Exploring the Role of the Scientists Prior to the First Pugwash Conference on Science and World Affairs, 1957 Sylvia Nickerson
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stage 2 Physics Sample Examination Questions
Stage 2 Physics Sample Examination Questions © SACE Board of South Australia 2020 Stage 2 Physics Sample Examination Questions Objective reference: A1013258 1. The photograph below shows a mobile phone connected to a charger. The charger contains a step-down transformer. charger mobile phone The transformer decreases the voltage from 220 V to 5.0 V. The primary coil of the transformer has 3520 turns. Determine the number of turns in the secondary coil of the transformer. ____________________________________________________________________________________________________________ ____________________________________________________________________________________________________________ ____________________________________________________________________________________________________________ ____________________________________________________________________________________________________________ ____________________________________________________________________________________________________________ ____________________________________________________________________________________________________________ ____________________________________________________________________________________________________________ _________________________________________________________________________________________________ (2 marks) © SACE Board of South Australia 2020 Stage 2 Physics Sample Examination Questions Objective reference: A1013258 2. Two experiments were conducted to determine the wavelength of light from a monochromatic light source. -
The Growth of Scientific Communities in Japan^
The Growth of Scientific Communities in Japan^ Mitsutomo Yuasa** 1. Introdution The first university in Japan on the European system was Tokyo Imperial University, established in 1877. Twenty years later, Kyoto Imperial University was founded in 1897. Among the graduates from the latter university can be found two post World War II Nobel Prize winners in physics, namely, Hideki Yukawa (in 1949), and Shinichiro Tomonaga (in 1965). We may say that Japan attained her scientific maturity nearly a century after the arrival of Commodore Perry in 1853 for the purpose of opening her ports. Incidentally, two scientists in the U.S.A. were awarded the Nobel Prize before 1920, namely, A. A. Michelson (physics in 1907), and T. W. Richard (chemistry in 1914). On this point, Japan lagged about fifty years behind the U.S.A. Japanese scientists began to achieve international recognition in the 1890's. This period conincides with the dates of the establishment of the Cabinet System, the promulgation of the Constitution of the Japanese Empire and the opening of the Imperial Diet, 1885, 1889, and 1890 respectively. Shibasaburo Kitazato (1852-1931), discovered the serum treatment for tetanus in 1890, Jiro ICitao (1853- 1907), made public his theories on the movement of atomospheric currents and typhoons in 1887, and Hantaro Nagaoka (1865-1950), published his research on the distortion of magnetism in 1889, and his idea on the structure of the atom in 1903. These three representative scientists were all closely related to Tokyo Imperial University, as graduates and latter, as professors. But we cannot forget to men tion that the main studies of Kitazato and Kitao were made, not in Japan, but in Germany, under the guidance of great scientists of that country, R. -
JANNEY CYLINDER COMPANY Subsidiary of Pittsburgh Forgings Co
