Forest Health Technology Enterprise Team

Total Page:16

File Type:pdf, Size:1020Kb

Forest Health Technology Enterprise Team Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control ASSESSING HOST RANGES FOR PARASITOIDS AND PREDATORS USED FOR CLASSICAL BIOLOGICAL CONTROL: A GUIDE TO BEST PRACTICE R. G. Van Driesche and R. Reardon, Editors Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2004-03 Department of Service September 2004 Agriculture __________________________________ ASSESSING HOST RANGES OF PARASITOIDS AND PREDATORS CHAPTER 1. INTRODUCTION PREDICTING HOST RANGES OF PARASITOIDS AND PREDACIOUS INSECTS—WHAT ARE THE ISSUES? R. G. Van Driesche Department of Plant, Soil and Insect Science: Division of Entomology, University of Massachusetts, Amherst, MA 01003 USA [email protected] GOALS FOR HOST RANGE TESTING Estimating the likely nontarget impacts of agents released to suppress invasive plants has been legally required, to one degree or another, for many decades. Similar predictions were not formally required for introductions of parasitoids or predators of pest arthropods. That is now beginning to change. This book has as its goal an exploration of how such estimates can best be made. This requires overcoming a series of problems, some logistical, some technical, some tied to an unclear theoretical framework for the activity. In this book, the editors and authors have tried to address many of these needs, in some chapters as essays on important tasks that need to be achieved, in other chapters as case history explorations of how the tasks were done in particular cases. This book will not be the final answer, but we hope it might propel the search for such an answer along. LEGAL REQUIREMENTS Whether or not predicting the host ranges of parasitoids and predators is legally required varies among countries. There is an absolute requirement for such predictions in New Zealand and Australia, but not in most other countries. In the EU, there is a developing consensus that such information will be required, but in the United States legal authority is lacking to impose such a requirement. Rather, the degree of such an assessment currently depends on the agency of employment of the person importing the natural enemy, with more stringent requirements for federal employees. Chapter 1. Introduction 1 ASSESSING HOST RANGES OF PARASITOIDS AND PREDATORS _________________________________ Regardless of the current legal status quo in any particular country, there is a trend to impose such requirements. The role of this book is in part to shape how such requirements are written, by revealing some of the complexities in the process of making such estimates and highlighting the risks of making overly sweeping assumptions about the utility of laboratory test data. PRACTICAL PROBLEMS Some of the problems posed by estimating the host ranges of candidate entomophagous biocontrol agents relative to the fauna of the receiving country are purely practical, rather than theoretical. Compared to plants, the number of species in a native biota of insects can be over- whelmingly large, with hundreds, thousands, even tens of thousands of native species in the target pest’s family in the receiving biogeographic region. Many of these are likely to have little or no information associated with museum specimens about such important matters as their biology, habitat, host plants, and so on. This double edged problem, too many species and too little information, can cripple efforts to rationally consider the impact of a new parasitoid or predator on such a group. Many species that would be desirable members of a host range test list may be impossible to find or, if found, information on how to rear them will be unavailable. Rearing difficulty is further compounded by the necessity of holding insects as reproducing colonies at great cost in labor, rather than as seeds or long-lived individuals as can be done for plants. Finally, the large numbers of species of many groups means that many other species exist that are unknown, especially if importations are being considered for tropical continental areas, and that modern molecular phylogenies of the relevant insect groups are less likely to be available than for plant groups. ISSUES OF THEORY Issues of theory also complicate the study of host ranges of entomophagous arthropods. For specialized herbivorous arthropods, host ranges seem to track plant taxonomy because that itself is often highly correlated to secondary plant chemistry, compounds often used by spe- cialists for host plant recognition. No such simple framework exists shaping the host ranges of insect parasitoids – or at least work to date has not shown this to clearly be the case. Rather, parasitoids themselves are of two potentially different sorts – idiobionts and koinobionts – each of which may be tracking different things in selecting hosts. Idiobionts being outside of their hosts need not have the high level of physiological adaptation to manipulate living hosts’ immune systems that koinobionts require. Rather, idiobionts may be freer to use a wider range of hosts and may be more shaped in their host choices by the habitats or host plants or type of plant structure (leafmine, gall, etc) in which they find hosts. Koinobionts, in contrast employ venoms, viruses and other devices to master their hosts’ immune systems and as such may find it more feasible to learn to find taxonomically related host insects on novel plants than to domi- nate novel immune systems of less related hosts on familiar plants. Sorting this framework out is the big theoretical issue in predicting host ranges of entomophagous insects. Such informa- tion is needed to make sense of actual host range test designs and test lists. 