate carbon dimer placement. Therefore, efforts can be focused on the variations of tooltips of many kinds that are easier to synthesize.
    [Show full text]
  • Rise of the Molecular Machines Euan R
    Angewandte. Essays International Edition: DOI: 10.1002/anie.201503375 Supramolecular Systems German Edition: DOI: 10.1002/ange.201503375 Rise of the Molecular Machines Euan R. Kay* and David A. Leigh* molecular devices · molecular machines · molecular motors · molecular nanotechnology Introduction inspirational in general terms, it is doubtful whether either of these manifestos had much practical influence on the devel- “When we get to the very, very small world … we have a lot of opment of artificial molecular machines.[5] Feynmans talk new things that would happen that represent completely new came at a time before chemists had the synthetic methods and opportunities for design … At the atomic level we have new kinds analytical tools available to be able to consider how to make of forces and new kinds of possibilities, new kinds of effects. The molecular machines; Drexlers somewhat nonchemical view problem of manufacture and reproduction of materials will be of atomic construction is not shared by the majority of quite different … inspired by biological phenomena in which experimentalists working in this area. In fact, “mechanical” chemical forces are used in a repetitious fashion to produce all movement within molecules has been part of chemistry since kinds of weird effects (one of which is the author) …” conformational analysis became established in the 1950s.[6] As Richard P. Feynman (1959)[2] well as being central to advancing the structural analysis of complex molecules, this was instrumental in chemists begin- It has long been appreciated that molecular motors and ning to consider dynamics as an intrinsic aspect of molecular machines are central to almost every biological process.
    [Show full text]
  • Nanoscience and Nanotechnologies: Opportunities and Uncertainties
    ISBN 0 85403 604 0 © The Royal Society 2004 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright, Designs and Patents Act (1998), no part of this publication may be reproduced, stored or transmitted in any form or by any means, without the prior permission in writing of the publisher, or, in the case of reprographic reproduction, in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licenses issued by the appropriate reproduction rights organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to: Science Policy Section The Royal Society 6–9 Carlton House Terrace London SW1Y 5AG email [email protected] Typeset in Frutiger by the Royal Society Proof reading and production management by the Clyvedon Press, Cardiff, UK Printed by Latimer Trend Ltd, Plymouth, UK ii | July 2004 | Nanoscience and nanotechnologies The Royal Society & The Royal Academy of Engineering Nanoscience and nanotechnologies: opportunities and uncertainties Contents page Summary vii 1 Introduction 1 1.1 Hopes and concerns about nanoscience and nanotechnologies 1 1.2 Terms of reference and conduct of the study 2 1.3 Report overview 2 1.4 Next steps 3 2 What are nanoscience and nanotechnologies? 5 3 Science and applications 7 3.1 Introduction 7 3.2 Nanomaterials 7 3.2.1 Introduction to nanomaterials 7 3.2.2 Nanoscience in this area 8 3.2.3 Applications 10 3.3 Nanometrology
    [Show full text]
  • Bottom-Up Self-Assembly Based on DNA Nanotechnology
    nanomaterials Review Bottom-Up Self-Assembly Based on DNA Nanotechnology 1, 1, 1 1 1,2,3, Xuehui Yan y, Shujing Huang y, Yong Wang , Yuanyuan Tang and Ye Tian * 1 College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China; [email protected] (X.Y.); [email protected] (S.H.); [email protected] (Y.W.); [email protected] (Y.T.) 2 Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China 3 Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China * Correspondence: [email protected] These authors contributed equally to this work. y Received: 9 September 2020; Accepted: 12 October 2020; Published: 16 October 2020 Abstract: Manipulating materials at the atomic scale is one of the goals of the development of chemistry and materials science, as it provides the possibility to customize material properties; however, it still remains a huge challenge. Using DNA self-assembly, materials can be controlled at the nano scale to achieve atomic- or nano-scaled fabrication. The programmability and addressability of DNA molecules can be applied to realize the self-assembly of materials from the bottom-up, which is called DNA nanotechnology. DNA nanotechnology does not focus on the biological functions of DNA molecules, but combines them into motifs, and then assembles these motifs to form ordered two-dimensional (2D) or three-dimensional (3D) lattices. These lattices can serve as general templates to regulate the assembly of guest materials. In this review, we introduce three typical DNA self-assembly strategies in this field and highlight the significant progress of each.
