Direct Mechanosynthesis of Pure Bifeo3 Perovskite Nanoparticles: Reaction Mechanism
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: a Review
materials Review Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review Guijun Yang and Soo-Jin Park * Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-32-876-7234 Received: 5 March 2019; Accepted: 9 April 2019; Published: 11 April 2019 Abstract: With the continuous development and progress of materials science, increasingly more attention has been paid to the new technology of powder synthesis and material preparation. The hydrothermal method is a promising liquid phase preparation technology that has developed rapidly during recent years. It is widely used in many fields, such as the piezoelectric, ferroelectric, ceramic powder, and oxide film fields. The hydrothermal method has resulted in many new methods during the long-term research process, such as adding other force fields to the hydrothermal condition reaction system. These force fields mainly include direct current, electric, magnetic (autoclaves composed of non-ferroelectric materials), and microwave fields. Among them, the microwave hydrothermal method, as an extension of the hydrothermal reaction, cleverly uses the microwave temperature to compensate for the lack of temperature in the hydrothermal method, allowing better practical application. This paper reviews the development of the hydrothermal and microwave hydrothermal methods, introduces their reaction mechanisms, and focuses on the practical application of the two methods. Keywords: hydrothermal method; microwave hydrothermal method; functional materials; application 1. Introduction During the process of continuous development of materials science, the research and development of new processes for material preparation and synthesis has always been an important part. For a long time, researchers have been searching for a material synthesis method with limited pollution, easy operation, excellent product performance, and low production cost [1–3]. -
Diamondoid Mechanosynthesis Prepared for the International Technology Roadmap for Productive Nanosystems
IMM White Paper Scanning Probe Diamondoid Mechanosynthesis Prepared for the International Technology Roadmap for Productive Nanosystems 1 August 2007 D.R. Forrest, R. A. Freitas, N. Jacobstein One proposed pathway to atomically precise manufacturing is scanning probe diamondoid mechanosynthesis (DMS): employing scanning probe technology for positional control in combination with novel reactive tips to fabricate atomically-precise diamondoid components under positional control. This pathway has its roots in the 1986 book Engines of Creation, in which the manufacture of diamondoid parts was proposed as a long-term objective by Drexler [1], and in the 1989 demonstration by Donald Eigler at IBM that individual atoms could be manipulated by a scanning tunelling microscope [2]. The proposed DMS-based pathway would skip the intermediate enabling technologies proposed by Drexler [1a, 1b, 1c] (these begin with polymeric structures and solution-phase synthesis) and would instead move toward advanced DMS in a more direct way. Although DMS has not yet been realized experimentally, there is a strong base of experimental results and theory that indicate it can be achieved in the near term. • Scanning probe positional assembly with single atoms has been successfully demonstrated in by different research groups for Fe and CO on Ag, Si on Si, and H on Si and CNHCH3. • Theoretical treatments of tip reactions show that carbon dimers1 can be transferred to diamond surfaces with high fidelity. • A study on tip design showed that many variations on a design turn out to be suitable for accurate carbon dimer placement. Therefore, efforts can be focused on the variations of tooltips of many kinds that are easier to synthesize. -
The 3 Hours-Hydrothermal Synthesis of High Surface Area Superparamagnetic Fe3o4 Core-Shell Nanoparticles (Esty Octiana Sari)