2 Chapter 1. Introduction __________________________________ ASSESSING HOST RANGES OF PARASITOIDS AND PREDATORS TECHNICAL ISSUES Many technical issues exist about which sorts of host range tests are most useful in predicting what entomophagous insects are likely to do after their release in a new region. How much weight should be placed on host finding versus host suitability? Should preference be consid- ered a factor likely to protect nonpreferred species from attack or will the biological control agents find themselves accepting or rejecting hosts without other immediately available choices? Should data from small cage studies be viewed as a reliable indicators of host choice or should tests use large cages? If so, how large? Should biological control agents used in tests be naïve (no contacts with the target pest) or experienced? Hungry or satiated? Mated or unmated? Young or old? While much has been learned in the past 40 years about how parasitoids and predacious insects are influenced in their host foraging by such factors, synthesis of this infor- mation into an approach for host testing is just beginning. PROCESS OF RESOLUTION Present in this book are essay-style chapters that try to address a number of the above men- tioned issues (Chapters 3-7). Other Chapters (8-16) present case histories in the belief that the particular stories they tell will cast light on methods, details, logical approaches that will have applications in other systems. Debate on many details of theory and practice will be needed to develop a consensus and a mature body of techniques for use in estimating host ranges of entomophagous arthropods. A new forum for such debate was begun in 2002 with the First International Symposium on Biological Control of Arthropods in Honolulu, Hawaii (USA). This series continues with the 2nd ISBCA scheduled to take place in Davos, Switzerland in September of 2005. Among the symposia to be held will be one debating issues affecting host range testing. AGKNOWLEDGEMENTS We thank the USDA Forest Service FHTET group in Morgantown, West Virginia, for funding the writing and printing of this volume, and to Mark Riffe, Intecs International, for formatting and layout. We look forward to the development of knowledge on host range testing and the eventual standard incorporation of such information into release decisions for new entomopha- gous insects. Chapter 1. Introduction 3 ASSESSING HOST RANGES OF PARASITOIDS AND PREDATORS _________________________________ CHAPTER 2. THE EFFECTS OF COMPSILURA CONCINNATA, AN INTRODUCED GENERALIST TACHINID, ON NON-TARGET SPECIES IN NORTH AMERICA: A CAUTIONARY TALE J. S. Elkinton and G. H. Boettner Deptartment of Plant, Soil and Insect Science: Division of Entomology, University of Massachusetts, Amherst, MA 01003 USA [email protected] INTRODUCTION Classical biological control has long been a principal weapon in the worldwide effort to com- bat the devastating effects of invasive species. Classical biological control involves locating natural enemies of invasive species in their native range and releasing them in the newly invaded habi- tat. The premise of classical biological control is that invasive species out-compete native spe- cies and become major pest problems in large part because they have become isolated from the suite of natural enemies that keep them in check in their native habitat. There have been many successes worldwide in the classical biological control of both invasive weeds and invasive arthropods. The advantages of classical biological control over any other approach are obvi- ous and well known: the control exerted is typically permanent; it requires little or no further intervention; it is thus highly cost effective compared to mechanical removal or use of chemical pesticides, which must typically be applied repeatedly and are often infeasible in forests or other natural habitats. Classical biological control of invasive weeds has had a long history of evaluating the host range of candidates for introduction. The obvious reason is that herbivorous natural enemies might become important pests of agricultural crops or other beneficial plants. In contrast, tra- ditionally there has been little concern about the potential impacts on non-target native insects that might be caused by the introduced natural enemies of invasive arthropods. Indeed, the ability of natural enemies to attack native non-target species was viewed by many as a positive attribute (e.g., Culver, 1919; Webber and Schaffner, 1926).