    [Show full text]
  • Intelligent Nanosystems Based on Molecular Motors
    Digest Journal of Nanomaterials and Biostructures Vol. 4, No. 4, December 2009, p. 613 - 621 APPLICATIONS OF MOLECULAR MOTORS IN INTELLIGENT NANOSYSTEMS H. R. Khataeea, A. R. Khataeeb* aDepartment of Computer Engineering, Payam Noor University of Hashtrood, Hashtrood, Iran bCorresponding author: Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran All cells of living organisms contain complex transport systems based on molecular motors which enable movement on their polymer filaments. Molecular motors are responsible for various dynamical processes for transporting single molecules over small distances to cell movement and growth. Molecular motors are far more complex than any motors that have yet been artificially constructed. Molecular motors are ideal nanomotors because of their small size, perfect structure, smart and high efficiency. Recent advances in understanding how molecular motors work has raised the possibility that they might find applications as nanorobots. Constructing of biomimetic nanorobots and nanomachines that perform specific tasks is a long-term goal of nanobiotechnology. Thus, in this paper we have summarized some of potential applications of molecular motors. Our reviewing of potential applications of molecular motors indicates that these extraordinary systems can be had potential applications in nanorobots, nanodevices and nanomedicine. This review indicate that molecular motors might be the key to yet unsolved applications in vast variety of sciences that are only imagined today. (Received September 1, 2009; accepted Septemberv 27, 2009) Keywords: Nanobiotechnology, Nanorobots, Nanomachines, Nanodevices, Nanomedicine, Molecular motors 1. Introduction It is obvious that movement, in one form or another, is an essential feature of all life at both the macroscopic and cellular level.
    [Show full text]
  • Nanomedicine and Medical Nanorobotics - Robert A
    BIOTECHNOLOGY– Vol .XII – Nanomedicine and Medical nanorobotics - Robert A. Freitas Jr. NANOMEDICINE AND MEDICAL NANOROBOTICS Robert A. Freitas Jr. Institute for Molecular Manufacturing, Palo Alto, California, USA Keywords: Assembly, Nanomaterials, Nanomedicine, Nanorobot, Nanorobotics, Nanotechnology Contents 1. Nanotechnology and Nanomedicine 2. Medical Nanomaterials and Nanodevices 2.1. Nanopores 2.2. Artificial Binding Sites and Molecular Imprinting 2.3. Quantum Dots and Nanocrystals 2.4. Fullerenes and Nanotubes 2.5. Nanoshells and Magnetic Nanoprobes 2.6. Targeted Nanoparticles and Smart Drugs 2.7. Dendrimers and Dendrimer-Based Devices 2.8. Radio-Controlled Biomolecules 3. Microscale Biological Robots 4. Medical Nanorobotics 4.1. Early Thinking in Medical Nanorobotics 4.2. Nanorobot Parts and Components 4.3. Self-Assembly and Directed Parts Assembly 4.4. Positional Assembly and Molecular Manufacturing 4.5. Medical Nanorobot Designs and Scaling Studies Acknowledgments Bibliography Biographical Sketch Summary Nanomedicine is the process of diagnosing, treating, and preventing disease and traumatic injury, of relieving pain, and of preserving and improving human health, using molecular tools and molecular knowledge of the human body. UNESCO – EOLSS In the relatively near term, nanomedicine can address many important medical problems by using nanoscale-structured materials and simple nanodevices that can be manufactured SAMPLEtoday, including the interaction CHAPTERS of nanostructured materials with biological systems. In the mid-term, biotechnology will make possible even more remarkable advances in molecular medicine and biobotics, including microbiological biorobots or engineered organisms. In the longer term, perhaps 10-20 years from today, the earliest molecular machine systems and nanorobots may join the medical armamentarium, finally giving physicians the most potent tools imaginable to conquer human disease, ill-health, and aging.
    [Show full text]
  • Mechanosynthesis of Amides in the Total Absence of Organic Solvent from Reaction to Product Recovery
    Mechanosynthesis of amides in the total absence of organic solvent from reaction to product recovery Thomas-Xavier Metro, Julien Bonnamour, Thomas Reidon, Jordi Sarpoulet, Jean Martinez, Frédéric Lamaty To cite this version: Thomas-Xavier Metro, Julien Bonnamour, Thomas Reidon, Jordi Sarpoulet, Jean Martinez, et al.. Mechanosynthesis of amides in the total absence of organic solvent from reaction to product re- covery. Chemical Communications, Royal Society of Chemistry, 2012, 48 (96), pp.11781-11783. 10.1039/c2cc36352f. hal-00784652 HAL Id: hal-00784652 https://hal.archives-ouvertes.fr/hal-00784652 Submitted on 12 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ChemComm Dynamic Article Links Cite this: Chem. Commun., 2012, 48, 11781–11783 www.rsc.org/chemcomm COMMUNICATION Mechanosynthesis of amides in the total absence of organic solvent from reaction to product recoverywz Thomas-Xavier Me´tro,* Julien Bonnamour, Thomas Reidon, Jordi Sarpoulet, Jean Martinez and Fre´de´ric Lamaty* Received 31st August 2012, Accepted 8th October 2012 DOI: 10.1039/c2cc36352f The synthesis of various amides has been realised avoiding the use added-value molecules production. Pursuing our interest in of any organic solvent from activation of carboxylic acids with CDI the development of solvent-free amide bond formation,6 we to isolation of the amides.
