History of Pest Management Lecture 1

Total Page:16

File Type:pdf, Size:1020Kb

History of Pest Management Lecture 1 Insect control and Insecticide 1- اسم المقرر سموم ومبيدات ومكافحة حشرات -402ش ورمزه الكودى 2- التخصص علم الحشرات 3- الفرقة الرابعة 4- عدد الوحدات )5 ساعات( نظرى + )5 ساعات( عملى History of Pest Management Lecture 1 World’s Worst Plant Pests Worst Historical Pest • Schistocerca gregaria (desert locust) a pest since biblical times, they fly in unexpectedly, strip a field bare in an hour and consume a very wide range of crops. Locust swarms may vanish for many years, only to break out of their endemic regions after periods of abnormally high rainfall. ﴿فَأَ ْر َس ْلنَا َعلَ ْي ِه ُم ال ُّطوفَا َن َوا ْل َج َرا َد َوا ْلقُ َّم َل َوال َّضفَا ِد َع َوال َّد َم آيَا ٍت ُّمفَ َّصﻻَ ٍت فَا ْستَ ْكبَ ُرواْ َو َكانُواْ قَ ْوماً ُّم ْج ِر ِمي َن﴾ ]اﻷعراف: 133[. World’s Worst Plant Pests Most Expensive to Control • Diabrotica vergifera vergifera (western corn rootworm) In terms of the amount of pesticides once used to control and the expense of developing a resistant GM-strain, Diabrotica virgifera virgifera beetle is a strong contender. World’s Worst Plant Pests Greatest Human Impact • Phytophthora infestans (potato blight) Caused the Irish potato famine (1845-1852), one million people died and a further million emigrated from Ireland, causing the population to decrease by about 24%. World’s Worst Plant Pests Greatest Human Impact • Hemilaea vastatrix (coffee leaf rust) a fungus that devastated coffee production in Sri Lanka (Ceylon) in the 19th Century and famously led to a switch to tea drinking in the UK. World’s Worst Plant Pests Worst Climate Change Threat • Dendroctonus ponderosae (mountain pine beetle) The cumulative effect of the current outbreak of Dendroctonus ponderosae in British Columbia, Canada, has killed 13 million hectares of lodgepole pine forest and released an estimated 270 million tonns of carbon, converting the forest from a carbon sink to a large net carbon source. World’s Worst Plant Pests Most Resilient Pest • Leptinotarsa decemlineata (Colorado potato beetle) is a strong candidate for this award, having managed in the space of about 50 years to develop resistance to 52 different compounds belonging to all major insecticide classes (including cyanide). This beetle therefore has effectively beaten the chemists. A Brief History of Pest Control 8000 BC – the beginnings of agriculture Pest Management History • Era of traditional approaches (ancient-1938) • Era of pesticides (1939-1975) • Era of integrated pest management (1976-now) 3000BC in Egypt, cats were being used to control pests of grain stores such as rodents and it could kill snakes. In 1939/40 a survey discovered that cats could keep a farm's population of rats down to a low level, but could not eliminate them completely. However, if the rats were cleared by trapping or poisoning, farm cats could stop them returning - at least from an area of 50 yards around a barn. Sumerians 5000 BC Chinese Great Age of Discovery (1200 BC – 400 AD) Passage from Chinese text, 3rd century AD: “A factor which increases the abundance of a certain bird will indirectly benefit a population of aphids because of the thinning effect which it will have on the coccinellid beetles which eat the aphids but are themselves eaten by the bird.” History of Biological Control: Intentional manipulation of insects to suppress insects goes back to ancient China in 400 BC • gathered, sold and established colonies of predatory weaver ants in citrus orchards to control caterpillars and boring beetles. • moved nests around in the orchard and created overhead “ant highways” between trees using bamboo • DeBach observed this practice still being used in Burma in the 1950’s 17 Biological control in China 400 AD Greeks and Romans (300 BC-19th century) Habitat/cultural manipulation: 950 BC - Homer 450 BC - Herodotus Pest proof granary – 13 BC A Step Backwards: The Dark Ages (500 AD) Roman text suggested the following for protection from caterpillars: “a woman ungirded and with flying hair must run barefoot around the garden, or a crayfish must be nailed up in different places in the garden.” Consequences of Agricultural Revolution (19th century): • The potato blight in Ireland, England, and Belgium (late 1840’s) • Fungus leaf spot disease in coffee • Powdery mildew outbreak in European grapes (1850’s) • Grape phylloxera invades Europe from the US (1848-1878) Grape phylloxera Grape powdery mildew History of Biological Control: Parasitoids are less obvious than large predators - first observation was 1602 (Aldrovandi on butterflies - thought they were another life stage) 1st correct interpretation was in 1685, Martin Lister in the Philosophical Transactions of the Royal Society of London described parasitism by Ichneumonid wasps on caterpillars Insect disease - first to experimentally