Recommended publications
  • Rediscovery and Reclassification of the Dipteran Taxon Nothomicrodon
    www.nature.com/scientificreports OPEN Rediscovery and reclassification of the dipteran taxon Nothomicrodon Wheeler, an exclusive Received: 07 November 2016 Accepted: 28 February 2017 endoparasitoid of gyne ant larvae Published: 31 March 2017 Gabriela Pérez-Lachaud1, Benoit J. B. Jahyny2,3, Gunilla Ståhls4, Graham Rotheray5, Jacques H. C. Delabie6 & Jean-Paul Lachaud1,7 The myrmecophile larva of the dipteran taxon Nothomicrodon Wheeler is rediscovered, almost a century after its original description and unique report. The systematic position of this dipteran has remained enigmatic due to the absence of reared imagos to confirm indentity. We also failed to rear imagos, but we scrutinized entire nests of the Brazilian arboreal dolichoderine ant Azteca chartifex which, combined with morphological and molecular studies, enabled us to establish beyond doubt that Nothomicrodon belongs to the Phoridae (Insecta: Diptera), not the Syrphidae where it was first placed, and that the species we studied is an endoparasitoid of the larvae of A. chartifex, exclusively attacking sexual female (gyne) larvae. Northomicrodon parasitism can exert high fitness costs to a host colony. Our discovery adds one more case to the growing number of phorid taxa known to parasitize ant larvae and suggests that many others remain to be discovered. Our findings and literature review confirm that the Phoridae is the only taxon known that parasitizes both adults and the immature stages of different castes of ants, thus threatening ants on all fronts. Ants are hosts to at least 17 orders of myrmecophilous arthropods (organisms dependent on ants), ranging from general scavengers to highly selective predators and parasitoids that attack either ants, their brood or other myr- mecophiles1–3.
    [Show full text]
  • Dipterists Digest
    Dipterists Digest 2019 Vol. 26 No. 1 Cover illustration: Eliozeta pellucens (Fallén, 1820), male (Tachinidae) . PORTUGAL: Póvoa Dão, Silgueiros, Viseu, N 40º 32' 59.81" / W 7º 56' 39.00", 10 June 2011, leg. Jorge Almeida (photo by Chris Raper). The first British record of this species is reported in the article by Ivan Perry (pp. 61-62). Dipterists Digest Vol. 26 No. 1 Second Series 2019 th Published 28 June 2019 Published by ISSN 0953-7260 Dipterists Digest Editor Peter J. Chandler, 606B Berryfield Lane, Melksham, Wilts SN12 6EL (E-mail: [email protected]) Editorial Panel Graham Rotheray Keith Snow Alan Stubbs Derek Whiteley Phil Withers Dipterists Digest is the journal of the Dipterists Forum . It is intended for amateur, semi- professional and professional field dipterists with interests in British and European flies. All notes and papers submitted to Dipterists Digest are refereed. Articles and notes for publication should be sent to the Editor at the above address, and should be submitted with a current postal and/or e-mail address, which the author agrees will be published with their paper. Articles must not have been accepted for publication elsewhere and should be written in clear and concise English. Contributions should be supplied either as E-mail attachments or on CD in Word or compatible formats. The scope of Dipterists Digest is: - the behaviour, ecology and natural history of flies; - new and improved techniques (e.g. collecting, rearing etc.); - the conservation of flies; - reports from the Diptera Recording Schemes, including maps; - records and assessments of rare or scarce species and those new to regions, countries etc.; - local faunal accounts and field meeting results, especially if accompanied by ecological or natural history interpretation; - descriptions of species new to science; - notes on identification and deletions or amendments to standard key works and checklists.