People and things Michael Crowley-Milling of CERN, winner J. Pniewski of this year's Glazebrook Prize from the UK Institute of Physics. (Photo K Kilian) On People Eric Burhop, well-known high energy physicist from University College London, died on 22 January. He was particularly associated with the nuclear emulsion technique both in its heyday of cosmic ray research and early accelerator experiments and in its revived role in hybrid sys tems for the observation of charmed particle tracks, where he played a pioneering role. The Swedish physicist Erik Rudberg died on 2 January. He was Presi dent of the European Physical So ciety from 1970 to 1972 and in that office wrote for CERN COU RIER (February issue 1971 ) a mes sage of welcome on the decision to build the SPS. Gale Pewitt has been named Deputy Director for Operations at the Ar tation in music and recently com the National Medal of Science, one gonne Laboratory. In the 1960s he posed a song to celebrate CERN's of the highest US awards, to 20 em led the design and construction of 25th Anniversary (see November, inent researchers. Among those the 12 foot hydrogen bubble cham 1979 issue, page 369). who received the award this year <^ ber with its pioneering use of a were Richard Feynman and Victor large superconducting magnet. He Weisskopf. subsequently became Director of Among the award winners of the the High Energy Facilities Division. UK Institute of Physics for 1980 were Michael Crowley-Milling of PETRA and DORIS CERN (Glazebrook Medal and Prize) The Polish physicist J. -
The Twenty-First Century Paradigm and the Role of Information Technology
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Chapter 2 The Twenty-First Century Paradigm and the Role of Information Technology In Chap. 1 , we considered demand by roughly classifying it into two types: “diffusive demand” and “creative demand.” The “paradigm of the twentieth century and before” was characterized by diffu- sive demand. The paradigm was constituted by a material desire to satisfy needs for food, clothing, and shelter, as well as transportation, and social mobility. Many of the industries that came into being in the nineteenth and twentieth centuries were intended to satisfy such desires. I describe those material desires as diffusive demand leading to a “saturation of man-made objects .” It follows that new demand in the twenty-fi rst century will be generated by a new paradigm. Thus, in this chapter fi rst describes what the paradigms of the twenty-fi rst century are and then refl ects on the role played by the knowledge explosion, one of those paradigms, and the role played by information technology, which looks as if it came into being to solve problems created by the knowledge explosion. Exploding Knowledge, Limited Earth, and Aging Society What are the paradigms of the twenty-fi rst century? I believe there are three, which I classify as “exploding knowledge ,” “limited earth,” and “aging society” (Fig. 2.1 ). These three paradigms do not represent anything that is either good or bad for humanity. Each constitutes a basic framework containing both light and shadow. For instance, there has been an explosive increase in knowledge . -
De Nobelprijzen Komen Eraan!
De Nobelprijzen komen eraan! De Nobelprijzen komen eraan! In de loop van volgende week worden de Nobelprijswinnaars van dit jaar aangekondigd. Daarna weten we wie in december deze felbegeerde prijzen in ontvangst mogen gaan nemen. De Nobelprijzen zijn wellicht de meest prestigieuze en bekende academische onderscheidingen ter wereld, maar waarom eigenlijk? Hoe zijn de prijzen ontstaan, en wie was hun grondlegger, Alfred Nobel? Afbeelding 1. Alfred Nobel.Alfred Nobel (1833-1896) was de grondlegger van de Nobelprijzen. Volgende week is de jaarlijkse aankondiging van de prijswinnaard. Alfred Nobel Alfred Nobel was een belangrijke negentiende-eeuwse Zweedse scheikundige en uitvinder. Hij werd geboren in Stockholm in 1833 in een gezin met acht kinderen. Zijn vader, Immanuel Nobel, was een werktuigkundige en uitvinder die succesvol was met het maken van wapens en stoommotoren. Immanuel wou dat zijn zonen zijn bedrijf zouden overnemen en stuurde Alfred daarom op een twee jaar durende reis naar onder andere Duitsland, Frankrijk en de Verenigde Staten, om te leren over chemische werktuigbouwkunde. In Parijs ontmoette bron: https://www.quantumuniverse.nl/de-nobelprijzen-komen-eraan Pagina 1 van 5 De Nobelprijzen komen eraan! Alfred de Italiaanse scheikundige Ascanio Sobrero, die drie jaar eerder het explosief nitroglycerine had ontdekt. Nitroglycerine had een veel grotere explosieve kracht dan het buskruit, maar was ook veel gevaarlijker om te gebruiken omdat het instabiel is. Alfred raakte geinteresseerd in nitroglycerine en hoe het gebruikt kon worden voor commerciele doeleinden, en ging daarom werken aan de stabiliteit en veiligheid van de stof. Een makkelijk project was dit niet, en meerdere malen ging het flink mis. -