The 3 Hours-Hydrothermal Synthesis of High Surface Area Superparamagnetic Fe3O4 Core-Shell Nanoparticles (Esty Octiana Sari) THE 3 HOURS-HYDROTHERMAL SYNTHESIS OF HIGH SURFACE AREA SUPERPARAMAGNETIC Fe3O4 CORE-SHELL NANOPARTICLES Esty Octiana Sari,Ahmad Fadli andAmunAmri Department of Chemical Engineering Riau University Jl. HR Subrantas KM 12,5 Panam, Pekanbaru 28293, Riau E-mail: [email protected] Received: 2 May 2017 Revised: 27 September 2017 Accepted: 4 October 2017 ABSTRACT THE 3 HOURS-HYDROTHERMAL SYNTHESIS OF HIGH SURFACE AREA SUPERPARAMAGNETIC Fe3O4 CORE-SHELL NANOPARTICLES. The monodisperse core-shell Fe3O4 nanoparticles have been successfully synthesized by short times (3 hours) hydrothermal method at 220 oC from FeCl3, citrate, urea and PEG.The as-synthesized samples have been characterized using X-Ray Diffraction (XRD), Transmission Electron Microscope (TEM), Bruneur-Emmet-Teller (BET) surface area analyzer, and Vibrating Sample Magnetometer (VSM). The XRD result shows the as-synthesized products are pure Fe3O4. The TEM image shows the magnetite nanoparticles have monodisperse core-shell shape. The BET result shows the magnetite nanoparticles have 650.757 m2/g surface area. The hysteresis curve shows the magnetite nanoparticles exhibit super paramagnetic properties. This simple method obtained 60 nm core-shell Fe3O4 particles with super paramagnetic, high surface area as well as hydrophilic properties. Those properties are promising for various biomedical application. The advantages of simple and short times methods with high quality of product make this method very promising to be applied. Keywords: Core-shell, Hydrothermal method, Superparamagnetic, Nanoparticles ABSTRAK 3 JAM-SINTETIS HIDROTERMALNANOPARTIKELCORE-SHELLSUPERPARAMAGNETIK Fe3O4 DENGAN LUAS PERMUKAAN TINGGI. Nanopartikel monodispersi Fe3O4 berbentuk core-shell o telah berhasil disintesis dengan metode hidrothermal waktu singkat (3 jam) pada suhu 220 C dari FeCl3, sitrat, urea dan PEG. -
Nanomedicine and Medical Nanorobotics - Robert A
BIOTECHNOLOGY– Vol .XII – Nanomedicine and Medical nanorobotics - Robert A. Freitas Jr. NANOMEDICINE AND MEDICAL NANOROBOTICS Robert A. Freitas Jr. Institute for Molecular Manufacturing, Palo Alto, California, USA Keywords: Assembly, Nanomaterials, Nanomedicine, Nanorobot, Nanorobotics, Nanotechnology Contents 1. Nanotechnology and Nanomedicine 2. Medical Nanomaterials and Nanodevices 2.1. Nanopores 2.2. Artificial Binding Sites and Molecular Imprinting 2.3. Quantum Dots and Nanocrystals 2.4. Fullerenes and Nanotubes 2.5. Nanoshells and Magnetic Nanoprobes 2.6. Targeted Nanoparticles and Smart Drugs 2.7. Dendrimers and Dendrimer-Based Devices 2.8. Radio-Controlled Biomolecules 3. Microscale Biological Robots 4. Medical Nanorobotics 4.1. Early Thinking in Medical Nanorobotics 4.2. Nanorobot Parts and Components 4.3. Self-Assembly and Directed Parts Assembly 4.4. Positional Assembly and Molecular Manufacturing 4.5. Medical Nanorobot Designs and Scaling Studies Acknowledgments Bibliography Biographical Sketch Summary Nanomedicine is the process of diagnosing, treating, and preventing disease and traumatic injury, of relieving pain, and of preserving and improving human health, using molecular tools and molecular knowledge of the human body. UNESCO – EOLSS In the relatively near term, nanomedicine can address many important medical problems by using nanoscale-structured materials and simple nanodevices that can be manufactured SAMPLEtoday, including the interaction CHAPTERS of nanostructured materials with biological systems. In the mid-term, biotechnology will make possible even more remarkable advances in molecular medicine and biobotics, including microbiological biorobots or engineered organisms. In the longer term, perhaps 10-20 years from today, the earliest molecular machine systems and nanorobots may join the medical armamentarium, finally giving physicians the most potent tools imaginable to conquer human disease, ill-health, and aging. -
Mechanosynthesis of Amides in the Total Absence of Organic Solvent from Reaction to Product Recovery
Mechanosynthesis of amides in the total absence of organic solvent from reaction to product recovery Thomas-Xavier Metro, Julien Bonnamour, Thomas Reidon, Jordi Sarpoulet, Jean Martinez, Frédéric Lamaty To cite this version: Thomas-Xavier Metro, Julien Bonnamour, Thomas Reidon, Jordi Sarpoulet, Jean Martinez, et al.. Mechanosynthesis of amides in the total absence of organic solvent from reaction to product re- covery. Chemical Communications, Royal Society of Chemistry, 2012, 48 (96), pp.11781-11783. 10.1039/c2cc36352f. hal-00784652 HAL Id: hal-00784652 https://hal.archives-ouvertes.fr/hal-00784652 Submitted on 12 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ChemComm Dynamic Article Links Cite this: Chem. Commun., 2012, 48, 11781–11783 www.rsc.org/chemcomm COMMUNICATION Mechanosynthesis of amides in the total absence of organic solvent from reaction to product recoverywz Thomas-Xavier Me´tro,* Julien Bonnamour, Thomas Reidon, Jordi Sarpoulet, Jean Martinez and Fre´de´ric Lamaty* Received 31st August 2012, Accepted 8th October 2012 DOI: 10.1039/c2cc36352f The synthesis of various amides has been realised avoiding the use added-value molecules production. Pursuing our interest in of any organic solvent from activation of carboxylic acids with CDI the development of solvent-free amide bond formation,6 we to isolation of the amides. -