    [Show full text]
  • Butterflies of Ontario & Summaries of Lepidoptera
    ISBN #: 0-921631-12-X BUTTERFLIES OF ONTARIO & SUMMARIES OF LEPIDOPTERA ENCOUNTERED IN ONTARIO IN 1991 BY A.J. HANKS &Q.F. HESS PRODUCTION BY ALAN J. HANKS APRIL 1992 CONTENTS 1. INTRODUCTION PAGE 1 2. WEATHER DURING THE 1991 SEASON 6 3. CORRECTIONS TO PREVIOUS T.E.A. SUMMARIES 7 4. SPECIAL NOTES ON ONTARIO LEPIDOPTERA 8 4.1 The Inornate Ringlet in Middlesex & Lambton Cos. 8 4.2 The Monarch in Ontario 8 4.3 The Status of the Karner Blue & Frosted Elfin in Ontario in 1991 11 4.4 The West Virginia White in Ontario in 1991 11 4.5 Butterfly & Moth Records for Kettle Point 11 4.6 Butterflies in the Hamilton Study Area 12 4.7 Notes & Observations on the Early Hairstreak 15 4.8 A Big Day for Migrants 16 4.9 The Ocola Skipper - New to Ontario & Canada .17 4.10 The Brazilian Skipper - New to Ontario & Canada 19 4.11 Further Notes on the Zarucco Dusky Wing in Ontario 21 4.12 A Range Extension for the Large Marblewing 22 4.13 The Grayling North of Lake Superior 22 4.14 Description of an Aberrant Crescent 23 4.15 A New Foodplant for the Old World Swallowtail 24 4.16 An Owl Moth at Point Pelee 25 4.17 Butterfly Sampling in Algoma District 26 4.18 Record Early Butterfly Dates in 1991 26 4.19 Rearing Notes from Northumberland County 28 5. GENERAL SUMMARY 29 6. 1990 SUMMARY OF ONTARIO BUTTERFLIES, SKIPPERS & MOTHS 32 Hesperiidae 32 Papilionidae 42 Pieridae 44 Lycaenidae 48 Libytheidae 56 Nymphalidae 56 Apaturidae 66 Satyr1dae 66 Danaidae 70 MOTHS 72 CONTINUOUS MOTH CYCLICAL SUMMARY 85 7.
    [Show full text]
  • Classical Biological Control of Arthropods in Australia
    Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities.
    [Show full text]
  • European Format of Cv
    EUROPEAN FORMAT OF CV PERSONAL INFORMATION Name Kolarov Janko Angelov Address 236 Bulgaria Boul., 4000 Plovdiv, Bulgaria Tel. +359 32 261721 Fax +359 32 964 689 E-mail [email protected] Nationality Bulgarian Date of birth 20.06.1947 Length of service • Date (from-to) 2009-2014 Professor in Faculty of Pedagogy, University of Plovdiv 2000-2009 Associated professor in Faculty of Pedagogy, University of Plovdiv 1990-2000 Associated professor in Biological faculty, University of Sofia 1983-1990 A research worker of entomology in Institute of introduction and plant resources, Sadovo 1981-1983 Senior teacher of biology in Medical university, Plovdiv 1972-1981 Teacher Education and teaching 1996 Doctor of science 1980 PHD 1973 Magister of biology Mother tongue Bulgarian Other languages [RUSSIAN} [ENGLISH} [GERMAN} • reading excellent good middle • writing excellent good middle • conversation excellent good middle Participation in projects 2010-2012 Kuzeydoğu Anadolu Bölgesi’nin Cryptinae (Hymenoptera: Position Ichneumonidae) Altfamilyası üzerinde sistematik, sayısal taksonomi ve moleküler filogeni çalışmaları (Turkey) – member of team 2009-2011 Project Nr. 5362 entitled “State of Entomofauna Along the Pipeline Baku-Tbilisi-Jeyhan (Azerbaijan Territory)”, with leader I. A. Nuriyeva - – member of team 2006-2007 Investigation of the Ichneumonidae (Hymenoptera, Insecta) Fauna of Bulgaria – member of team 2004 A study of Ichneumonidae fauna of Isparta province, Turkey – member of team 2003 Fauna Еуропеа – member of team 1993 National strategy of protection of biological in Bulgaria – member of team Proffesional area Zoology Entomology Ecology Biogeography L I S T of the scientific works of Prof. DSc Janko Angelov Kolarov 1. Kolarov, J., 1977. Tryphoninae (Hymenoptera, Ichneumonidae) Genera and Species unknown in Bulgarian Fauna up to now.