Appendix E Nobel Prizes in Nuclear Science
Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Appendix E Nobel Prizes in Nuclear Science Many Nobel Prizes have been awarded for nuclear research and instrumentation. The field has spun off: particle physics, nuclear astrophysics, nuclear power reactors, nuclear medicine, and nuclear weapons. Understanding how the nucleus works and applying that knowledge to technology has been one of the most significant accomplishments of twentieth century scientific research. Each prize was awarded for physics unless otherwise noted. Name(s) Discovery Year Henri Becquerel, Pierre Discovered spontaneous radioactivity 1903 Curie, and Marie Curie Ernest Rutherford Work on the disintegration of the elements and 1908 chemistry of radioactive elements (chem) Marie Curie Discovery of radium and polonium 1911 (chem) Frederick Soddy Work on chemistry of radioactive substances 1921 including the origin and nature of radioactive (chem) isotopes Francis Aston Discovery of isotopes in many non-radioactive 1922 elements, also enunciated the whole-number rule of (chem) atomic masses Charles Wilson Development of the cloud chamber for detecting 1927 charged particles Harold Urey Discovery of heavy hydrogen (deuterium) 1934 (chem) Frederic Joliot and Synthesis of several new radioactive elements 1935 Irene Joliot-Curie (chem) James Chadwick Discovery of the neutron 1935 Carl David Anderson Discovery of the positron 1936 Enrico Fermi New radioactive elements produced by neutron 1938 irradiation Ernest Lawrence -
Appendix E • Nobel Prizes
Appendix E • Nobel Prizes All Nobel Prizes in physics are listed (and marked with a P), as well as relevant Nobel Prizes in Chemistry (C). The key dates for some of the scientific work are supplied; they often antedate the prize considerably. 1901 (P) Wilhelm Roentgen for discovering x-rays (1895). 1902 (P) Hendrik A. Lorentz for predicting the Zeeman effect and Pieter Zeeman for discovering the Zeeman effect, the splitting of spectral lines in magnetic fields. 1903 (P) Antoine-Henri Becquerel for discovering radioactivity (1896) and Pierre and Marie Curie for studying radioactivity. 1904 (P) Lord Rayleigh for studying the density of gases and discovering argon. (C) William Ramsay for discovering the inert gas elements helium, neon, xenon, and krypton, and placing them in the periodic table. 1905 (P) Philipp Lenard for studying cathode rays, electrons (1898–1899). 1906 (P) J. J. Thomson for studying electrical discharge through gases and discover- ing the electron (1897). 1907 (P) Albert A. Michelson for inventing optical instruments and measuring the speed of light (1880s). 1908 (P) Gabriel Lippmann for making the first color photographic plate, using inter- ference methods (1891). (C) Ernest Rutherford for discovering that atoms can be broken apart by alpha rays and for studying radioactivity. 1909 (P) Guglielmo Marconi and Carl Ferdinand Braun for developing wireless telegraphy. 1910 (P) Johannes D. van der Waals for studying the equation of state for gases and liquids (1881). 1911 (P) Wilhelm Wien for discovering Wien’s law giving the peak of a blackbody spectrum (1893). (C) Marie Curie for discovering radium and polonium (1898) and isolating radium. -
Appeal from the Nuclear Age Peace Foundation to End the Nuclear Weapons Threat to Humanity (2003)………………………………………..……...26