Scanning Tunneling Microscope Control System for Atomically
Innovations in Scanning Tunneling Microscope Control Systems for This project will develop a microelectromechanical system (MEMS) platform technology for scanning probe microscope-based, high-speed atomic scale High-throughput fabrication. Initially, it will be used to speed up, by more than 1000 times, today’s Atomically Precise single tip hydrogen depassivation lithography (HDL), enabling commercial fabrication of 2D atomically precise nanoscale devices. Ultimately, it could be used to fabricate Manufacturing 3D atomically precise materials, features, and devices. Graphic image courtesy of University of Texas at Dallas and Zyvex Labs Atomically precise manufacturing (APM) is an emerging disruptive technology precision movement in three dimensions mechanosynthesis (i.e., moving single that could dramatically reduce energy are also needed for the required accuracy atoms mechanically to control chemical and coordination between the multiple reactions) of three dimensional (3D) use and increase performance of STM tips. By dramatically improving the devices and for subsequent positional materials, structures, devices, and geometry and control of STMs, they can assembly of nanoscale building blocks. finished goods. Using APM, every atom become a platform technology for APM and deliver atomic-level control. First, is at its specified location relative Benefits for Our Industry and an array of micro-machined STMs that Our Nation to the other atoms—there are no can work in parallel for high-speed and defects, missing atoms, extra atoms, high-throughput imaging and positional This APM platform technology will accelerate the development of tools and or incorrect (impurity) atoms. Like other assembly will be designed and built. The system will utilize feedback-controlled processes for manufacturing materials disruptive technologies, APM will first microelectromechanical system (MEMS) and products that offer new functional be commercialized in early premium functioning as independent STMs that can qualities and ultra-high performance. -
V.Lelting and Transformation Remperatures of Mineral and \Llied Substances
v.lelting and Transformation remperatures of Mineral and \llied Substances I F. c. KRACEK ONTRIBUTIONS TO GEOCHEMISTRY EOLOGICAL SURVEY BULLETIN 1144-D HTED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Abstract~------------------------------------------------------- 1 General discussion----------------------------------------------- 1 Acknowledgments____________________________________________ 3 General references _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 3 Elements ------------------------------------------------------- 4 Oxides---------------------------------------------------------- 10 Oxide systems involving A120 3 ------------------------------------ 13 Oxide systems exclusive of Al2o3• B 2o 3, Si02 --------------------- 14 Silicate systems, binary__________________________________________ 17 Silicate systems, ternary _________________________________________ 21 Silicate systems, quaternary and higher ________ ----- _______________ 30 Silicate systems, miscellaneous ___________________________________ 32 Carbonates------------------------------------------------------ 33 Systems, miscellaneous __________________________________________ 36 References------------------------------------------------------ 63 ILLUSTRATIONS Figure 1. The system FeO -------------------------------------- -
Transfers Young, Stephanie Lynne, Chalfont St