    [Show full text]
  • Ables, J.R., Shepard, M. & Holman, 1.R. 1976. Development of The
    Ables, J.R., Shepard, M. & Holman, 1.R. 1976. Development of the parasitoids Spalangia endius and Muscidifurax raptor in relation to constant and variable temperature: simulation and validation. Environmental Entomology 5,329-333 . Aldyhim, Y. N. & Khalil, A.F. 1993. Influence of temperature and day length on population development of Aphis gossypii in Cucurbita pepo. Entomologia Experimentalis et Applicata 67, 167-172. Ali , A. & Gaylor, M.1. 1992. Effects of temperature and larval diet on development of the beet armyworm (Lepidoptera: Noctuidae). Environmental Entomology 21, 780-786. Ali, A., Luttrell, R.G. & Schneider, J.e. 1990. Effects of temperature and larval diet on development of the fall armyworm (Lepidoptera: Noctuidae). Annals ofEntomological Society ofAmerica 83, 725-733. Ali, A.S.A. & Watson, T.F. 1978. Effect of temperature on development and survival of Zelus renardii. Environmental Entomology 7, 889-891. Allen, G.R. & Keller, M.A . 1991. Uraba lugens (Lepidoptera: Noctuidae) and its parasitoids (Hymenoptera: Braconidae): temperature, host size, and development. Environmental Entomology 20, 458-469. Allsopp, P.G. 1977. Biology and capacity for increase of Monistria discrepans (Walker) (Orthoptera: Pyrgomophidae) in the laboratory. Journal ofAustralian Entomological Society 16, 207-2l3. Allsopp, P. G., Cowie, B.A. & Franzmann, B.A. 1983. Development of immature stages of the Lucerne leafroller Merophyas divulsana (Walker) (Lepidoptera: Tortricidae) under constant temperatures and on several larval diets. Journal ofAustralian Entomological Society 22, 287-291. Al-Maliky, S.K., Al-Izzi, M.A.1. & Jabbo, NT 1988. Effects of temperature and photoperiod on the development and oviposition of Apanteles sp. Group Ultor (Hymenoptera: Braconidae), a larval parasite of the Carob moth Ectomyelois ceratoniae (Lepidoptera: Pyralidae).
    [Show full text]
  • Deleterious Effects of Low Temperature Exposure on Learning Expression in a Parasitoid
    International Journal of Comparative Psychology, 2006, 19 , 368-385. Copyright 2006 by the International Society for Comparative Psychology Deleterious Effects of Low Temperature Exposure on Learning Expression in a Parasitoid Joan van Baaren Université de Rennes I, France Guy Boivin Centre de Recherche et de Développement en Horticulture Agriculture et Agroalimentaire, Canada Yannick Outreman UMR INRA/Agrocampus Rennes BiO3P, France In this paper, we review the learning capacities of insect parasitoids. We present data on the learning capacity of the parasitoid wasp, Anaphes victus (Hymenoptera: Mymaridae), in the host (egg) dis- crimination process. In addition, we examine the effect of low temperature exposure on the wasp’s learning. Our results showed that A. victus females learned rapidly to recognize their own chemical cues that they left on the host eggs, and retained this learning from patch to patch. Conspecific chemical cues left on the eggs took more time to be learned, but two learning trials induced a pro- longed memory for the cues. Our results also showed that the use of learned, conspecific chemical cues was more affected by cold exposure than was the use of learned personal cues. Learning in Parasitoids Insect parasitoids develop on or in a single host and kill it (Eggleton & Gaston, 1990). More than 100,000 species of insect parasitoids are known and while 75% of these species are Hymenoptera, the parasitoid lifestyle has evolved also in Diptera (flies), Coleoptera (beetles), Neuroptera (lacewings), Lepidoptera (butterflies) and Trichoptera (caddisflies). Learning in parasitoids was demon- strated as early as 1937 by Thorpe and Jones, but research on the topic did not flourish until the end of the 1980s.