Relevant Appeals against War and for Nuclear Disarmament from Scientific Networks 1945- 2010 Reiner Braun/ Manuel Müller/ Magdalena Polakowski Russell-Einstein-Manifesto (1955)……………..…..1 The first Pugwash Conferenec (1957)………..……4 The Letter from Bertrand Russell to Joseph Rotblat (1956)………………………………..……...6 „Göttinger 18“ (1957)…………………………..…..8 Hiroshima Appeal (1959)………………………..…9 Linus Pauling (1961)…………………………..…..10 The Call to Halt the Nuclear Arms Race (1980)………………..…..11 The Göttingen Draft Treaty to Ban Space Weapons (1984)…………………………………………….....15 Appeal by American Scientists to Ban Space Weapons (1985)………………………………..…..16 The Hamburg Disarmament Proposals (1986)…………………………………………..…...17 Hans A. Bethe to Mr. President (1997)………..…18 Appeal from Scientists in Japan (1998)……….....20 U.S.Nobel laureates object to preventive attack on Iraq (2003)……………………………………...….25 Appeal from the Nuclear Age Peace Foundation to end the nuclear weapons threat to humanity (2003)………………………………………..……...26 Appeal to support an International Einstein Year (2004)……………………………………………….28 Scientists for a Nuclear Weapons Free World, INES (2009)…………………………..……………31 Milan Document on Nuclear Disarmament (2010)……………………..34 Russell-Einstein-Manifesto (1955) 1 Russell-Einstein-Manifesto (1955) In the tragic situation which confronts humanity, we feel that scientists should assemble in conference to appraise the perils that have arisen as a result of the development of weapons of mass destruction, and to discuss a resolution in the spirit of the appended draft. We are speaking on this occasion, not as members of this or that nation, continent, or creed, but as human beings, members of the species Man, whose continued existence is in doubt. The world is full of conflicts; and, overshadowing all minor conflicts, the titanic struggle between Communism and anti-Communism. -
Geometric Approaches to Quantum Field Theory
GEOMETRIC APPROACHES TO QUANTUM FIELD THEORY A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering 2020 Kieran T. O. Finn School of Physics and Astronomy Supervised by Professor Apostolos Pilaftsis BLANK PAGE 2 Contents Abstract 7 Declaration 9 Copyright 11 Acknowledgements 13 Publications by the Author 15 1 Introduction 19 1.1 Unit Independence . 20 1.2 Reparametrisation Invariance in Quantum Field Theories . 24 1.3 Example: Complex Scalar Field . 25 1.4 Outline . 31 1.5 Conventions . 34 2 Field Space Covariance 35 2.1 Riemannian Geometry . 35 2.1.1 Manifolds . 35 2.1.2 Tensors . 36 2.1.3 Connections and the Covariant Derivative . 37 2.1.4 Distances on the Manifold . 38 2.1.5 Curvature of a Manifold . 39 2.1.6 Local Normal Coordinates and the Vielbein Formalism 41 2.1.7 Submanifolds and Induced Metrics . 42 2.1.8 The Geodesic Equation . 42 2.1.9 Isometries . 43 2.2 The Field Space . 44 2.2.1 Interpretation of the Field Space . 48 3 2.3 The Configuration Space . 50 2.4 Parametrisation Dependence of Standard Approaches to Quan- tum Field Theory . 52 2.4.1 Feynman Diagrams . 53 2.4.2 The Effective Action . 56 2.5 Covariant Approaches to Quantum Field Theory . 59 2.5.1 Covariant Feynman Diagrams . 59 2.5.2 The Vilkovisky–DeWitt Effective Action . 62 2.6 Example: Complex Scalar Field . 66 3 Frame Covariance in Quantum Gravity 69 3.1 The Cosmological Frame Problem . -
Nobel Lectures™ 2001-2005
World Scientific Connecting Great Minds 逾10 0 种 诺贝尔奖得主著作 及 诺贝尔奖相关图书 我们非常荣幸得以出版超过100种诺贝尔奖得主著作 以及诺贝尔奖相关图书。 我们自1980年代开始与诺贝尔奖得主合作出版高品质 畅销书。一些得主担任我们的编辑顾问、丛书编辑, 并于我们期刊发表综述文章与学术论文。 世界科技与帝国理工学院出版社还邀得其中多位作了公 开演讲。 