The Journal of Gemmology2010 / Volume 32 / Nos. 1–4 The Gemmological Association of Great Britain The Journal of Gemmology / 2009 / Volume 31 / No. 5–8 The Gemmological Association of Great Britain 27 Greville Street, London EC1N 8TN T: +44 (0)20 7404 3334 F: +44 (0)20 7404 8843 E: [email protected] W: www.gem-a.com Registered Charity No. 1109555 Registered office: Palladium House, 1–4 Argyll Street, London W1F 7LD President: Prof. A. H. Rankin Vice-Presidents: N. W. Deeks, R. A. Howie, E. A. Jobbins, M. J. O'Donoghue Honorary Fellows: R. A. Howie Honorary Life Members: H. Bank, D. J. Callaghan, T. M. J. Davidson, J. S. Harris, E. A. Jobbins, J. I. Koivula, M. J. O'Donoghue, C. M. Ou Yang, E. Stern, I. Thomson, V. P. Watson, C. H. Winter Chief Executive Officer: J. M. Ogden Council: J. Riley – Chairman, A. T. Collins, S. Collins, B. Jackson, C. J. E. Oldershaw, L. Palmer, R. M. Slater Members’ Audit Committee: A. J. Allnutt, P. Dwyer-Hickey, J. Greatwood, G. M. Green, J. Kalischer Branch Chairmen: Midlands – P. Phillips, North East – M. Houghton, North West – J. Riley, Scottish – B. Jackson, South East – V. Wetten, South West – R. M. Slater The Journal of Gemmology Editor: Dr R. R. Harding Assistant Editor: M. J. O’Donoghue Associate Editors: Dr A. J. Allnutt (Chislehurst), Dr C. E. S. Arps (Leiden), G. Bosshart (Horgen), Prof. A. T. Collins (London), J. Finlayson (Stoke on Trent), Dr J. W. Harris (Glasgow), Prof. R. A. Howie (Derbyshire), E. A. Jobbins (Caterham), Dr J. -
Soft Machines: Copying Nature's Nanotechnology with Synthetic
From Fantastic Voyage to Soft Machines: two decades of nanotechnology visions (and some real achievements) Richard Jones University of Sheffield Three visions of nanotechnology… 1. Drexler’s mechanical vision 3. Quantum nanodevices 2. Biological/ soft machines … and two narratives about technological progress Accelerating change… …or innovation stagnation? Who invented nanotechnology? Richard Feynman (1918-1988) Theoretical Physicist, Nobel Laureate “There’s Plenty of Room at the Bottom” - 1959 Robert Heinlein? Norio Taniguchi? Coined the term “nanotechnology” in 1974 Don Eigler? 1994 – used the STM (invented by Binnig & Rohrer) to rearrange atoms “Engines of Creation” K. Eric Drexler 1986 The history of technology : increasing precision and miniaturisation Medieval macro- 19th century precision Modern micro-engineering engineering engineering MEMS device, Sandia Late medieval mine Babbage difference engine, pump, Agricola 1832 Where next? Nanotechnology as “the principles of mechanical engineering applied to chemistry” Ideas developed by K.Eric Drexler Computer graphics and simulation Technical objections to Drexler’s vision Drexler’s Nanosystems: More research required Josh Hall: “Noone has ever found a significant error in the technical argument. Drexler’s detractors in the political argument don’t even talk about it.” • Friction • Uncontrolled mechanosynthesis • Thermodynamic and kinetic stability of nanostructures • Tolerance • Implementation path • Low level mechanosynthesis steps “If x doesn’t work, we’ll just try y”, versus an ever- tightening design space. “Any material you like, as long as it’s diamond” • Nanosystems and subsequent MNT work concentrate on diamond – Strong and stiff (though not quite as stiff as graphite) – H-terminated C (111) is stable wrt surface reconstruction • Potential disadvantages – Not actually the thermodynamic ground state (depends on size and shape - clusters can reconstruct to diamond-filled fullerene onions) – Non-ideal electronic properties. -
Molecular Nanotechnology - Wikipedia, the Free Encyclopedia
Molecular nanotechnology - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Molecular_manufacturing Molecular nanotechnology From Wikipedia, the free encyclopedia (Redirected from Molecular manufacturing) Part of the article series on Molecular nanotechnology (MNT) is the concept of Nanotechnology topics Molecular Nanotechnology engineering functional mechanical systems at the History · Implications Applications · Organizations molecular scale.[1] An equivalent definition would be Molecular assembler Popular culture · List of topics "machines at the molecular scale designed and built Mechanosynthesis Subfields and related fields atom-by-atom". This is distinct from nanoscale Nanorobotics Nanomedicine materials. Based on Richard Feynman's vision of Molecular self-assembly Grey goo miniature factories using nanomachines to build Molecular electronics K. Eric Drexler complex products (including additional Scanning probe microscopy Engines of Creation Nanolithography nanomachines), this advanced form of See also: Nanotechnology Molecular nanotechnology [2] nanotechnology (or molecular manufacturing ) Nanomaterials would make use of positionally-controlled Nanomaterials · Fullerene mechanosynthesis guided by molecular machine systems. MNT would involve combining Carbon nanotubes physical principles demonstrated by chemistry, other nanotechnologies, and the molecular Nanotube membranes machinery Fullerene chemistry Applications · Popular culture Timeline · Carbon allotropes Nanoparticles · Quantum dots Colloidal gold · Colloidal -