    [Show full text]
  • Diptera) Diversity in a Patch of Costa Rican Cloud Forest: Why Inventory Is a Vital Science
    Zootaxa 4402 (1): 053–090 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4402.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:C2FAF702-664B-4E21-B4AE-404F85210A12 Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: Why inventory is a vital science ART BORKENT1, BRIAN V. BROWN2, PETER H. ADLER3, DALTON DE SOUZA AMORIM4, KEVIN BARBER5, DANIEL BICKEL6, STEPHANIE BOUCHER7, SCOTT E. BROOKS8, JOHN BURGER9, Z.L. BURINGTON10, RENATO S. CAPELLARI11, DANIEL N.R. COSTA12, JEFFREY M. CUMMING8, GREG CURLER13, CARL W. DICK14, J.H. EPLER15, ERIC FISHER16, STEPHEN D. GAIMARI17, JON GELHAUS18, DAVID A. GRIMALDI19, JOHN HASH20, MARTIN HAUSER17, HEIKKI HIPPA21, SERGIO IBÁÑEZ- BERNAL22, MATHIAS JASCHHOF23, ELENA P. KAMENEVA24, PETER H. KERR17, VALERY KORNEYEV24, CHESLAVO A. KORYTKOWSKI†, GIAR-ANN KUNG2, GUNNAR MIKALSEN KVIFTE25, OWEN LONSDALE26, STEPHEN A. MARSHALL27, WAYNE N. MATHIS28, VERNER MICHELSEN29, STEFAN NAGLIS30, ALLEN L. NORRBOM31, STEVEN PAIERO27, THOMAS PAPE32, ALESSANDRE PEREIRA- COLAVITE33, MARC POLLET34, SABRINA ROCHEFORT7, ALESSANDRA RUNG17, JUSTIN B. RUNYON35, JADE SAVAGE36, VERA C. SILVA37, BRADLEY J. SINCLAIR38, JEFFREY H. SKEVINGTON8, JOHN O. STIREMAN III10, JOHN SWANN39, PEKKA VILKAMAA40, TERRY WHEELER††, TERRY WHITWORTH41, MARIA WONG2, D. MONTY WOOD8, NORMAN WOODLEY42, TIFFANY YAU27, THOMAS J. ZAVORTINK43 & MANUEL A. ZUMBADO44 †—deceased. Formerly with the Universidad de Panama ††—deceased. Formerly at McGill University, Canada 1. Research Associate, Royal British Columbia Museum and the American Museum of Natural History, 691-8th Ave. SE, Salmon Arm, BC, V1E 2C2, Canada. Email: [email protected] 2.