    [Show full text]
  • Scanning Tunneling Microscope Control System for Atomically
    Innovations in Scanning Tunneling Microscope Control Systems for This project will develop a microelectromechanical system (MEMS) platform technology for scanning probe microscope-based, high-speed atomic scale High-throughput fabrication. Initially, it will be used to speed up, by more than 1000 times, today’s Atomically Precise single tip hydrogen depassivation lithography (HDL), enabling commercial fabrication of 2D atomically precise nanoscale devices. Ultimately, it could be used to fabricate Manufacturing 3D atomically precise materials, features, and devices. Graphic image courtesy of University of Texas at Dallas and Zyvex Labs Atomically precise manufacturing (APM) is an emerging disruptive technology precision movement in three dimensions mechanosynthesis (i.e., moving single that could dramatically reduce energy are also needed for the required accuracy atoms mechanically to control chemical and coordination between the multiple reactions) of three dimensional (3D) use and increase performance of STM tips. By dramatically improving the devices and for subsequent positional materials, structures, devices, and geometry and control of STMs, they can assembly of nanoscale building blocks. finished goods. Using APM, every atom become a platform technology for APM and deliver atomic-level control. First, is at its specified location relative Benefits for Our Industry and an array of micro-machined STMs that Our Nation to the other atoms—there are no can work in parallel for high-speed and defects, missing atoms, extra atoms, high-throughput imaging and positional This APM platform technology will accelerate the development of tools and or incorrect (impurity) atoms. Like other assembly will be designed and built. The system will utilize feedback-controlled processes for manufacturing materials disruptive technologies, APM will first microelectromechanical system (MEMS) and products that offer new functional be commercialized in early premium functioning as independent STMs that can qualities and ultra-high performance.
    [Show full text]
  • Soft Machines: Copying Nature's Nanotechnology with Synthetic
    From Fantastic Voyage to Soft Machines: two decades of nanotechnology visions (and some real achievements) Richard Jones University of Sheffield Three visions of nanotechnology… 1. Drexler’s mechanical vision 3. Quantum nanodevices 2. Biological/ soft machines … and two narratives about technological progress Accelerating change… …or innovation stagnation? Who invented nanotechnology? Richard Feynman (1918-1988) Theoretical Physicist, Nobel Laureate “There’s Plenty of Room at the Bottom” - 1959 Robert Heinlein? Norio Taniguchi? Coined the term “nanotechnology” in 1974 Don Eigler? 1994 – used the STM (invented by Binnig & Rohrer) to rearrange atoms “Engines of Creation” K. Eric Drexler 1986 The history of technology : increasing precision and miniaturisation Medieval macro- 19th century precision Modern micro-engineering engineering engineering MEMS device, Sandia Late medieval mine Babbage difference engine, pump, Agricola 1832 Where next? Nanotechnology as “the principles of mechanical engineering applied to chemistry” Ideas developed by K.Eric Drexler Computer graphics and simulation Technical objections to Drexler’s vision Drexler’s Nanosystems: More research required Josh Hall: “Noone has ever found a significant error in the technical argument. Drexler’s detractors in the political argument don’t even talk about it.” • Friction • Uncontrolled mechanosynthesis • Thermodynamic and kinetic stability of nanostructures • Tolerance • Implementation path • Low level mechanosynthesis steps “If x doesn’t work, we’ll just try y”, versus an ever- tightening design space. “Any material you like, as long as it’s diamond” • Nanosystems and subsequent MNT work concentrate on diamond – Strong and stiff (though not quite as stiff as graphite) – H-terminated C (111) is stable wrt surface reconstruction • Potential disadvantages – Not actually the thermodynamic ground state (depends on size and shape - clusters can reconstruct to diamond-filled fullerene onions) – Non-ideal electronic properties.