show was Agostino Bassi of Italy with Beauveria on silkworm, 1835 24 In Europe, R. Réaumur (in 1734), is thought to be the first to propose biocontrol: he advised the release of lacewings in greenhouses for the control of aphids. R. Réaumur 1752 Carl Linneus suggested “every pest has a natural enemy, we should capture and use them to dis-infest crops” In 1840’s predators were released for control of gypsy moth and garden pests in Italy 25 North America - rapidly expanding agriculture in 1800’s 1855 Asa Fitch N.Y. state entomologist proposed importing parasites from England - didn’t happen Asa Fitch Wheat midge Sitodiplosis mosellana was known to come from Europe 26 In 1865, the first successful international importation for weed control took place, when a cochineal insect (Homoptera) was transferred from India (originally from Argentina) to Sri Lanka, where it effectively controlled the prickly pear cactus within a few years 27 C. V. Riley - the “Father of modern biological control” 1873 first international movement of an insect natural enemy - Missouri state entomologist C.V. Riley sent predatory mite Tytoglyphus phylloxera to France for grape phylloxera - establishment but no control 1879 C.V. Riley appointed Chief entomologist for USDA - soon after imported internal parasite of cabbage butterfly. Established, but not very effective agent 28 Cottony Cushion Scale: California Success Cottony Cushion Scale (Icerya purchasi) discovered in Menlo Park 1868 on acacia CA’s new citrus industry was mostly around LA - took 3-4 yrs before it appeared on citrus in LA By 1880 it was throughout CA - almost wiped out the citrus industry Chemical measures (cyanide fumigation) had only limited effect 29 Cottony Cushion Scale 30 C.V. Riley speculated and confirmed that CCS was from Australia Riley procured funds and sent Albert Koebele to AU in 1888 Keobele found a parasitic fly (Cryptochetum iceryae) and a predacious lady bird beetle (Rodolia cardinalis) [formerly Vedalia] 31 Cryptochetum iceryae 32 Rodolia cardinalis 33 Rodolia cardinalis larvae 34 Shipped to SF, reared, then released in tents in LA Beetle quickly established, spread, and provided complete control within 2 years Parasitic fly also became established and is primary control agent in coastal areas 35 Saved citrus industry in CA Dramatic success lead to: • further federal government support • State support through the University of California • willingness of public/growers to consider BC By WWII 13 pests controlled in all or part of California. Unfortunately CCS project also lead to a great deal of focus on coccinelids for BC in California and Hawaii with little success. 36 Cottony Cushion Scale Biological Control (late 19th century) Rodolia cardinalis Early 20th Century – 5 major approaches to pest control are well established: 1) Biological control 2) Cultural/Mechanical control 3) Chemical control 4) Resistant varieties 5) Legal control, through the use of inspections and quarantines, is established in the US in 1912 by the Plant Quarantine Act. Insecticide Era (1939) • Development of new synthetic insecticidal compounds. 1939 Discovery of the insecticidal properties of DDT 1940s Organophosphates in Germany Carbamates in Switzerland DDT (dichlorodiphenyltrichloroethane): • First synthesized in 1873 by a German grad student • Paul Müller, a Swiss chemist with the Geigy Corporation, discovered its insecticidal properties in 1939 The End of the Insecticide Era • The beginning of the end… the earliest hint of impending disaster was the evolution of resistance. • 1946 - The first reported case of tolerance to DDT in the house fly in Sweden. • Within 20 years 224 species of insects and mites were resistant to at least one major insecticide. The End of the Insecticide Era • The beginning of the end… • Pest resurgence following applications of broad- spectrum pesticides due to the elimination of natural enemies. • Secondary pest outbreak – herbivores which were previously not a pest outbreak following pesticide applications. The End of the Insecticide Era • The nail in the coffin… the publication of Silent Spring by Rachel Carson in 1962. Rachel Carson quotes “I believe natural beauty has a necessary place in the spiritual development of any individual or any society. I believe that whenever we substitute something man-made and artificial for a natural feature of the earth, we have retarded some part of man’s spiritual growth” Lessons from history • Important advances in pest management have occurred independently across cultures throughout history… we have much to learn from other societies. • The roots of integrated pest management have existed for centuries, but social and political factors have resulted in the loss of knowledge that must be re- learned. • The discovery of the insecticidal properties of DDT changed the trajectory of pest management for decades to follow. .