    [Show full text]
  • Chapter 13. Assessing Host Specificity and Field Release Potential of Fire Ant Decapitating Flies (Phoridae: Pseudacteon)
    ASSESSING HOST RANGES OF PARASITOIDS AND PREDATORS _________________________________ CHAPTER 13. ASSESSING HOST SPECIFICITY AND FIELD RELEASE POTENTIAL OF FIRE ANT DECAPITATING FLIES (PHORIDAE: PSEUDACTEON) S. D. Porter1 and L. E. Gilbert2 1USDA-ARS, Center for Medical, Agricultural and Veterinary Entomology, P.O. Box 14565, Gainesville, Florida 32604 USA [email protected] 2Brackenridge Field Laboratory and Section of Integrative Biology, University of Texas, Austin, Texas 78712 USA BACKGROUND OF SYSTEM Fire ant populations in their South American homeland are about 1/5 to 1/10 as dense as popu- lations in North America (Porter et al., 1992; Porter et al., 1997a). This intercontinental differ- ence in fire ant densities was not explained by differences in climate, habitat, soil type, land use, plant cover, or sampling protocols (Porter et al., 1997a). Escape from numerous natural en- emies left behind in South America is the most apparent explanation for the intercontinental population differences. Natural enemies left behind in South America include two species of microsporidian pathogens, three species of nematodes, about 20 species of phorid decapitating flies, a eucharitid wasp, a parasitic ant, and numerous other microbes and arthropods of uncer- tain relationship to fire ants (Porter et al., 1997a). Escape from coevolved ant communities may also have been important. Ants in Brazil and Argentina, however, do not appear to be any more abundant than those in the United States, at least as indicated by their ability to find and occupy baits (Porter et al., 1997a). Classical or self-sustaining biological control agents are currently the only potential means for achieving permanent regional control of fire ants.
    [Show full text]
  • Chapter 12. Estimating the Host Range of the Tachinid Trichopoda Giacomellii, Introduced Into Australia for Biological Control of the Green Vegetable Bug
    __________________________________ ASSESSING HOST RANGES OF PARASITOIDS AND PREDATORS CHAPTER 12. ESTIMATING THE HOST RANGE OF THE TACHINID TRICHOPODA GIACOMELLII, INTRODUCED INTO AUSTRALIA FOR BIOLOGICAL CONTROL OF THE GREEN VEGETABLE BUG M. Coombs CSIRO Entomology, 120 Meiers Road, Indooroopilly, Queensland, Australia 4068 [email protected] BACKGROUND DESCRIPTION OF PEST INVASION AND PROBLEM Nezara viridula (L.) is a cosmopolitan pest of fruit, vegetables, and field crops (Todd, 1989). The native geographic range of N. viridula is thought to include Ethiopia, southern Europe, and the Mediterranean region (Hokkanen, 1986; Jones, 1988). Other species in the genus occur in Africa and Asia (Freeman, 1940). First recorded in Australia in 1916, N. viridula soon be- came a widespread and serious pest of most legume crops, curcubits, potatoes, tomatoes, pas- sion fruit, sorghum, sunflower, tobacco, maize, crucifers, spinach, grapes, citrus, rice, and mac- adamia nuts (Hely et al., 1982; Waterhouse and Norris, 1987). In northern Victoria, central New South Wales, and southern Queensland, N. viridula is a serious pest of soybeans and pecans (Clarke, 1992; Coombs, 2000). Immature and adult bugs feed on vegetative buds, devel- oping and mature fruits, and seeds, causing reductions in crop quality and yield. The pest status of N. viridula in Australia is assumed to be partly due to the absence of parasitoids of the nymphs and adults. No native Australian tachinids have been found to parasitize N viridula effectively, although occasional oviposition and development of some species may occur (Cantrell, 1984; Coombs and Khan, 1997). Previous introductions of biological control agents to Australia for control of N. viridula include Trichopoda pennipes (Fabricius) and Trichopoda pilipes (Fabricius) (Diptera: Tachinidae), which are important parasitoids of N.