    [Show full text]
  • Molecular Nanotechnology - Wikipedia, the Free Encyclopedia
    Molecular nanotechnology - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Molecular_manufacturing Molecular nanotechnology From Wikipedia, the free encyclopedia (Redirected from Molecular manufacturing) Part of the article series on Molecular nanotechnology (MNT) is the concept of Nanotechnology topics Molecular Nanotechnology engineering functional mechanical systems at the History · Implications Applications · Organizations molecular scale.[1] An equivalent definition would be Molecular assembler Popular culture · List of topics "machines at the molecular scale designed and built Mechanosynthesis Subfields and related fields atom-by-atom". This is distinct from nanoscale Nanorobotics Nanomedicine materials. Based on Richard Feynman's vision of Molecular self-assembly Grey goo miniature factories using nanomachines to build Molecular electronics K. Eric Drexler complex products (including additional Scanning probe microscopy Engines of Creation Nanolithography nanomachines), this advanced form of See also: Nanotechnology Molecular nanotechnology [2] nanotechnology (or molecular manufacturing ) Nanomaterials would make use of positionally-controlled Nanomaterials · Fullerene mechanosynthesis guided by molecular machine systems. MNT would involve combining Carbon nanotubes physical principles demonstrated by chemistry, other nanotechnologies, and the molecular Nanotube membranes machinery Fullerene chemistry Applications · Popular culture Timeline · Carbon allotropes Nanoparticles · Quantum dots Colloidal gold · Colloidal
    [Show full text]
  • Dynamic DNA Nanotechnology: Toward Functional Nanoscale Devices Cite This: Nanoscale Horiz., 2020, 5,182 Marcello Deluca,A Ze Shi,B Carlos E
    Nanoscale Horizons View Article Online REVIEW View Journal | View Issue Dynamic DNA nanotechnology: toward functional nanoscale devices Cite this: Nanoscale Horiz., 2020, 5,182 Marcello DeLuca,a Ze Shi,b Carlos E. Castrocd and Gaurav Arya *a Dynamic DNA nanotechnology involves the creation of nanoscale devices made of DNA whose primary function arises from their ability to undergo controlled motion or reconfiguration. In the past two Received 8th August 2019, decades, dynamic DNA nanotechnology has evolved to the point where it is now being employed in Accepted 15th October 2019 devices intended for applications in sensing, drug delivery, computation, nanorobotics, and more. In this DOI: 10.1039/c9nh00529c review article, we discuss the design of dynamic DNA nanodevices and the characterization and prediction of device behavior. We also identify a number of continuing challenges in dynamic DNA rsc.li/nanoscale-horizons nanotechnology and discuss potential solutions to those challenges. 1 Introduction DNA is highly programmable. Sequences of DNA bind specifi- cally to each other via strict base-pairing rules.1 This means DNA nanotechnology is a rapidly growing field that uses DNA as that the lengths, positions, and orientations of the hybridized, a material for creating nanoscale structures and devices. DNA is double-helical elements of the structure can be readily and an attractive candidate for this application for several reasons. rationally programmed into the DNA sequence. Lastly, DNA can Firstly, DNA is truly nanoscopic. Its smallest structural unit, the be readily synthesized at reasonable cost and its properties are nucleotide, occupies approximately the space of a 0.34 nm wide also generally well understood.
    [Show full text]
  • The Bottom-Up Construction of Molecular Devices and Machines*
    Pure Appl. Chem., Vol. 80, No. 8, pp. 1631–1650, 2008. doi:10.1351/pac200880081631 © 2008 IUPAC Nanoscience and nanotechnology: The bottom-up construction of molecular devices and machines* Vincenzo Balzani‡ Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy Abstract: The bottom-up approach to miniaturization, which starts from molecules to build up nanostructures, enables the extension of the macroscopic concepts of a device and a ma- chine to molecular level. Molecular-level devices and machines operate via electronic and/or nuclear rearrangements and, like macroscopic devices and machines, need energy to operate and signals to communicate with the operator. Examples of molecular-level photonic wires, plug/socket systems, light-harvesting antennas, artificial muscles, molecular lifts, and light- powered linear and rotary motors are illustrated. The extension of the concepts of a device and a machine to the molecular level is of interest not only for basic research, but also for the growth of nanoscience and the development of nanotechnology. Keywords: molecular devices; molecular machines; information processing; photophysics; miniaturization. INTRODUCTION Nanotechnology [1–8] is a frequently used word both in the scientific literature and in the common lan- guage. It has become a favorite, and successful, term among America’s most fraudulent stock promot- ers [9] and, in the venture capital world of start-up companies, is perceived as “the design of very tiny platforms upon which to raise enormous amounts of money” [1]. Indeed, nanotechnology is a word that stirs up enthusiasm or fear since it is expected, for the good or for the bad, to have a strong influence on the future of mankind.
    [Show full text]