Recommended publications
  • Dipterists Digest
    Dipterists Digest 2019 Vol. 26 No. 1 Cover illustration: Eliozeta pellucens (Fallén, 1820), male (Tachinidae) . PORTUGAL: Póvoa Dão, Silgueiros, Viseu, N 40º 32' 59.81" / W 7º 56' 39.00", 10 June 2011, leg. Jorge Almeida (photo by Chris Raper). The first British record of this species is reported in the article by Ivan Perry (pp. 61-62). Dipterists Digest Vol. 26 No. 1 Second Series 2019 th Published 28 June 2019 Published by ISSN 0953-7260 Dipterists Digest Editor Peter J. Chandler, 606B Berryfield Lane, Melksham, Wilts SN12 6EL (E-mail: [email protected]) Editorial Panel Graham Rotheray Keith Snow Alan Stubbs Derek Whiteley Phil Withers Dipterists Digest is the journal of the Dipterists Forum . It is intended for amateur, semi- professional and professional field dipterists with interests in British and European flies. All notes and papers submitted to Dipterists Digest are refereed. Articles and notes for publication should be sent to the Editor at the above address, and should be submitted with a current postal and/or e-mail address, which the author agrees will be published with their paper. Articles must not have been accepted for publication elsewhere and should be written in clear and concise English. Contributions should be supplied either as E-mail attachments or on CD in Word or compatible formats. The scope of Dipterists Digest is: - the behaviour, ecology and natural history of flies; - new and improved techniques (e.g. collecting, rearing etc.); - the conservation of flies; - reports from the Diptera Recording Schemes, including maps; - records and assessments of rare or scarce species and those new to regions, countries etc.; - local faunal accounts and field meeting results, especially if accompanied by ecological or natural history interpretation; - descriptions of species new to science; - notes on identification and deletions or amendments to standard key works and checklists.
    [Show full text]
  • Regulation of Classical Biological Control of Invasive Plants in North America
    Evaluating and Regulating Biological Control Agents: A North American Perspective P.G. Mason Agriculture and Agri-Food Canada North American Plant Protection Organization, Ottawa, Ontario EPPO / COST - SMARTER / IOBC / IBMA / CABI WORKSHOP ON EVALUATION AND REGULATION OF BIOLOGICAL CONTROL AGENTS 23-24 November 2015 North American history … Entomophagous biological control agents • United States – first release in 1888: Cryptochetum iceryae against Icerya purchasi (cottony cushion scale) in citrus; Rodalia cardinalis was released in 1889 • Canada – first release in 1885: Trichogramma minutum against Nematus ribesii (imported currantworm); 1910 Mesoleius tenthredinis against Pristiphora erichsonii (larch sawfly) • Mexico – first release in 1922: Lixiphaga diatraeae against Diatraea saccharalis (sugarcane borer) Phytophagous biological control agents • United States – first release in 1945: Chrysolina hyperici against Hypericum perforatum (Klamath weed, St. John’s wort) • Canada – first release in 1951 : C. hyperici against H. perforatum • Mexico – first release in 1977: Neochetina eichhorniae against Eichhornia crassipes (water hyacinth) … North American history … United States • 1957 - Subcommittee on Biological Control of Weeds established [U.S. Department of the Interior’s (USDI) Bureau of Reclamation, Bureau of Land Management, and Fish and Wildlife Service; and from the U.S. Department of Agriculture’s (USDA) Forest Service and Agricultural Research Service]. • 1971 - name changed to Working Group on Biological Control of Weeds. Canadian and Mexican comments were invited because the Working Group knew that an introduced organism recognizes no political boundaries and its introduction needed to be considered on a continental basis. [+ Environmental Protection Agency, Cooperative State Research, Education, and Extension Service (now the National Institute of Food and Agriculture), and the U.S.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]
  • First Record of the Cottony Cushion Scale Icerya Purchasi (Hemiptera, Monophlebidae) in Slovakia – Short Communication