Synthetic Quartz Crystal
Synthetic Quartz Crystal n Terms and Definitions Synthetic Quartz Crystal: A single crystal grown using the Right-handed and left-handed quartz crystals: Crystals are hydrothermal synthesis method. divided into two types: right-handed and left-handed. A As-Grown Quartz Crystal: A synthetic quartz crystal grown difference in optical rotation creates the 2 types, but their naturally with no processing. physical properties are identical. Therefore, by cutting at the Lumbered Quartz Crystal: A synthetic quartz crystal with the X correct angle, the difference does not affect the characteristics and Z surfaces processed according to specified dimensions of a crystal oscillator. Generally right-handed quartz crystals are and angles using a diamond wheel #80. used in manufacture. Y-bar Synthetic Quartz Crystal: A synthetic quartz crystal grown Zone: A zone with a crystal that has grown from a seed crystal at by using a bar-like seed crystal elongated in the Y-axis direction. its core. There are Z, +X, -X, and S zones. Z-plate Synthetic Quartz Crystal: A synthetic quartz crystal Infrared Absorption Coefficient α: This value measured with an grown by using a plate-like seed crystal with a Y-axis direction infrared spectrophotometer is adopted as the infrared absorption length and X-axis direction width. coefficient α of a synthetic quartz crystal. The value is based on Inclusion: A general term for solid constituents (inclusions) that the absorption characteristic of the OH radical of a synthetic exist in synthetic quartz crystal; they can be observed when light quartz crystal that is around 3,800 to 3,000 cm–1 of the infrared is scattered through a liquid with a refractive index that is close transmittance curve. -
Large-Scale Synthesis Route of Tio2 Nanomaterials with Controlled Morphologies Using Hydrothermal Method and Tio2 Aggregates As Precursor
nanomaterials Article Large-Scale Synthesis Route of TiO2 Nanomaterials with Controlled Morphologies Using Hydrothermal Method and TiO2 Aggregates as Precursor Wenpo Luo 1 and Abdelhafed Taleb 1,2,* 1 Institut de Recherche de Chimie Paris, PSL Research University Chimie ParisTech—CNRS, 75005 Paris, France; [email protected] 2 Sorbonne Université, 75231 Paris, France * Correspondence: [email protected]; Tel.: +33-1-85-78-41-97 Abstract: TiO2 of controlled morphologies have been successfully prepared hydrothermally using TiO2 aggregates of different sizes. Different techniques were used to characterize the prepared TiO2 powder such as XRD, XPS, FEGSEM, EDS, and HRTEM. It was illustrated that the prepared TiO2 powders are of high crystallinity with different morphologies such as nanobelt, nanourchin, and nanotube depending on the synthesis conditions of temperature, time, and additives. The mechanism behind the formation of prepared morphologies is proposed involving nanosheet intermediate formation. Furthermore, it was found that the nanoparticle properties were governed by those of TiO2 nanoparticles aggregate used as a precursor. For example, the size of prepared nanobelts was proven to be influenced by the aggregates size used as a precursor for the synthesis. Keywords: TiO2 nanoparticles; aggregates; morphologies Citation: Luo, W.; Taleb, A. Large-Scale Synthesis Route of TiO2 Nanomaterials with Controlled Morphologies Using Hydrothermal 1. Introduction Method and TiO2 Aggregates as Recently, tremendous efforts have been devoted to developing innovative strategies Precursor. Nanomaterials 2021, 11, 365. to synthesize nanomaterials with the desired morphologies and properties. Particularly https://doi.org/10.3390/ the one-dimensional (1D) structure of TiO2 nanomaterials exhibits interesting properties nano11020365 compared to other TiO2 nanoparticles: it has lower carrier recombination rate and higher charge carrier mobility, thanks to the grain boundaries and junctions absence.