    [Show full text]
  • Program Book
    Entomology: A Key Science The Encapsulated Program – 2014 Saturday, March 15 Evening Event Time Location President’s Informal Reception 5:00-7:00 Grant’s/Jackson’s Ento -Movie Night: “Them!” (1954) 7:30-11:30 Jeff Davis and "Beginning of the End" (1957) Amphitheater Sunday, March 16 Morning Event Time Location Registration 8:00-12:00 Clara Barton Executive Committee Meeting 8:00-11:00 Abe Lincoln Board MS and Undergrad Oral Talks 8:30-12:00 RoomHill’s Multi-scale Approaches to the Ecology and 8:30-12:00 McClellan’s M anagement Behavioral and Biological Control of 8:30-12:00 Emory’s Invasive Pests Afternoon Event Time Location Registration 12:00-5:00 Clara Barton Student Poster Competition 12:00-2:00 Longstreet/Hooker/Early Contributed Posters 12:00-2:00 Longstreet/Hooker/Early Symposium Honoring Harvey Reissig 1:00-5:00 Hill’s Ph.D. Oral Talks 2:00-5:00 McClellan’s Evening Event Time Location President’s Reception + ESA Awards, L.O. 5:30-7:30 Longstreet/Hooker/Early Howard and Herb Streu 2 Entomology: A Key Science Monday, March 17 Morning Event Time Location Registration 8:00-12:00 Clara Barton IDEP What’s Creeping Up on Us 8:00-12:00 Hill’s Arthropod-microbe Interactions 8:00-12:00 McClellan’s Student Symposium : Relating Graduate 8:30-12:00 Emory’s Research to the Public Through Extension Afternoon Event Time Location Registration 12:00-5:00 Clara Barton Linnaean Games 12:00-1:30 Jeff Davis Amphitheater Contributed Talks 1:00-5:15 Hill’s Fascinating Insects, And the Lessons They 1:00- 5:00 McClellan’s Provide Symposium Vegetable and Field Crops Symposium 1:00-5:00 Emory’s Afternoon Evening Event Time Location Social/Cash Bar 6:00-7:00 Longstreet/Hooker/Early Banquet – President’s Address, Student 7:00-10:00 Hill’s/McClellan’s Awards, Keynote Speaker Carol M.
    [Show full text]
  • Laboratory Methods for Rearing Soil Beetles (Coleoptera)
    ZOOLOGICA Bolesław Burakowski Laboratory methods for rearing soil beetles (Coleoptera) Polska Akademia Nauk Muzeum i Instytut Zoologii Warszawa 1993 http://rcin.org.pl POLSKA AKADEMIA NAUK MUZEUM I INSTYTUT ZOOLOGII MEMORABILIA ZOOLOGICA 46 Bolesław Burakowski Laboratory methods for rearing soil beetles (Coleopter a) WARSZAWA 1993 http://rcin.org.pl MEMORABILIA ZOOLOGICA, 46, 1993 World-list abbreviation: Memorabilia Zool. EDITORIAL STAFF Editor — in — chief — Bohdan Pisarski Asistant editor — Wojciech Czechowski Secretary — Katarzyna Cholewicka-Wiśniewska Editor of the volume — Wojciech Czechowski Publisher Muzeum i Instytut Zoologii PAN ul. Wilcza 64, 00-679 Warszawa PL ISSN 0076-6372 ISBN 83-85192-12-3 © Copyright by Muzeum i Instytut Zoologii PAN Warszawa 1993 Nakład 1000 egz. Ark. wyd. 5,5. Ark. druk 4 Druk: Zakład Poligraficzno-Wydawniczy „StangraF’ http://rcin.org.pl Bolesław Bu r a k o w sk i Laboratory methods for rearing soil beetles ( Coleoptera) INTRODUCTION Beetles are the most numerous group of insects; nearly 300,000 species have been described up till now, and about 6,000 of these occur in Poland. The morphological variability and different modes of life result from beetle ability to adapt to all kinds of habitats. Terrestrial and soil living forms dominate. Beetles undergo a complete metamorphosis and most species live in soil during at least one of the stages. They include predators, herbivores, parasites and sapro- phagans, playing a fairly significant role in nature and in man’s economy. Our knowledge of beetles, even of the common species, is insufficient. In spite of the fact that the beetle fauna of Central Europe has been studied relatively well, the knowledge accumulated is generally limited to the adults, while the immature stages have not been adequately studied.
    [Show full text]