    Plant Protect. Sci. Vol. 52, 2016, No. 3: 217–219 doi: 10.17221/23/2016-PPS First Record of the Cottony Cushion Scale Icerya purchasi (Hemiptera, Monophlebidae) in Slovakia – Short Communication Ján KOLLÁR 1, Ladislav BAKAY 1 and Michal PÁSTOR 2 1Horticulture and Landscape Engineering Faculty, Slovak University of Agriculture in Nitra, Nitra, Slovakia; 2Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Zvolen, Slovak Republic Abstract Kollár J., Bakay L., Pástor M. (2016): First record of the cottony cushion scale Icerya purchasi (Hemiptera, Monophlebidae) in Slovakia – short communication. Plant Protect. Sci., 52: 217–219. Damage by the cottony cushion scale Icerya purchasi (Hemiptera: Coccoidea: Monophlebidae: Iceryini) was found on Rosmarinus officinalis at the locality Suchohrad in Slovakia. Icerya purchasi is a cosmopolitan plant pest of warmer climates. In Central Europe it is a pest of glasshouses. It is the first observation of the cottony cushion scale (at least short-term) occurrence in the outdoor conditions in Slovakia. Keywords: Icerya purchasi; Coccoidea; insect pest; Monophlebidae The cottony cushion scale, Icerya purchasi Maskell, from where it can escape outdoors and survive in 1878 (Hemiptera: Coccoidea: Monophlebidae: Iceryini) favourable conditions even in colder climates. is a cosmopolitan plant pest native to Australia and The cottony cushion scale can be distinguished possibly New Zealand, known on over 200 differ- easily from other scale insects. The mature females ent plant species (Caltagirone & Doutt 1989; (actually parthenogenetic) have bright orange-red, Causton 2001). It has been introduced into other yellow, or brown bodies (Ebeling 1959). The body is parts of the world through global trade.
    [Show full text]
  • REPORT on APPLES – Fruit Pathway and Alert List
    EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 5 - REPORT on APPLES – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Wistermann A, Steffen K, Grousset F, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Apples – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/107o25ccc1b2c DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on Apples – Fruit pathway and Alert List 1. Introduction ................................................................................................................................................... 3 1.1 Background on apple .................................................................................................................................... 3 1.2 Data on production and trade of apple fruit ................................................................................................... 3 1.3 Pathway ‘apple fruit’ .....................................................................................................................................
    [Show full text]
  • Forest Health Technology Enterprise Team
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control ASSESSING HOST RANGES FOR PARASITOIDS AND PREDATORS USED FOR CLASSICAL BIOLOGICAL CONTROL: A GUIDE TO BEST PRACTICE R. G. Van Driesche and R. Reardon, Editors Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2004-03 Department of Service September 2004 Agriculture __________________________________ ASSESSING HOST RANGES OF PARASITOIDS AND PREDATORS CHAPTER 1. INTRODUCTION PREDICTING HOST RANGES OF PARASITOIDS AND PREDACIOUS INSECTS—WHAT ARE THE ISSUES? R. G. Van Driesche Department of Plant, Soil and Insect Science: Division of Entomology, University of Massachusetts, Amherst, MA 01003 USA [email protected] GOALS FOR HOST RANGE TESTING Estimating the likely nontarget impacts of agents released to suppress invasive plants has been legally required, to one degree or another, for many decades. Similar predictions were not formally required for introductions of parasitoids or predators of pest arthropods. That is now beginning to change. This book has as its goal an exploration of how such estimates can best be made. This requires overcoming a series of problems, some logistical, some technical, some tied to an unclear theoretical framework for the activity. In this book, the editors and authors have tried to address many of these needs, in some chapters as essays on important tasks that need to be achieved, in other chapters as case history explorations of how the tasks were done in particular cases. This book will not be the final answer, but we hope it might propel the search for such an answer along. LEGAL REQUIREMENTS Whether or not predicting the host ranges of parasitoids and predators is legally required varies among countries.