Philip W Anderson Sir Derek H R Barton Aage Niels Bohr Subrahmanyan Chandrasekhar Murray Gell-Mann Georges Charpak Nicolaas Bloembergen Baruch S Blumberg Hans A Bethe Aaron J Ciechanover Claude Steven Chu Cohen-Tannoudji Leon N Cooper Pierre-Gilles de Gennes Niels K Jerne Richard Feynman Kenichi Fukui Lawrence R Klein Herbert Kroemer Vitaly L Ginzburg David Gross H Gobind Khorana Rita Levi-Montalcini Harry M Markowitz Karl Alex Müller Sir Nevill F Mott Ben Roy Mottelson 诺贝尔奖相关图书 THE PERIODIC TABLE AND A MISSED NOBEL PRIZES THAT CHANGED MEDICINE NOBEL PRIZE edited by Gilbert Thompson (Imperial College London) by Ulf Lagerkvist & edited by Erling Norrby (The Royal Swedish Academy of Sciences) This book brings together in one volume fifteen Nobel Prize- winning discoveries that have had the greatest impact upon medical science and the practice of medicine during the 20th “This is a fascinating account of how century and up to the present time. Its overall aim is to groundbreaking scientists think and enlighten, entertain and stimulate. work. This is the insider’s view of the process and demands made on the Contents: The Discovery of Insulin (Robert Tattersall) • The experts of the Nobel Foundation who Discovery of the Cure for Pernicious Anaemia, Vitamin B12 assess the originality and significance (A Victor Hoffbrand) • The Discovery of -
The Beta-Decay Induced by Neutrino Flux B
9 772153119007 0605 Journal of Modern Physics, 2020, 11, 593-765 https://www.scirp.org/journal/jmp ISSN Online: 2153-120X ISSN Print: 2153-1196 Table of Contents Volume 11 Number 5 May 2020 How to See Invisible Universes A. A. Antonov………………….………………………………………………………………………………………593 The Beta-Decay Induced by Neutrino Flux B. V. Vasiliev…………………………………………...………………………………………………………………608 The Pioneer Effect: A New Physics with a New Principle R. Bagdoo………………………………………………………………………………………………………………616 Density Profiles of Gases and Fluids in Gravitational Potentials from a Generalization of Hydrostatic Equilibrium R. B. Holmes………………………....…………………………………………………………………………………648 Photon Can Be Described as the Normalized Mutual Energy Flow S.-R. Zhao………………………………………………………………………………………………………………668 Kolmogorov’s Probability Spaces for “Entangled” Data-Subsets of EPRB Experiments: No Violation of Einstein’s Separation Principle K. Hess…………………………………….……………………………………………………………………………683 Melia’s Rh = ct Model Is by No Means Flat R. Burghardt…………………………...………………………………………….……………………………………703 Theoretical Prediction of Negative Energy Specific to the Electron K. Suto……………………………….…………………………………………………………………………………712 The Bell Inequalities: Identifying What Is Testable and What Is Not L. Sica……………………………………….…………………………………………..………………………………725 Proton and Neutron Electromagnetic Form Factors Based on Bound System in 3 + 1 Dimensional QCD T. Kurai…………………….……………………………………………………………..……………………………741 The figure on the front cover is from the article published in Journal of Modern Physics, 2020, -
Carl Zeiss Meditec AG As a Result of Different Consolidation Models
ZEISS Medical Technology Company Presentation Insights 2017/2018 Content ZEISS Medical Technology 1 The ZEISS Group 2 ZEISS Medical Technology at a glance 3 Fascinating Facts 4 Product Portfolio 5 Solution Provider 6 Global MEGS Trends 7 Corporate Social Responsibility Company Presentation – ZEISS Medical Technology Insights ZEISS Medical Technology The ZEISS Group Company Presentation – ZEISS Medical Technology The Power of ZEISS 170 years of company history in Innovations 1st Picture 9,100 Stars of the surface of the Moon can be projected in planetariums taken with lenses from ZEISS using ZEISS optics Every second 3 Technical Oscars two people decide for helping leading movie-makers to purchase eyeglass capture perfect moments on film lenses from ZEISS 15 million 35 Nobel cataract operations prize-winners are performed annually put their trust in ZEISS around the world using microscopes to see more surgical systems from ZEISS Company Presentation – ZEISS Medical Technology ZEISS The company founders Carl Zeiss Ernst Abbe Their mission . Cutting-edge research . Extreme precision and maximum quality . Responsibility to society Company Presentation – ZEISS Medical Technology ZEISS Company history Carl Zeiss First non-German subsidiary Stock corporation opens a workshop in London marks the start ZEISS is transformed into a for precision engineering of global expansion stock corporation – the Carl and optics in Jena Zeiss Foundation remains the sole stockholder Carl Zeiss Partition Foundation Jena: expropriated Oberkochen: new factory created