    [Show full text]
  • Forest Health Technology Enterprise Team
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control ASSESSING HOST RANGES FOR PARASITOIDS AND PREDATORS USED FOR CLASSICAL BIOLOGICAL CONTROL: A GUIDE TO BEST PRACTICE R. G. Van Driesche, T. Murray, and R. Reardon (Eds.) Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2004-03 Department of Service September 2004 Agriculture he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ Cover photo: Syngaster lepidus Brullè—Timothy Paine, University of California, Riverside. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for information only and does not constitute an endorsement by the U.S.
    [Show full text]
  • Forest Health Technology Enterprise Team
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control September 12-16, 2005 Mark S. Hoddle, Compiler University of California, Riverside U.S.A. Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2005-08 Department of Service September 2005 Agriculture Volume I Papers were submitted in an electronic format, and were edited to achieve a uniform format and typeface. Each contributor is responsible for the accuracy and content of his or her own paper. Statements of the contributors from outside of the U.S. Department of Agriculture may not necessarily reflect the policy of the Department. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture of any product or service to the exclusion of others that may be suitable. Any references to pesticides appearing in these papers does not constitute endorsement or recommendation of them by the conference sponsors, nor does it imply that uses discussed have been registered. Use of most pesticides is regulated by state and federal laws. Applicable regulations must be obtained from the appropriate regulatory agency prior to their use. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish and other wildlife if they are not handled and applied properly. Use all pesticides selectively and carefully. Follow recommended practices given on the label for use and disposal of pesticides and pesticide containers. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status.
    [Show full text]
  • Chapter 9 Biodiversity of Diptera
    Chapter 9 Biodiversity of Diptera Gregory W. Courtney1, Thomas Pape2, Jeffrey H. Skevington3, and Bradley J. Sinclair4 1 Department of Entomology, 432 Science II, Iowa State University, Ames, Iowa 50011 USA 2 Natural History Museum of Denmark, Zoological Museum, Universitetsparken 15, DK – 2100 Copenhagen Denmark 3 Agriculture and Agri-Food Canada, Canadian National Collection of Insects, Arachnids and Nematodes, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario K1A 0C6 Canada 4 Entomology – Ontario Plant Laboratories, Canadian Food Inspection Agency, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario K1A 0C6 Canada Insect Biodiversity: Science and Society, 1st edition. Edited by R. Foottit and P. Adler © 2009 Blackwell Publishing, ISBN 978-1-4051-5142-9 185 he Diptera, commonly called true flies or other organic materials that are liquified or can be two-winged flies, are a familiar group of dissolved or suspended in saliva or regurgitated fluid T insects that includes, among many others, (e.g., Calliphoridae, Micropezidae, and Muscidae). The black flies, fruit flies, horse flies, house flies, midges, adults of some groups are predaceous (e.g., Asilidae, and mosquitoes. The Diptera are among the most Empididae, and some Scathophagidae), whereas those diverse insect orders, with estimates of described of a few Diptera (e.g., Deuterophlebiidae and Oestridae) richness ranging from 120,000 to 150,000 species lack mouthparts completely, do not feed, and live for (Colless and McAlpine 1991, Schumann 1992, Brown onlyabrieftime. 2001, Merritt et al. 2003). Our world tally of more As holometabolous insects that undergo complete than 152,000 described species (Table 9.1) is based metamorphosis, the Diptera have a life cycle that primarily on figures extracted from the ‘BioSystematic includes a series of distinct stages or instars.
    [Show full text]
  • Biological Control Pacific Prospects - Supplement 2 Plate 1 Top Line: 1
    Biological Control Pacific Prospects - Supplement 2 Plate 1 Top line: 1. Bactrocera tryoni ovipositing in an apple. 2. Fopius arisanus probing a banana for tephritid eggs. 3. Diachasmimorpha longicaudata probing for lephritid larvae. Middle li ne: 4. Icerya aegyptiaca on a breadfruit leaf (D.P.A. Sands). 5. Adult I. aegyptiaca with wax filaments displaced by blowing lightly (G.S. Sandhu). 6. Larvae of Rodolia attacking I. aegyptiaca (D.P.A. Sands). Bottom line: 7. Coconut palm with bark channels of Neotermes rainbowi (M. Lenz). 8. Coconut palm stump following loss of lOp (M. Lenz). 9. Bark channels characteristic of N. rainbowi (M. Lenz). Plate 2 Top line: 1. Thicket of Clerodendrum chineme in Western Samoa. 2. Roadside thicket of C. chinense in Fiji CD .P.A. Sands). Middle line: 3. Flower head of C. chinense CD.P.A. Sands). 4. Phyllocharis undulata and damage to Clerodendrum leaf CB. Napompeth). Bottom line: 5. Young prostrate plant of Portulaca oleracea (J.T. Swarbrick). 6. P. oleracea in flower CW.A. Whistler). Biological Control Pacific Prospects - Supplement 2 D.F. Waterhouse Australian Centre for International Agricultural Research Canberra 1993 The Australian Centre for International Agricultural Research (AClAR) was established in June 1982 by an Act of the Australian Parliament. Its mandate is to help identify agricultural problems in devcloping countrics and to commission collaborative research between Australian and developing country researchers in fields where Australia has a special research competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by AClAR, or deemed relevaI1lto AClAR's research objectives.
    [Show full text]
  • (Insects and Relatives) of Kahului Airport Environs Maui, Hawaii Final
    BA SELINE SURVEY OF ARTHROPODS (INSECTS AND RELATIVES) OF KAHULUI AIRPORT ENVIRONS MAUI, HAWAII FINAL REPORT 6 September 2002 Manduca blackburni (Butler) Hippotion rosetta (Swinhoe) By Schistocerca nitens (Thunberg) Francis G. Howarth and David J. Preston Hawaii Biological Survey Bishop Museum 1525 Bernice Street Honolulu, Hawaii 96817-2704, USA Prepared for Edward K. Noda & Associates, Inc. Isometrus maculatus (DeGeer) 615 Piikoi Street, Suite 300 Plagithmysus new species Honolulu, Hawaii 96814-3139 And for the State of Hawaii, Department of Transportation, Airports Division Hawaii Biological Survey Contribution No. 2001.009 BASELINE SURVEY OF ARTHROPODS (INSECTS AND RELATIVES) OF KAHULUI AIRPORT ENVIRONS, MAUI, HAWAII FINAL REPORT 6 SEPTEMBER 2002 By Francis G. Howarth and David J. Preston Hawaii Biological Survey Bishop Museum 1525 Bernice Street Honolulu, Hawaii 96817-2704, USA Prepared for Edward K. Noda & Associates, Inc. 615 Piikoi Street, Suite 300 Honolulu, Hawaii 96814-3139 And for the State of Hawaii, Department of Transportation, Airports Division Contribution No. 2001-009 to the Hawaiian Biological Survey 1 DEDICATION Dr. John Wyman Beardsley, Jr. (1926 – 2001) We dedicate this report to Dr. John “Jack” Beardsley, our esteemed mentor, friend, colleague, and collaborator. Jack, who was emeritus professor of entomology at the University of Hawaii and a research Associate at Bishop Museum, passed away suddenly on 5 February 2001, while visiting Bishop Museum and assisting us in sorting and identifying the wasps for this project. His passing left a huge void in our work and in our hearts. He was happiest when in the field collecting insects and also when identifying insects using a microscope, with his trademark pair of jewelers’ glasses flipped out of the way on his head.
    [Show full text]